SlideShare a Scribd company logo
1 of 95
Download to read offline
1
raft
Motor Boat
V
V
1.1. Method : 1 (Relative approach)
V = Relative speed of
motor boat w.r.t.
river which is constant
Observer on raft see that speed of motor boat is constant because duty of motor boat is constant.
Hence if motor boat take 1 hrs in down stream journey then to reach again at raft motor boat
will take 1 hrs in upstream journey. Hence Total time in complete journey = 2 hrs.
Motion of raft : u = speed of river. Then 2 u = 6  u = 3 km/hr. Ans.
Method : 2 (With frame of ground)
Motion of raft : u (1 + t1
) = 6 ––– (i)
Motion of motor boat : (v + u) × 1 – (v – u) t1
= 6  v + u – vt1
+ ut1
= 6
 v – vt1
+ u (1 + t1
) = 6; from (i)  v – vt1
+ 6 = 6  t1
= 1 hrs.
put t1
= 1 hr in (i) : u (1 + 1) = 6  u = 3km/hr Ans.
Q.1.2: Total distance travel by point is S. Then Time taken in first journey :
t1
=
0V
2
S
Time taken in second journey :
2
t
V
2
t
V
2
S 2
2
2
1   t2
=
21 VV
S

Mean velocity =
21 tt
S

=
210 VV
S
V
S/2
S


 Mean velocity =
021
210
2VVV
)V(V2V


Ans.
Q.1.3 Method : 1 (Graphical Approach) Given tan  = 
timeTotal
trapziumofArea
tan
2
t–
)t(
2
1
Time
ntDisplaceme







 





4
–1t Ans.
Fixed point
6 km u
distance = 2 × u
raft
1 hr.
t1
6 km
Part One
Physical Fundamenatls of Mechanics
1.1 Kinematics
V
t


t
 – t
2
 – t
2
Compact ISC Physics (XII)2
Method : 2 (Analytical)
Total displacement (S) =
22
2
t–
2
1
t
2
t–
2
t–
2
1







 







 







 

Time taken =  =






 





 





 



22
2
t–
2
1
t
2
t–
2
t–
2
1
S
t = 


4
–1 Ans.
Q.1.4 (a)
S
2m
20 s
t
average velocity =
20
2
= 0.1 m/s = 10 cm/s Ans.
(b) Velocitywill be maximum when slope of S (t) curve will be maximum.
V =
10–14
0.4–1.4
m/s = 25 cm/s Ans.
(c) Instanteneous velocity may be equal to mean velocity when
slope of line joining final and initial point will be same to
slope at point on curve. Ans. : to
= 16 s
Q.1.5 Velocity of B with respect to A : 12A–B V–VV


Position of B with respect to A : 12ABA–B r–rr–rr


A
B
VB – A
Particle B will be collide with A if velocity of B with respect A is directed toward observer A.
Then A–BA–BA–BA–B rˆVˆr||V 

Then |r–r|
r–r
|V–V|
V–V
12
12
12
12




 Ans.
Q.1.6
N
EW
S
V = 15 km/hrW – E
V = 30 km/hrS – E
60º
Y
X
S
16 s
approx
t
S
1.4
14
t
0.4
10
A
r1
v1
v2
r2
B
Y
X

3
E–SV

= 30 i; jˆ60sin15–iˆ60cos15V E–W 


E–WE–SS–W VV–jˆ60sin15–iˆ30)–60cos(15V


km/hr4060)sin(1530)–60cos(15|V| 22
S–W 

 19º
30–60cos15
60sin15–
tan  Ans
Method 2
30 km/hr
VW – S15 km/hr
60º 
we know E–SE–WS–W V–VV


60cosVV2–VV|V| E–SE–W
2
E–S
2
E–WS–W 

 40 km/hr Ans.
from figure : tan  =
60cos15–30
60sin15
    = 19º
Person : 1
Q.1.7
2 km/hr

d
2.5 km/hr
Time to cross the river : t =
cos2.5
d
––––– (i)
from figure : sin  =
5
4
2.5
2
  cos  =
5
3
 Put in (i) : t =
1.5
d
––––– (ii)
Person : B
2 km/hr

d
2.5 km/hr
x
Using trigonometry : x = d tan 1
Time to reach at destination point : t = t1
+ t2
Here t1
= Time to cross the river =
2.5
d
t2
= Time to walk on bank =
u
tand
u
x 
 And tan
=
5
4
2.5
2
  t =
5
4
u
d
2.5
d
 –––– (iii)
from (ii) and (iii) :
5u
4d
2.5
d
1.5
d
 u = 3 km/hr Ans.
Compact ISC Physics (XII)4
Q.1.8 Boat A :
d
d
time to reach again at same point.
tA
=
– WV
d
WV
d


–––– (i) where V = Speed of boat w.r.t. river
W = Speed of water w.r.t. earth.
Boat B : d
W
V
Time to reach again at same point. tB
=
22
– WV
2d
––––– (ii)
Also given V =  ––––– (iii) now 1–
–
2d
–
dd
t
t
2
222
B
A









1–t
t
2B
A


 = 1.8s
1.9: Method : 1 
d Vm – r
x
Vr – E
A
Time to cross the river: t = cos|V|
d
mr

Then Drift (x) = (Vm – r
sin  – Vr – E
)
cosV
d
mr
Since Vm – r
< Vr – E
. Hence
this is not possible that drift will be zero. Hence we should have to minimize
drift (x). Hence
d
dx
= 0
d sec2
 –
mr
E–r
V
d)(V
sec tan  = 0  sin =
2
1
V
V
E–r
r–m
   = 30º
Angle made by boat with flow velocity of water = 30º + 90º = 120º Ans.
Method : 2 (Vector addition method)

Vr – E
Vm – r
E–rr–mE–m VVV

 Hence  will taken any value between
(0 – 180º) hence we can draw a semi circle of radius of length |V| r–m

. Then.
30º 90º
5
Vr – E
A
C4
C3
C2
C1
B
And resultant is given by C1
, C2
, C3
and C4
, ....... Cn
. But for minimum drift resultant must be
tangent at semicircle. Then cos  =
2
1
V
V
E–r
mr
   = 60º Then   = 180 – 60º = 120º
1.10: Relative acceleration of particle (1) w.r.t. (2) = g – g = 0; Relative velocity
of particle (1) w.r.t. (2) = V1 – 2
= )–(90cosV2V–VV 00
2
0
2
0 
= V0
)sin–(12  Where 90 –  is angle b/w two velocity..
Since there is no relative acceleration of particle (1) hence its relative velocity
does not change w.r.t time then. Distance b/w two particle at time t is : Distance = V0
t )sin–(12 
= 22 m Ans.
Q.1.11 : Method : 1 (Vector) + y
3 m/s 4 m/s x (+)
1
2
Initial velocity in y direction
of both particle zero. Hence vertical velocity of particles (1) at time t : Vy
= u + at  Vy
= g t; Velocity
of particle (1) at time t = : jˆtgiˆ3–V1 

; Velocity of particle (2) at time t : jˆtgiˆ4V2 


Since 0V.VVV 2121 

Then – 12 + g2
t2
= 0  t = 0.12 s. Hence distance between two
particle will be : Distance = Vrelative × t = (4 – (–3)) × 0.12 = 7 × 0.12  2.5 m Ans.
Method : 2 (Graphical) : Since 21 VV

   +  = 90
  = 90 –   tan  = tan (90 – )  tan  = cot 
tan  × tan  = 1 ––––– (i)
And tan  =
3
gt
 tan  =
4
gt
Vr – E

C
Vmr

V0
 = 60º
g g
1 2
V0
3 m/s 4 m/s
V1
gt gt
 



Compact ISC Physics (XII)6
put in (i): 1
4
gt
3
gt












 t = 0.12
Distance = Vrel × time = 7 0.12  2.5 m Ans.
1.12 : Method : 1 (Velocity of approach) Since particle A heading to particle B and B to C and C
to A. Then position of all particle at t = dt is as figure 2.
Again position of all particle at t = 2 dt is as figure 3.
Again position at t = 3 dt and so on ........ Since at any time
all particle travel same distance then at each moment of time,
all particle will be at equilateral tringle. Then by symmetry you
can say that all particle will be met at centriod of tringle then
path of each particle will as :
Suppose at any instant of time, distance b/w particle A and
centriod P is r. Then, line joing particle A and P make 30º angle
with side of equilateral tringe then
dt
dr
will always constant and
equal to v cos 30º then –
dt
dr
= V cos 30º, (–)ive sign because
r is dicreasing function. Finally r = 0 while initial / 3r a
 
t
0
0
3
a
dt
30cosv
dr
–
 t =
3V
2a
 A P =
2
a
sec 30º =
3
a
Ans.
a
60º 60º
60º
A
B
C
a
V
V
V
a
Vdt
Vdt
Vdt
Vdt
Vdt
Vdt
Vdt
Vdt
Vdt

A
B
C
30º
P30º
A
P
A 30º
a
2/
/ 3
a
7
Method : 2 (Relative approach)
let distance b/w A and B at time t is r then. At any instant of time, rate of decreasement of
distance b/w two particle A and B will be constant as shown in figure.
Then
dt
dr
= – (V + V cos 60º) =
2
3V
–   
dt
0
0
a
dt
3V–
dr2
 t =
V
3a
Ans.
1.13: Suppose at time t distance b/w A and B is r. Then rate of decreasement of r is :
dt
dr–
=
– v + u cos    
o t
0
dtθ)cosu(–vdr–

 –l = – vt + u 
t
0
cos  dt.... (i)
Now since 
t
0
cos  dt is not known then to find this integration,
we use rate of decreasement of component: Then
dt
dx
= – V cos 
+ u dtu)cosV(–dx
t
0
0
0
  0 = ut – V  cos
t
0
dt 
 cos
t
0
dt =
V
ut
now put in (1) : –l = –vt + u 







V
ut
 t = 22
u–V
V 
1.14:With frame of train : With frame of train, train appear in rest
then distance b/ there two event is equal to l.
With frame of earth : When event (1) will happen. Velocity of train is V = u + at = wt. Since
event (2) will be happen after time  then. Distance travelled
by headlight (A) = Distance travelled by head light (B) =
u1
t1
+


a t2
1
= wt() +


w
w 







t Then distance
b/ two events is = 




  2t– w = 0.24 km. Ans.
A
A
1
A11
B
11
C11
C
1
C
B
1
B
V
cos60º
V
cos 60º
V V
V
V
V
V
60º
60º 60º
V
V cos 60º
B

A
W

AB
event 2
B A

event 1
w (t + /2) 
 A

V
B u
x
y x
r
Compact ISC Physics (XII)8
 It we want that both event will be happen at same point then velocity of reference frame
will be Vreference frame
=
60
km24.0
= 4 m/s Ans.
1.15: (a) For observer inside lift at t = 2s. velocity of bolt = 0
Accn
of bolt = 10 + 1.2 = 11.2 m/s2
. Then assume t time is taken by
bolt to reach at floor. s =


at2
 2.7 =


× 11.2 t2
 t = 0.7s
(b) Velocity of bolt with respect to ground at t = 2 sec.
V =1.2×2 = 2.4 m/s Displacement then S= ut +


at2
 S = 2.4 (0.7) –


×10 (.7)2
 – 0.7 m
Distance : H = 2g
2.4. 
= 0.288 Distance travelled = 2 × 0.288 + 0.7
 1.3 m Ans.
1.16: Method : 1 (Relative velocity) from figure
tan  =
1
2
V
V
 cos = 2
2
2
1
1
VV
V

also tan  =
1
2
1 V
Vy


y =
1
2
1
V
V
  BC =
1
21
2
V
V
–


Shortest distance = CM = BC cos = 2
2
2
1
1
1
21
2
VV
V
V
V
–








 

shaft
a=1.2 m/s
2
2.7m
2.4m/s
H
0.7m
Shortest distance
= 2
2
2
1
2112
VV
|V–V|


now t = 2
2
2
1
221
2
2
2
1
1
2
2
2
1
2
2
2
1
VV
VV
VV
tanCMsec
VV
BMAB
VV
AM










 
2
2
2
1
2211
VV
VV
t




Ans.
1
2
y
0V1
B
C
M

V2
1
2
V2
0
V1
9
Method : 2 (Velocity of approach)
At shortest distance velocity of approach = 0. Then V1
cos  = V2
sin   tan  =
2
1
V
V
In tringle BA  O : tan  =
2
1
1
2
V
V
tV–
–tV





V2
2
t – l2
V2
= l1
V1
– V2
1
t  t = 2
2
2
1
21
VV
VV

  
Ans.
And Shortest distance is : )–t(Vt)V–( 2
2
2
1   
Shortest distance =
2
2
2
1
21
VV
VV

  
Method :3
V t1
1 1– V t
V1
V t –2 2
V2
)–t(Vt)V–( 2
2
2
1    ... (1). for shortest
distance
dt
dl
= 0 
)–t(Vt)V–(
V)–t(V2Vt)V–(2–
2
2
2
1
2211








= 0
t = 2
2
2
1
21
VV
VV

  
Ans. put value of t in (1) : 2
2
2
1
21
VV
|V–V|

  

Ans.
1.17: Method : 1
Time to reach at point D : T =
V/n
sec
V
tan–m 

 
. For
minimum time :
dθ
dT
= 0 Then –
V

sec2
 +
V
n 
sec
× tan  = 0  sec  = n tan   sin  =

1
. Then
distance BC = l tan   BC =

–

Ans.
1 1– V t
V1
V t2
V2
V t1
A A
1
B
1
2
B
90–
O
B
C
m– tan 
m
D
A


tan

Compact ISC Physics (XII)10
Method: 2 (Help of light wave)
We know that light travel via that path in which time will be
less. Then.
(2)mediuminspeed
(1)mediuminspeed
θsin
isin
 =
V
V
sin
90sin 


 sin 


 length BC = l tan =
1–η2

Ans.
1.18:
1.19: (a) Mean velocity in irodov is misprint and it is mean speed then mean speed =
τ
Rπ
Ans.
(b) Mean velocity =
τ
R2
Ans. (c) We know 
  

       
   ....(i)
And 


t2
  


2
 
2
τ
2 
ii from
(i) and (ii) : 






 
2
τ
2
  
τ
2 
now V = RW then
V = R 




 
τ
2
. Average accleration :

cf V–V
=
τ
0–
τ
R2 
 Avg. Accn
= 2
τ
R2 
Ans.
B C
medium (1)
i



medium (2)
B
R
A
Time taken = 
WX
1
3
6
1m/s
2
–1m/s
2
x
Distance
t
t
t
11
1.20:This is one dimension motion be cause direction of position vector r
 is same as constant
vector a

. Then t)–(1tar 

at–ta 2 

(a) at2–a
dt
rd
V


  a2–
dt
vd
acc



  aV

 (1 – 2 t) Ans.
(b) At initial position t = 0  r

= 0 Now at final position r

= 0 then. a

t (1 – t) = 0
t = 0 ro t = 
 Ans.
Initial A B At point B velocity will be equal to zero so
that particle will be turn back. Then 0 = a

(1 – 2t)  t =


Then position B is :
r = a 
















4
a
–1 . The Distance travelled in up and down journcy is:




 2
a
4
a
4
a
Ans.
1.21:(a) V = V0
(1 – t/)  dt
τ
t
–1Vdx
x
0
t
0
0  





 x = V0 







2τ
t
–t
2
 Position at time t is
x then : x = V0
t 





2τ
t
–t Ans.
(b) Henc we see that velocity will change dirn
at t =  because When t >   v = 
And t <     v = – ive. Then Case I : t <  x VV0
t 





2τ
t
–l Ans.
Case II : t >  Total distance travelled = AB + BC
= V0
 
















 





 
2τ
t
–ltV–
2τ
–lV
2τ
–l 00 = 









2
t
–ltV–
2
V
2
V
0
00
Distance = V0
 – V0
t 





2τ
t
–l when t >  Ans.
1.22 : (a) v = 
1
xx differentiate w. r. t. time : 2
1
2
1
2
1
xαx
2
α
a
dt
dx
xα
2
1
dt
dv ––

a =
2
α
2
1
Since acceleration is constant; velocity will be : V = u + at  V =
2
α
2
1
t
C
A
B
t = 
Compact ISC Physics (XII)12
(b) S = ut +
2
1
at2
 S =
2
1








2
α2
t2
 t =
α
s2
Mean velocity <V> =
s2
s
t
s 

< V > = s


Ans.
1.23:Calculation of time : w = – a v ( – i ve sign is used to show deacceleration)
dt
dv
= – a v   
ot
0
0
0v
dta–
v
dv
 t0
=
a
V 2
1
0
Ans.Ans.
Calculation of distance : va–  va–
dx
dv
v    
0
0
2
1
x
0
0
v
dxa–dvv x0
=
3a
V 2
3
0
1.24 : (a) jˆbt–iˆatr 2


 x = at  y = – bt2
 y= – b
2
a
x






a2
y = – bx2
Ans.
(b) jˆ2bt–iˆa
dt
rd
v 


 jˆ2bt–iˆav 
 222
tb4a|v| 

 jˆ2b–
dt
vd
a 


 jˆ2b–a 

2b|a| 

(c) Since direction of acceleration is toward y dirn then angle made by velocity vector with y axis
is known as angle b/w two vectors then. tan  =
2bt
a
Ans.
(d)
t
jˆbt–iˆat
t
s
V
2
mean 

 jˆbt–iˆaVmean 

 222
mean tba|V| 

1.25: (a) x = at  y= at (1 – t)  y= x 








a
x
–1 Ans.
(b) vx
=
dt
dx
= a  ay
=
dt
dvy
= a – 2 a  t  jˆt)2a–(aiˆav 

 22
t)2a–(aa|v| 

 2
t)2–(11a|v| 

 jˆ2a–
dt
vd
a 


  2a|a|

Ans.

2bt
x
y
a
13
Method:1
(c) Velocity=
a (–2a t)
a
acceleration = 2a
cos  = |v||a|
v.a


 222
)(2at)2a–(aa
t)2a–(a2a–
2
1



t =

1
Method:2
t2a–a
a
4
– tan

  – a = a – 2 a t  t = 
 Ans.
1.26 : x = a sin wt y= a (1 – cos wt)  







1–
a
y
= – cos wt ––– (i) 
a
x
= sin wt ––– (ii)
11–
a
y
a
x
22
















 x2
+ (y – a)2
= a2
Equation of circle of radius a. jˆ
dt
dy
iˆ
dt
dx
v 

jˆsin wtawiˆwtcoswav 

 wa|v| 

= const.  Uniformcircular motion.
(a) Distance travelled in time  is = (aw)  Ans.
(b) Since motion is uniform circular motion. Hence only radial acceleration is
present then Angle b/w velocity vector and accn will be 
 Ans.
1.27 : y = ax – bx2
differentiate w.r.t. time :
dt
dx
2xb–
dt
dx
a
dt
dy
 Vy
= a VVx
– 2bx Vx
–––– (i)
At x= 0 Vy
=a Vx
––– (ii)differentiateequation (i)w.r.t.time :
2
x
xxy
2bV–
dt
dV
2bx–
dt
dV
a
dt
dV

ay
= a ax
– 2bx ax
– 2b Vx
2
At x = 0 Given ax
= 0 and ay
=w ay
= |– 2b Vx
2
|w =2b Vx
2
–– (iii)
Speed at origin will be : V =
2
y
2
x VV  =
2b
wa
2b
w 2
 V =
2b
w
(1 + a2
) Ans.
1.28 : (a)
2
ta
2
1
tus

 
2
0 tg
2
1
tVs


g

V
0
Ans.
a
(0, a)
Compact ISC Physics (XII)14
(b)
t
s
v


  tg
2
1
vv 0

 Ans.
we know T = g
sinu2 
 u sin  = g
g.v– 0


g
2
g
g.v–
2
g
vv 0
0 










 2
0
0
g
g.v
g–vv

 

1.29 : (a) S = 0 in y direction  0 = (V0
sin ) T –
2
1
g T2
T = g
sinV2 0 
(b) At maximum height final velocityin ydirection = 0 Vy
2
= uy
2
+2 aH
02
= (V0
sin )2
+ 2 (–g) H H =
2g
sinV 22
0 
Range R = V0
cos  






 
g
sin2V0

R =
g
2sinV2
0 
when H= R 
g
cossin2V
2g
sinV 2
0
22
0 


tan  = 4  = tan– 1
(4)
(c) x = (v0
cos ) t  y = (v0
sin ) t –
2
1
g t2
 y = v0
sin 
2
00 cosv
x
g
2
1
–
cosv
x

















y = x tan  –
cos2u
gx
22
2
Ans.
(d) Radius of currature =
onacceleratinormal
V2
 R0
=
cosg
V2
0

g
V cos0 
A
V0
RA
=
g
cosV 22
0 
Ans.
1.30 : w
= g sin  andw
= g cos Here  is first dicreasing and then
increasing and projection of total accn
on velocity vector
will be (–)ive then. wv
= vˆ.w1

= – g sin 
– g
 –
V
y

x
V cos0 
V0V sin0 


g
V0

g
wn
w
V

t
wV
w
g sinw
= w
V

w = g cosn 
15
1.31 :
Time to collide with incline T =
g
2g2
cosg
cos2gh2
cosg
u2 y





Length MO = (velocityin MO) × T = 




  sincos2ghsincos2gh
Range OC = (MO) sin  =
cos
MO
=





 
cosg
2gh2)sincos2gh2
R = 8 h sin  Ans.
1.32: We know R =
g
2θsinu2
5.1 × 103 =
g
sin)( 2
 
 1
= 32.5º. Also we know that range
will be same for 2
= 90 – 31.5 = 59.5º. Then time of flight will be: T1
= g
usin 
T1
=
10
31.5sin240
= 24.3s = 0.41min Ans.
T2
=
10
59.5sin240
= 42.3s = 0.69 min Ans.
1.33: Method: 1
  º   
  º. For both particles x and y co-ordinate must be same then.
Particle (1): y = x tan 1
–
1
22
0
2
cosV2
xg

.... (i)
Particle (ii): y = x tan 2
–
2
22
0
2
cosV2
xg

.... (ii)
From (i) and (ii) : x tan 1
cos2V
xg–
1
22
0
2

= x tan 2
2
22
0 cos2V
gt–


V = 2gh0

Just before collision
2gh
2gh sin 


Just after collision
2gh
sin

2gh
cos

O
C
x
M
y
5.1×10 m
3
240m/s

250 m/s = v0
250 m/s = v0
60º
45º= 
Compact ISC Physics (XII)16
x =
2
2
1
2
2121
2
0
cos–cos
coscos)–(sin
g
V


.... (iii)  Time for particle (1) : t1
=
10 θcosV
x
TIme for particle (ii) : t2
=
20 θcosV
x
Then t = 





 210 cos
1
–
cos
1
V
x
.... (iv)
Put value of x on (iv) :t = 





 21
210
θcosθcos
)θ–(θsin
g
V2
= 11s Ans.
Method: 2
Particle (1) : x = V0
cos
(t + t) .... (i)  y = V0
sin
(t + t) –


g (t + t)2
.... (ii)
Particle (2) : x = V0
cos
(t).... (iii)  y = V0
sin
(t) –


gt2
.... (iv)  From (i), (ii),
(iii) and (iv): t = 





 21
210
θcosθcos
)θ–(θsin
g
2V
= 11s Ans.
1.34 : (a) tan = ay
V0
 Time to reach at hight y : t = y/V0
Also
dt
dx
= ay 
dt
dx
= a [V0
t]   
t
0
x
0
0 dttaVdx
x =








0
0
2
0
V
y
2
Va
2
taV
x = 







0V2
a
y2
Ans.
(b) ay
= 0 ax
=
dt
dya
dt
dVx  = aVy
= aV0
 anet
= aV0
Tangential acceleration = a
= aV0
cos  a
=
2
0
2
22
0
0
)(ay/V1
ya
(ay)V
(ay)Va



Ans.
Radial acc
n
or normal acc
n
: (an
) = a V0
sin  an
=







0
0 V
yaVa Ans.
y
0 x x
v = ayx
v0

y
17
1.35: (a) tan  =
bx
a
 x = at .... (i) Vy
= (a t) b
 
y
0
t
0
dttabdy 
2
tab
y
2

Then y =







a
x
2
ab
 y = 





2a
b
x2
Ans.
(b) ax
= 0 ay
=
dt
dx
b
dt
dVy
 = ab  anet
= ab  Then normal accn
: an
= anet
cos
anet
= ab Then an
= ab
22
(bx)a
a

 R =
ba
)xb(a
a
V
2
3/2222
n
2

 
R =

















/
a
xb
1
b
a
Ans.
1.36: Method: 1 (Work-Energy)
Tangential accn
is given by : 

.a|w| = a cos 
Suppose at time t particle at posetion A and in small time dt particle displacement
by ds.
Work done : dw = Ft
ds = (ma cos) ds = ma (ds cos)  dw = ma (ds cos) = ma
(ds) cos  ma  ds cos
Using work energy theorem : W = max 


mV2
= max  V = xa Ans.
y
x
a = vx
bx=Vy

v
an
anet
0

 a 
ds
x
Compact ISC Physics (XII)18
Method : 2 (Kinematics)
Tangential accn
: at = 

.a = a cos. Also since we know
that tangential accn is rate of change of speed then.
dt
|v|d
= a cos 
ds
dvv
= a cos  v dv = a (ds) cos = a dx
 
x
0
v
0
dxadvv 

2
v
= ax  v = xa Ans.
1.37: Angle travel by particle:  = 2n. Speed of particle : v = Rw = at w =



t
0
n2
0
dt
R
at
ds
dt
dθ
R
at
2n =
2R
at2
 t2
=
a
nR

t2
=
a
nR
Now : Radial accn
: ar
=
R
ta
R
V
222
 =
a
Rn4
R
a2

= 4na Tangential accn
: at
=
dt
dv
= a  Total accn
= 2
t
2
r aa  = 22
na)(4a 
Total accn
= a 2
n)(41  = 0.8 m/s2
Ans.
1.38: (a) At any time t : at
= ar
=
R
V2
Since at
is rate of change of speed then.
–  
V
V
t
0
2–
2
0
R
dt
dVV–
R
V
dt
dv
(–) sign because
V is decreasing
R
tV
1
V
VR
t
V
V
V
0
0
0
1–


(b) anet
= 2
r
2
t aa  = at  at =
R
v2
= –v
ds
dv
 –v dv =
R
v2
dt
Where ds = distance travel by particle in time dt. –v dv =
R
v2
ds
 
V
V
S
00
R
ds
v
dv
–
–  n
R
S
V
V
0
 Then V = V0
e–S/R
 at
=
R
eV
R
v 2S/R–2
0
2


ds V
dx
a
R
v
R
at
ar
Given
a = a
at t = 0
u = V
t r
0
19
anet
= 2
R
V
R
e2V 22S/R–2
0
  anet
= 2
R
V
eR
2V 2
2S/R
2
0
 Ans.
1.39: Method : 1
v = a s Squaring both side : v2
= as
Compare with : v2
= u2
+ 2 acc
S  u = 0 acc
=
2
a
Hence motion is constant magnitude tangential accn
. Then.
At any time t : at
= a/2  ar
=
R
V2
=
R
as
Since we know that velocity vector and tangential accn
is parallel then.
tan   R
2S
a/2R
as
a
a
t
r
 Ans.
Method : 2
v2
= as  differiate w.r.t time : 2v =
dt
ds
a
dt
dv
 = av  2
a
dt
dv
 = at
ar
=
R
as
R
V2
  tan  =
R
2S
a
a
t
r  Ans.
1.40 : (a)  = a sin wt now  = 0    t = 0
 = ± a   t = 2
3,
2
 , V = wtcoswa
dt
d


a = sin wtwa
dt
dv 2
 Then at
= – aw2
sin wt
ar
=
R
wtcoswa
R
V 2222
  anet
= 2
r
2
t aa 
anet
= aw2 wtcos
R
a
wtsin 4
2
2
2
 –––– (i)
at t = 0   = 0  at t = 2
3or
2
  anet
=
R
wa 22
 anet
= aw2
Ans.
at
ar

at
ar

x
 = a sin wt
y
Compact ISC Physics (XII)20
(b) For minimum value of acceleration  0
dt
danet   cos wt = a2
R
put in equation(i)
amin
= aw2







2a
R
–1   =







a2
R
–1a   = 2
2
a2
R
–1a Ans.Ans.
1.41: Speed of particle when distance is S. V2
= 2aS –––– (i) (Because a
= const.)
S =
2
1
at2
 t2
=
a
2S
Then wn
= b 2
22
a
4bS
a
2S






Radius of curvature : R = 2
2
n
2
4bS
2aSa
w
V
  R =
2bS
a3
Ans.
Net accn : w = 2
n
2
T wa   w =
2
2
2
2
a
4bS
a








 Ans.
1.42: (a) y = ax2
diff. w.r.t. time :
dt
dx
2ax
dt
dy
 Vy
= 2ax VVx
Again diff. w.r.t. time : ay
= 2ax ax
+ 2aVx
2
At x = 0 Vy
= 0 Then Vx
= v  ay
= 2aV2
Since speed is const. its tangential acceleration will be zero. Then
ax
=
dt
dV
= 0  anet
= 2 a VV2
 R = 2
2
n
2
2av
V
a
V   R =
2a
1
Ans.
(b) 2
2
2
2
b
y
a
x
 = 1 diff. w.r.t. time : 0
b
V2y
a
V2x
2
y
2
x

Again diff. w.r.t. time : 0
b
2V
b
a2y
a
V2
a
a2x
2
2
y
2
y
2
2
x
2
x 
At x = 0 and y = b : 0
b
V2
b
a2
a
V2
2
2
yy
2
2
x 
a = a

w = bt
n
4
x
y
V0
21
As shown in figure : Vy
= 0 and Vx
= V0
 0
b
a2
a
V2 y
2
2
0
  ay
=
2
02
V
a
b
Since speed is Const. tangential accn = ax
= 0 at; t = 0  anet
=
2
02
V
a
b
Radius of curvature : R =
n
2
0
a
V
R = 2
02
2
0
V
a
b
V
 R =
b
a2
Ans.
1.43 : Given
dt
d
= w = const. Then
dt
d
2
dt
)d(2 


= 2w = const.
Hence angular velocity of point A w.r.t. point P is
constnat then. WP
= 2W and velocity will be perpendicular
to position of A w.r.t. P then V = R WP
= 2RW Ans.
Since WP
= const. 0
dt
dWP  Then  Tangential accn
= 0
Radial accn
= R WP
2
= 4 RW2
= anet
 Direction is toward the centre. Ans.
1.44 :  = at2

dt
d
= w = 2at 
dt
dw
=  = 2a
Tangential acceleration : at
= R = 2aR Radial acceleration
: ar
= RW2
= R (2at)2
= 4 a2
t2
R
And. v = RW = R 2at 2at = R
v –––– (i)
Now anet
= 2
r
2
t aa  = 2aR 22
)(2at1
from (i) : anet
=
22
)(2at1
t
v
 = 0.7 m/s Ans.
1.45 : Since acceleration is constant. l =
2
1
at2
and
V = at Then l =
2
Vt
–––––– (i) and also. angular acceleration is const. then
 =
2
1
 t2
and w = at then  =
2
1
wt and since particle taken n turn in its journey..
V
O
A



P
at

ar
l
Va
Compact ISC Physics (XII)22
 = 2  n Now 2 =
2
1
wt –––– (ii)
(II)
(I)
:
W
V
2



 W =

v2
Ans.
1.46 :  = at – bt3
 w =
dt
d
= a – 3bt2
when body is in rest then w = 0  a – 3bt2
= 0
t =
3b
a
 in
= 0 and final
= t (a – bt2
) = 





3
2a
3b
a
Wavg
=
t
– infinal


=
 
3
2a
3b
a
3
2a
3b
a
 Ans.
Win
= a and Wfinal
= a – 3b 





3b
a
= 0  avg
= 3ab
3b
a
a
t
– WW infinal
 Ans.
And.  =
dt
dw
= – 6bt = – 6b
3b
a
  = 2 3ab Ans.
1.47 : Given  =  = at To find tangential accn : (at
) : at
= R = Rat
To find radial accn : (ar
) :  =
dt
dw
 ar
= Rw2
 
t
0
w
0
dtdw  w =
2
at
dtat
2t
0
  ar
=
4
taR 42
Then
at

ar
tan  =
t
r
a
a
 tan  =
taR4
taR 42
 t = s7tan
a
4
3  Ans.
1.48 : Given   W    = angular accn.   = k W  k = const.
 Wk
d
dW
– W 

 (–)ive because W is decreasing. –



0
0
W
2
1
dkdwW
0
at
ar
y
x
R
23

k3
W2 2
3
0 ––– (i)  = Angular displacement.  Also  = k W
– dW = k W dt   
t
0
0
w
2
1–
dtkdwW
0
 t
k
2W 2
–1
0  ––– (ii)
Avg. angular velocity : Wavg
= <W> =
t

=
3
W
k
W2
k3
W2 0
2
1
0
2
3
0











Ans.
1.49: (a) Given W = W0
– a –––– (i). At t = 0   = 0  W = W0
Also
dt
d
= W0
– a   

 t
00 0
dt
a–W
d
 t)a–(Wn
a
1–
0
0 


 at–
W
a–W
n
0
0


  = )e–(1
a
W at–0
Ans.
(b) Put value of  in equation (i) : W = W0
– a 





)e–(1
a
W at–0
 W = WW0
e–at
Ans.
1.50: Given  = 0
cos    = W
d
dW
= 0
cos  



0
0
w
0
dcosdww 
2
W2
= 0
sin  
W = ±  sin2 0 Ans.
1.51: (a) Instanteneous axis of rotation is passing through that point
which velocity is zero always. If we observe carefully its
point must be at line joining AB. Then. at time t :
VP – 0
= RW = Rt = yt

y
x
B
A
V
y

–0
0
0
2–
 sin2–w 0
 sin2w 0
 cos0
Compact ISC Physics (XII)24
x = vt ––– (i) Velocity of point P :
VP
= 0  v = ty x = v 





y
v
t = y
v
 put in (i)
y =
x
v2

Ans.
(b) Velocity of point O = 0
VO – P
= Rw VP
= u + at = wt
Then yw = wt  t =
w
wy
x =
2
1
at2
=
2
1
w
2
w
wy






 x =
w
yw
2
1 22
Ans.
1.52 : Since there is no slipping at ground. VC
= 0  V = RW where VC
= velocity of contact point.
To find distance, we have to find speed of a particle of rim then.  = wt  Time to one complets
journey = 2/w VP
= )–(cosvv2vv 22
 = 2 v sin /2 = 2V sin (wt)/2  Again
dt
ds
= 2 v sin wt/2  


w2
0
s
0
dtsin wt/2v2ds S =
w
v8
= 8 R Ans.
y
xO
P (x, y)
Vy t
y
x
O
P
(x, y)
yw = RW
y
x
C
w
V
A
W
O

R
C
B
P 
v
v

1.53: (a) Acceleration of point C : aC
= w  Velocity of point
C at time t : VC
= u + at = wt
Angular accn
of ball about its centre:
 =
R
w
R
w
R
aC   Angular velocity of ball at
time t : w = w0
t =
R
w
t  Velocity of point AA
w.r.t. centre C : VA – C
= RW = w t iˆ VC – E
= w t iˆ  VA – E
= 2 w t Ans.
25
Point B :
A
wt

wtC
B
y
x
VB–C
= Rw = wt (– j) VC–E
= wt i  VB–E
= wt (i – j) VB–E
= wt Ans.
Point O : VO–C
= – wt i  VC–E
= wt i  VO–E
= O Ans.
(b) Acceleration Calculations :
PointA:
A
ar
C
at
y
x
aC–E
= wi .... (i)  aA–C
= at
i – ar
j  Where at
= tangential acceleration. ar
= radial acceleration.
at
= R = w  ar
=
R
tw
R
2(wt)
R
v
222
  aA–C
= wi –
R
tw 22
j .... (ii)
(i) + (ii) : aA–E
= 2 wi –
R
tw 22
j  aA–E
= 2w










2R
wt2
Ans.
wt
wtC
0
A
wt
wt
y
x
Compact ISC Physics (XII)26
Point B : a

C–E
= wi .... (i)  a

B–C
= (–R) jˆ + 







R
v2
iˆ =
– wjˆ –
R
tw 22
iˆ .... (ii)
(i) + (ii) : a

B
= 







R
tw
–w
22
iˆ + w jˆ  aB
= w










2R
wt2
Ans.
Point O: a

C–E
= w iˆ .... (i)  a

O–C
= (–R) iˆ +








R
v2
jˆ =
–w iˆ –
R
tw 22
jˆ .... (ii)
(i) + (ii) : a

O–E
= –
R
tw 22
j  aO–E
=
R
tw 22
Ans.
1.54 : Velocity of point A = 2v  Velocity of point B = v   accn
of point A =
R
v2
 accn
of point B =
R
v2
Again Radius of curvature =
onacceleratinormal
(speed)2
 RA
=
/RV
(2V)
2
2
= 4R
Again an
=
R
v2
cos 45º =
R2
v2
 RB
= R22
R2
v
)2(V
2


1.55 : Method : 1 (axis is rotating): w

1–0
= w1 iˆ  w

1–0
= w2 jˆ  w

1–2
= w1 iˆ – w2 jˆ
w1–2
= 2
2
2
1 ww   

1–2
=
dt
wd 2–1

= w1
dt
iˆd
– w2 dt
jd
direction of
dt
iˆd
is toward y axis and
this is rate of change of dirn
of x axis.
y
x

RC
B
y
x
C
0
A
2V
B v
v
V
x
B
an
v
2
R
V
45º
V
V 2
v
2
A
2V
R
27
Method : 2 (axis is not rotating)
w

1–C
= w1
cos  iˆ + w1
sin  kˆ   w

C–0
= w2
j  w

1–0
= w1
cos  iˆ + w1
sin  kˆ + w2 jˆ  2
2
2
10–1 ww|w| 


dt
wd 0–1


 = – w1
sin  






 
dt
d
iˆ + w1
cos  






 
dt
d
kˆ
And
dt
d
= w2
 

= – w1
w2
sin  iˆ + w1
w2
cos  kˆ
|

| = w1
w2
. Here x axis is directly attached with observer. Then
dt
iˆd
= – w2
kˆ  dθ1|iˆd|  
dt
dθ
dt
|iˆd|
 = w2
But
dt
jˆd
= 0 Because with frame of this observed dirn
of axis does not rotating then. 

1–2
= –
w1
w2
kˆ  1–2
= w1
w2
1.56 : w

= at iˆ + b t2 jˆ 
dt
dw


= a iˆ + 2b t jˆ (a)







 t
a
b
1at|w|


(b)








a
t2ab
1at||

 

w = w cos   cos  


w
.w

cos  
2224222
322
t4batbta
t2bta


   = 17º Ans
y
x0
w2
w1
y
x0
w2
y
x0
w2
w1
w2z

C
1
y
z
passing
y axis
1 unit
1 unit
d
j
d i
i
Compact ISC Physics (XII)28
1.57: Method : 1 (axis are moving): It we see carefully
then x axis is moving while ydirection is not rotating.
Angular velocity of disc with respect to centre M
is : iˆ
R
V
W O–M 

.... (i) Angular velocity of centre
M w.r.t. origen. jˆ
OM
V
W O–M 

 OM = R cot 
 jˆtan
R
V
W O–M 

. Since angular velocity is vector
quantityit followvectoradditionlaw ]jˆtaniˆ[
R
V
W O–D 




cosR
V
tan1
R
V
|W| 2
O–D

Ans.
Again Angular acceleration () is :
dt
wd
β

 









dt
jˆd
tan
dt
iˆd
R
V
β

And since ydirn
isconstant
dt
jˆd
=0  But
dt
iˆd
 |iˆd| = d dt
d
dt
iˆd 
 = wMO
 kˆtan
R
V
–
dt
iˆd

kˆtan
R
V
R
V
β 

















 kˆtan
R
V
–β 2
2


 2
2
R
V
|β| 

tan 
Method : 2 (axis are not rotating)
angular velocity of disc w.r.t. M : WD–M
=
R
V
cos  iˆ +
R
V
sin  jˆ angular velocity of M w.r.f. O
: jˆtan
R
V
jˆ
cotR
V
W O–M 



angular velocity of disc
wrt O: W

D–O
= W

D–M
+ W

M–0
 W

D–O
=
R
V
cos  iˆ

R
V
sin  jˆ  
R
V
tan  jˆ 





















cosR
V
tan
R
V
sin
R
V
cos
R
V
|W| O–M

Ans.
y
x
R0
v
M
p


z
y axis
y axis
d
j
d i
i
y
x0
w =0
D
z


V
R
V
M
29
0jˆ
dt
dθ
θcos
R
V
iˆ
dt
dθ
θsin
R
V–
dt
wd
α O–D
O–D 














and
dt
dθ
is angular velocity of M w.r.t.
0 : d/dt =
R
V
tan   2
2
O–D
R
V–
α 

sin  tan  iˆ + 2
2
R
V
cos  tan  jˆ | O–Dα

| = 2
2
R
V
tan  Ans.
1.58 : Method : 1 : (Direction of Co-ordinate axis is fixed)
At time t line AB rotate by  angle then A–PW

=
w0
cos  iˆ + w0
sin  kˆ   
 t jˆ
| A–PW

| = 22
0
22
0
22
0 tsinwcosw  
| A–PW

| = w0










0
0
w
t
Now
jˆkˆ
dt
d
cosW
dt
d
)iˆ(sin– W
dt
Wd
000
A–P







 





= –W0
0
t sin  iˆ + W0
0
t cos  kˆ + 0
jˆ  2
0
22
0
2
0 tw|| 


22
00 tw1|| 

Ans.
Method : 2 (x axis is moving) : Here we take line AB along
x dirn
. jˆtiˆwW 00A–P 

 2
0
2
0A–P
w
t
1w|W|





jˆ
dt
jˆd
t
dt
iˆd
w
dt
wd
000
A–P 


 Here 0
dt
jˆd

But
dt
iˆd
= 
t kˆ  Then kˆtkˆ
dt
ds
dt
di
0 

= w0

t kˆ +  jˆ   2
1
20
20 tw1|| 

Ans.
y
xA
0
w0
w0
z

y
x
A
0
w0
z
P

Compact ISC Physics (XII)30
1.2 The FundamentalsEquation of Dynamcis
1.59: Where F is force due to air which will be constant then. mg – F
= mw .... (1). When m mass is taken then F – (m – m) g + (m
– m) w .... (ii) From (i) and (ii) : m =
w
mw2

Ans.
1.60 : Net pulling force = (  m) a  m0
g – k m1
g – k m2
g = (m1
+ m2
+ m0
) a  a = 









021
210
mmm
)m(mk–m
g Ans.
F. B. D of m2
:
m2
a
k m g2
T
T – k m2
g = m2
a. Put value of a then T =
210
0
mmm
mk)(1


m2
g Ans.
1.61 : (a) Pulling force F = m1
g sin  + m2
g sin  – k1
m1
g cos  – k2
m2
g cos . Then acceleration
a is : a =
21
2211
mm
)mkm(kcosg–m2)(m1sing


.... (i)
F. B. D of m1 : N = Normal force between two blocks. m2
g sin  + N + k1
m1
g cos  = m1
a .... (ii) put value of (a) in (ii) : N =
21
2121
mm
αcosmm)k–(k
 Ans.
F
mg
m
F
(m – m) g
m – m w
km g2
m2m1
a
km g1
m0
m g0
(b) For minimum value of acceleration will be zero and friction force will at maxm
value then
0 = [g sin (m1
+ m2
) – g cos (k1
m1
+ k2
m2
)] / m1
+m2
 tan  =
21
2211
mm
mkmk


a
m
g
sin
1


k
m
g cos
2
2

k
m
g
cos
1
1

m
g
sin
2

m 2
m
1
N
m
g sin
1


k m
g cos
1
1

m1
31
1.62 : Upward Journey : We know S = Vt –
2
1
at2
where V = final velocity in this situation Vf
= 0
Then  =
2
1
(g sin  + µg cos ) t2
–––– (i)
t = Time taken in upward journey.
Downward journey : We know S = ut +
2
1
at2
u = initial
velocity. Then  =
2
1
(g sin  – µg cos ) (t)2
–– (ii)
and u = 0  now : (ii)
(i)
 = 2
1
cosug–sing
cosugsing









  µ = 









1
1–
2
2
tan  Ans.
1.63 : (a) Starts coming down. m2
g > m1
g sin  + fmax
m2
g > m1
g sin  + k m1
g cos  
1
2
m
m
> sin  + k cos  (b) m1
g sin  > m2
g + k m1
g cos   g sin  >
1
2
m
m
+ k cos  
1
2
m
m
< g sin  – k cos  (c) At rest : Friction will be static : g sin  – k cos  <
1
2
m
m
<
sin  + k cos 



a
v
v
=
0
f
a =
(g sin
+
µ
g cos
)



a
v
u = 0
a = (g sin
– µg cos )


m
1

m2
m g2
m
g
sin
1

f
=
k
m
gcos
m
ax
1


m g2
m
g
sin
1

a
fmax
m g2
m
g
sin
1

a
fmax
Compact ISC Physics (XII)32
1.64: To find tendency of sliding check value of m2
g
and m1
g sin  = m1
g sin 30º = m1
g/2  0.5 m1
g
 Here m2
g = m1
 g =
3
2
m1
g  0.66 m1
g Then
m2
g > m1
g sin Block m2
has tendency to
move down ward.
Then.Pullingforce =m2
g– m1
gsin – k m1
gcos acceleration a=
21
112
mm
cosgmk–singm–gm


a =
1
]cosk–sin–[g


Ans.
1.65 : (a) Before no sliding b/w m1
and m2
:
F.B.D. of System : Acceleration of both block will be same. w1
= w2
= w =
2121 mm
at
mm
F



But friction b/w m1
and m2
will be static then. m1
fr
fr = m1
[w1
] =
21
1
mm
atm
 < k m2
g  t <
1
212
ma
)m(mgmk 
 w1
= w2
=
21 mm
at
 ––– (i)
If t > k m2
g
1
21
ma
)m(m 
. Sleeping b/w two block will be start then F.B.D. of m2
:
m2 F = at
km g2
w2
 w2
=
2
2
m
gkm–at
–––(ii) Ans.
F.B.D. of m1
: m1
k m g2
 w1
=
1
2
m
gmk
––––– (iii) Ans.
Assume to
=
1
212
ma
)m(mgmk 
 t > to
: Slope of w2
>
Slope of w1
= w2
because of Slope of w2
= 







2m
a
from
(ii) [After sliding] Slope of w1
= 







 21 mm
a
from (i) [Before sliding]
Slope w1
= 0 from (iii) [After sliding]
m
1

m2
m g2
m
gsin
1

f
=
k
m
g
cos
m
ax
1

k
Given 
m
m
1
2
.
m2
m1
fr = k m g2 F = at
m2
m1
w F = at
w
t0
t
w1
w = w1 2
w2
33
1.66 : F.B.D. of block : ma = mg sin  – k mg cos   a = g sin  – kg cos 
Time to reach at bottom : s = ut +
2
1
at2
 sec  =
2
1
(g sin  – kg cos ) t2
A
R


k = coefficient of friction mg sin 

k mg cos 
t2
=
]cosk–cos[sing
2
)cosk–(sing
sec2
2



 
t =
]cosk–cos[sing
2
2


–– (i)
To minimise t  (sin  cos  – k cos2
) will be minimum also. Assume. x = sin  cos
 – k cos2
  Now
d
dx
= 0 – sin  sin  + cos2
 + 2 k cos  sin  = 0
cos 2 = – k sin 2 tan 2 = – k
1 Ans.
Put value of k :  = 49º Put value of  in equation (i) :
tmin
=
49]cos0.14–49ºcos49º[sin10
2.102
2

 1.0 s. Ans.
1.67 : When block pull up Direction of friction will be downward.
F.B.D. of block : N = mg cos  – T sin   fr = k (mg cos  – T sin ). At just sliding:
T cos  = mg sin  + k (mg cos  – T sin ) T =


sinkcos
cosmgksinmg
 Tmin
 

m k
T


m
T
mg sin 
mg
mg cos 
µN
T
cos T
sin 
N
(cos +k sin ) min  minimumvalueof cos +k sin = 2
k1  Tmin
=
2
k1
)cosk(sinmg


Compact ISC Physics (XII)34
1.68 : (a) At time of breaking off the plane vertical component of
F

must be equal to weight mg. Then F sin  = mg = at sin
 t = sina
mg . Motion equation of block : a1
= Accelration
of block. F cos  = m a1
 a1
=
dt
dv
m
cosat


 

1t
0
V
0
dtt
cosa
dVm

2
t
αcosa
mV 2
1 


sina
gm
2
1
αcosa
mV
22
22
 V ==


sina2
cosgm
2
2
Ans.
(b)  

t
0
V
0
dtt
cosa
dVm

2
t
αcosa
mV 2

1.69 : Motion equation :  = aS 
3
mg
cos  = m a1
a1
=
acceleration of block of mass m. a1
=
m3
mg
cos  =
3
g
cos
  a1
=
3
g
cos as   
s
0
v
0
dsascos
3
g
dvv 
s
0
v
0
2
a
assin
3
g
2
v
  v2
=
a3
g2
sin as  v = assin
a3
g2
 v =
m2
cosa 
t2

2
tcos
m2
a
dt
ds
  


t
0
2
s
0
dtt
m2
cosa
ds  s = 3
3
x
t
m2
cosa 
 s =


sina6
cosgm
32
32
Ans.Ans.
1.70 : Method : 1
Motion of mass 2 m : T – k2mg = 2 mw  T = 2
mw + 2kmg
Motion of motor : T – kmg = ma  2 mw + 2 k mg – k mg = ma  a = 2 w – kg
Acceleration of 2 m w.r.t. m : a2m – m
= 2w – kg + w = 3w – kg  Suppose in time t both
will be met then.  =
2
1
(3w – kg) t2
 t = kg–3w
2 
Ans.
m
F
=
at

µ = 0
m
F
=
m
g/3

2m w
k2mg
m
a
k mgT T
kk
35
Method : 2
On system : Tension will be internal force hence k2 mg – k mg = – 2 mw + ma 
a = 2w – kg  a2m – m
= 3 w – kg then  =
2
1
(3w – kg) t2
 t = kg–3w
2 
Ans.
1.71: For observer inside elevator : a1–2
=
21
010212
mm
wm–wmgm–gm


=
21
012
mm
)w(g)m–(m


But in form of vector : a1–car
=
21
012
mm
)w–g()m–(m


Ans.
Acceleration of m1
w. r. t. shaft : a1–shaft
= a1–car
+ acar
=
21
012
mm
)w–(g)m–(m

+ w0
   a1–shaft
=
21
021112
mm
wmmgm)m–(m


Ans.
Tension in string : T – m1
g = m1
a1–shft
  T =
21
021
mm
)w(gmm2


Force applied by pulley on ceiling = 2 T =
21
021
mm
)w(gmm4


 as vector form:
2T = )w–g(
mm
mm4
0
21
21 
 Ans.
1.72: Motion of body (2) : mg – T/2 =  ma  2 mg – T
= 2 ma .... (i)
Motion of body (1): T – mg sin  = m a/2 .... (ii) from (1)
and (ii) :
]1[
]sin–[22g


 Ans.
1.73 : Equationof motion : T = m0





 
2
aa 21
.... (i) m1
g
= T/2 = m1
a1
.... (ii) m2
g – T/2 = m2
a2
.... (iii)
from(i), (ii) and(iii): a1
= )m(mmmm
g).m–(mmmm4
21021
21021


Ans.
m g1
m1
T
T T
m2
m g2
2T
shaft
w0

m
mg sin 
a/2
T
T/2
a
m
mg

T/2
T/2
m2
m1
a1
mg
m g2
m0
T
a + a1 2
a2
2
Compact ISC Physics (XII)36
1.74: Motion equation on system: Mg – mg = M a1
+ m a2
.... (i) Motion equation
of m : fr – mg = ma2
.... (ii) Since length of rod is  then.
2
1
 (a1
+ a2
)
t2
.... (iii). From (i), (ii) and (iii) : fr
= 2
tm)–(M
mm 
Ans.
1.75:  = 100 cm – T + mg = m a1
.... (i) + 2T mg = m
2
a1
.... (ii) from
(i) and (ii) : a1
=
4
g2)(–


arel
=
2
a3 1
. Suppose t time is taken then
 =
2
1
arel
t2
 t = g)–(2
4)(


Ans.
1.76 : Motion equations T – mg = ma .... (i)  mg – 2T =  m a/2 ....
(ii) from (i) and (ii) : a =
4
2)–(2g


. When body
(1) travel h distance then in same time body (2) travel 2h distance
in upward dirn
using constraint relation. Nowvelocity of body (2) Just
before string slack.
V2
= 2a (2h). It body (2) travel x distance again then V2
= 2a (2h) = 2gx
x = g
ah2
. Total hight from ground : 4 = 4
h6
h
g
ah2


 Ans.
1.77: F. B. D. of N sin  = m a2
.... (i) F. B. D. of rod : mg – N cos  = m a1
.... (ii) Constraints:
a2
sin = a1
cos  .... (iii) From (i), (ii) and (iii) : a1
=
 cot1
g
2 a2
=
 cottan
g
T
2T
mg
nm
T
a1

m
nmg
a
2
1
mg
Mg
Ma1
m
a2
mg
2
mg
T a
2T
h
a
2
N
mg
a1

a1

a2


m a2
a1

N a2

37
1.78: F. B. D. of m : mg – KN – T = m a2
.... (i) N = m a1
.... (ii) F. B. D. of wedge : a1
= a2
....
(iv) From (i), (ii), (iii) and (iv) : a1
=
m
M
k2
g
kmM2m
mg



Ans.
mg
T
m
KN
M
a1
a2
1.79: F.B.D of bodies on frame of wedge: Since system is stationary on frame of wedge hence :
mg = kma + ma + kmg  a =
k1
k)–(1g

Ans.
a2
a1
mg
m
N
TKN
1.80: F.B.D. of block (2) with frame of wedge: At maximum accn w : fr1
will be maxm
then fr1
= k [mg
cos  + mw sin ]. Since block is under rest with frame of wedge, then equilibrium equation
of block along incline. k (mg cos  + mw sin ) + mg sin  = mw cos   w =
k–cot
)cotk(1g


a
m
ma
mg
2 m N
1 m
ma
m
ma
kmg kma
mg
 mg
mw


fr1

2
mg
mw
w
m
1
fr
1.81 : Method : 1
F.B.D. of System a2
= accn
of bar w.r.t. incline. Since no force on system in horizontal direction
then O = ma1
+ m [a1
– a2
cos ] –––– (1) F.B.D. of bar w.r.t. wedge : m2
a1
cos  + m2
g
sin  = m2
a2
–––– (ii) from (1) and (2) : a1
=


sinmm
cossingm
2
21
2
Ans.
Compact ISC Physics (XII)38
Method : 2
F.B.D. of bar : with frame of wedge, bar has zero accn
in perpendicular to incline then. N + m2
a1
sin  = m2
g cos  –––– (i) F.B.D. of wedge : N sin  = m1
a1
–––– (ii) from (i) and
(ii) : a1
=


sinmm
sincosgm
2
21
2

2
m2
1
m1

a2
m2
m1
a1
m a2 1
m2
m g2
Method : 3
F.B.D. of bar with frame of ground observes : Motion
equation in perpendicular dirn
of incline then : m2
g cos  –
N = m2
a1
sin  ––– (i)
1.84: v = 360 km/hr = s
m100
3600
1000360


At point A : N – mg =
R
mv2
N = mg +
R
mv2
= 70 g +
500
[100]70 2
= 70
g +
500
10010070 
= 70 g + 140 g = 210 g = 2.1 kN Ans.
At point B : N =
R
mv2
––– (i) put value of m, V and R N = 1.5 kN Ans.
At point C : N + mg = mv2
/R N = mv2
/R – mg ––– (ii) put value of V, m, R
in (ii) N = 0.7 kN Ans.
a2
m g2
N


a1
v
C
v
B
R
A
v
N
mg
N
m a2 1
m g2
N


 N
m1
a190 – 
N
mg
39
1.85: Tangential acceleration (at
) : mg sin  = m at
 at
= g sin 
Radial acceleration (ar
) : Energy conservation : mg  cos 
=
2
1
mv2
 v = cosg2   ar
=

2
v = 2 g cos  
anet
=  cos4singaa 22
rt 22 anet
=g  cos31 2
Now : T – mg cos  =

2
mv
= 2 mg cos   T = 3 mg cos  Ans.
(b) Component of velocity in y dirn: vy
= v sin 
vy
= cosg2  sin   v2
y
= 2 g  cos  sin2

For vy
maximum v2
y
will be maximum. Then x = cos  sin2
 will
be maximum. d
dx = 0 = 2 cos2
 sin  – sin3
 = 0  2 cos2

= sin2
  tan  = 2  sin  =
3
2
cos  =
3
1
 v2
y
= 2 g  3
2
3
1
 
33
g4
vmax
y

  T = 3 mg cos  = 3 mg 





3
1
= mg 3 Ans.
(c) If no acceliration in y direction then. ar
cos  = at
sin  2 g cos2
 = g sin2
  tan  = 2  cos  =
3
1
Ans.
1.86 : Extreme position : Only tangential acceleration is prerent at extreme
position. at
= g sin 
Lowest Position : Energy conservation : mg [ –  cos ] =
2
1
m v2
 v2
= 2 g  (1 – cos )  ar
=

2
v
= 2 g (1 – cos )
A/C condition : ar
= at
 g sin  = 2 g (1 – cos ) sin  + 2
cos  = 2  cos  = 5
3   = 53º Ans.
m
T

mg
v

v
y dirn.

at

ar


mgv
Compact ISC Physics (XII)40
1.87: Particle will break off sphere when normal reaction will be zero.
mg cos  =
R
mv2
 v2
= Rg cos . Energy conservation : mgR
(1 – cos ) =
2
1
mv2
mgR (1 – cos ) =
2
1
mRg cos  
1 – cos  =
2
cos 
 cos  =
3
2

2
cos3 
= 1  v2
=
Rg 





3
2
 v =
3
Rg2
Ans.
1.88: Top view : Spring force = F =  N = normal reaction on sleeve. Since no acceleration
in tangential direction. N sin  =    cos  ––– (i). Equation in radial direction: N cos 
+   sin  = m r w2
= m ( + ) cosec  w2
from (i):


sin
cosx 
(cos ) +   sin 
= m ( + ) cosec  (w2
)  x   = m  + m   w2
  = 2
mw–x
m 
Ans.
A
A
v
mg
R
R
 
N
w

r
v


l

w

1.89:k = k0
= 





R
r
–1 friction coefficient. Suppose cyclist at radius of r. then friction provide centripital
force to motion on circular path. Then where kmg = friction force. k0 r
mv
mg
R
r
–1
2






 v2
= k0
g








R
r
–r
2
. To maximum value of v : x =
R
r
–r
2
will be maxm. Then
dr
dx
= 0 
0
R
2r
–1   r = 2
R  4
Rgk
4
R
–
2
R
gkV 0
0
2
max 





  Vmax
= gRk
2
1
0 Ans.Ans.
O
R
r kmg
mv /r2
41
1.90: Tangential and radial both acceleration is only provided by friction because
friction is acting as external force. Then maximum value of friction = k mg.
Velocity of car after d distance travel. v2
= 2 w
d. Then ar
= Radial
acceleration =
R
dw2
R
v2

   at
= Tangential acceleration = w 

anet
= 2
2
2
2
R
4d
1ww
R
d2w








 Fnet
= m w 2
2
R
4d
1 = k mg
Squaring : 







 2
2
2
R
4d
1w = k2
g2
 d = 1–
w
kg
2
R
2









Ans.
1.91 : y = a sin  α
x  k = frictioncoefficient. Centripital force
=
R
vm 2
and centripital force will be provided by friction.
At limiting condition : mgk
R
vm 2
 v2  k Rg.
For v maximum  R willbe minimum.And weknow : speed
is constant also we are secing that radius of curvature will be
minimum at maximum point of curve then. ay
= 2
2
2
2
av
dt
yd


sin  α
x . At maximum value of curve : sin α
x = 1 
ay
= 2
2
α
av
R =
av
αv
a
v
2
22
y
2
 R =
a
2
 . Then v2 g
a
α
k
2
   v
a
kg
 Ans.Ans.
1.92: F.B.D. of differential element of length dl. Equation of motion : 2T sin  – N cos  = (dm) Rw2
––– (i)  N sin  = (dm) g put value of N in (i) : 2 T  – (dm) g cot  = (dm) Rw2
2T
R
v /R2
w
y
x
y
x
v
ay
mg
N
w


 
T T
(dm)
N

g
T
T
 = very small angle.
sin = 
Compact ISC Physics (XII)42
 –
R2
m

(R 2 ) g cot  = (R 2 )
R2
m

Rw2
 T –




2
wRm
2
cotgm 2
T =
2
m
[Rw2
+ g cot ]  T =
2
gm









g
Rw
cot
2
Ans.
1.93 :
1
2
m
m
= 0
  T1
– m1
g = m1
a ––– (i)  m2
g – T2
= m2
a ––– (ii)
Relation between T1
and T2
: (T + dT) sin 2
d + T sin 2
d = dN
Td = dN  dfr = µ dN = µ Td ––––– (i)
Since  is very small. sin d  d  cos d  1
In horizontal direction : (T + dT) cos 2
d – T cos 2
d = dfr
dT = dfr ––– (i)  dT = µ T d  


0
T
T
dµ
T
dT
2
1
  n (T2
– T1
) = µ 
T2
= T1
eµ
––– (iii)
from (i) and (ii) : a)(gm
a)–(gm
T
T
1
2
1
2


from (iii) :

 µ
1
2
e
T
T

Then eµ
= 












 ag
a–g
ag
a–g
m
m
1
2
––– (iv). Since pulley is fixed : Before skiding a =
0   = 0
 eµ
= 0
 µ =

1
n 0
(b) from equaiton (iv) : en0 =  





 ag
a–g
 ag
a–g0




 a = g
0
0
n
]–[n


Ans.
T1T2
m1m2
m g1
m g2
a
d
T + dT
dN
dfr
T
y
x
43
1.94: Hence velocity along yaxis is not responsible for circular
motion only velocity along Z-axis is responsible.
Then N =
R
Vm 2
Z
VZ
= V0
cos  N =
R
cosVm 22
0 
1.95: x = a sin wt  ax
= 2
2
dt
xd
= – aw2
sin wt 
y = b cos wt  ay = 2
2
dt
yd
= – bw2
cos wt  jˆayiˆaa xnet 

= jˆwtcoswb–iˆsin wtwa– 22
 ]jˆwtcosbiˆsin wt[amw–F 2



jˆwtcosbiˆsin wtajˆyiˆxr 

 2
wrm–F


where r

=positionvectorofparticle.F = mw2 22
wt)cos(bsin wt)(a 
 F = mw2
 22
yx  Ans.
1.96 : Method : 1 (Impluse equation)
(a) We know P

 = Impluse in time t = 
t
0
dtF = 
t
0
dtmg– P

 = – mg t Ans.

v0
x
R
Z
O
y
V0
w 
x
y
g
V0
m
(b) T = g
sinV2 0 
 g.V0

= V0
g cos (90 + )  g
sinV2
mgP 0 


– g.V0

= V0
g sin   = 2 m V0
sin   V0
sin  =
g
g.V– 0


g
g.V
2mP 0


 Ans.
Method : 2 (Kinematic)
(a) jˆsinViˆcosVV 000 

 jˆgt)–sin(ViˆcosVV 00f 

where fV

= final velocity vector then 0f Vm–VmP

 
jˆtgm–P 

Ans.
V0

y
x
V0

90+
g
Compact ISC Physics (XII)44
(b) T = g
sinV2 0 
 jˆ
g
sinV2
gm–P 0 


 P

 = – 2 m V0
sin  jˆ
From method : 1 : V0
sin  =
g
g.V– 0

 jˆ
g
g.Vm2
P 0


 Ans.
1.97 : m
– t)(TtaF


(a) wmF

  w

=linearacceleration. ]– tt[
m
a
w
dt
Vd 2













 
 t
0
2
t
0
V
0
dtt–dtt
m
a
Vd









 

3
–
2
t
m
a
V
32
 f
3
P
6
a
Vm



 Ans.
(b) ]– tt[
m
a
w 2


 







 
t
0
2
t
0
V
0
dtt–dtt
m
a
Vd












3
t
–
2
t
m
a
V
32









 

0
3
0
2S
0
dt
3
t
–dt
2
t
m
a
dS









 

12
–
6
.
m
a
S
43

12m
a
S
4

  S =
m12
a 4

Ans.
1.98: sin wtFF 0

  a =
dt
dV
sin wt
m
F0    
t
0
0
V
0
dtsin wt
m
F
dV  V =
t
0
0
wtcos
mw
F
–
V = wt]cos–[1
mw
F0
  
t
0
0
S
0
dtwt]cos–[1
mw
F
dS  S = 





sin wt
w
1
–t
mw
F0

S = 2
0
mw
F
[tw – sin wt] distance
distance will be increasing function w.r.t. time then
dt
dS
= (+)ive or > 0  w – w cos wt > 0 
cos wt < 1 0 < wt <  2 < wt < 3 
4 < wt < 5

wt
  
45
1.99: F = F0
cos wt 
m
F
a
dt
dv 0 cos wt   
t
0
0
0
0
dtwtcos
m
F
dV 0 =
wm
F0
sin wt 
sin wt = 0  wt =   t =
w
π
Ans.
Now :  
t
0
0
0
0
wtcos
m
F
dV  V =
wm
F0
sin wt .... (i)   
t
0
0
s
0
dtsin wt
wm
F
ds 
S = wt)cos–(1
wm
F–
2
0
at t = w
π s = 2
0
wm
2F
velocity will be maximum when sin wt = 1
 Vmax
=
wm
F0
Ans.
1.100 : (a) F = – rV  V
m
–r
dt
dV
   
t
0
V
V
dt
m
r–
V
dV
0
 t
m
r
–Vn
V
V0
  
V = V0
e–r/m
t  V will be zero when t  Ans.
(b) a = –
m
r
V =
ds
dv
v   
s
0
V
V
dsv
m
r
–dVv
0
V – V0
=
m
r
– S  V = V0
m
r
– S
Total distance travel by particle is S1
then final velocity = 0  0 = V0 m
r– S1

S1
=
r
Vm 0
Ans.
(c)

0V
= VV0
–
m
r
S2
 S2
= 






 1–
r
Vm 0
–––– (i)  Also

0V
= VV0
2tm
r–
e
t2
= n
r
m
 –––– (i)  <V> =



n
1)–(V
t
S 0
2
2

Ans.
1.101 : F  v2
 F = – kv2
 a =
m
kv– 2
  
t
0
V
V
2
dt
m
k–
v
dv
0

m
kt–
V
1–
V
V0
  m
kt
V
1
V
1
–
0
  t
k
m
VV
V–V
0
0








––– (i)
V0 V
h
Compact ISC Physics (XII)46
Also a =
dx
dv
v
m
kv– 2
   v dv =
m
dxkv– 2
  
h
0
V
V
dxk–
V
dvm
0
 m n
0V
V
= – kh
k =
h
m
n
0V
V
put in (i) : t =
V
V
n
h
VV
V–V
00
0







Ans.
1.102: Suppose at time t distance travel is x then F = mg sin  – ax
mg cos   mw = mg sin  – ax mg cos  where w =
acceleration of block. w = g sin  – ax g cos  .... (i) v = g
sin  – ax g cos  
dx
dvv
= g sin  – a x g cos  
 
mx
0
0
0
dxα)cosaxg–αsin(gdvv  0 = (g sin ) x –
2
cosgxa 2

x = 

cosga
sing2
x =
a
2
tan . Velocity will be maximum when dt
dv = 0 = acceleration  g sin  = ax g cos  
x =
a
1
tan   now 


tanay
0
maxv
0
dxα)cosgxa–αsin(gdvv 


maxV
= g sin 
tan
a
1
2
cosg2
–tan
a
1















  VVmax
=
a
g
αcos
αsin
a
g 2
 sin  tan  Ans.
1.103: K = friction coefficient  Block start sliding when.
F = at1
= k m g  t1
= a
gmk . Assuming over time start from block start sliding then.
Suppose acceleration of block is w then. mw = at – kmg = a (t1
+ t) – kmg = a t  w
=
m
a
 t 
2
t
0
v
0
t
2m
a
Vt)(dt(
m
a
dV  

 t)(dt
2m
a
ds
t
0
2
s
0




S =
6m
a
(t)3
=
6m
a
(t – t1
)3
Ans.

mg sin 
K
mg cos 
k= ax
t = 0 t = t1
t = t – t1
t = t
mK F = at
47
1.104 : h
v = 0
V0
Upward journey :
mg
F = Kv
2
V0
Fnet
= mg + kv2
 a = g +
m
kv 2
 


m
kvmg
ds
dvv
–
2
mv dv = (mg – kv2
) ds
 

0
v
h
0
2
0
ds–
kvmg
dvmv
 h =
mg
mgKV
n
2k
m 2
0 
 .... (i)
Downward Journey : Fnet
= mg – kv2
mg
k v
2
v  a =
m
kv–mg 2
= v dv/ds
 mg
mgKV
n
2k
m
hds
kv–mg
dvmv 2
0
v
0
h
0
2

    2
2
0
kv–mg
mg
n
2k
m
mg
mgKV
n
2k
m
 

 v =
mg
KV
1
v
2
0
0

Ans.
1.105 :(a) Position vector of particle : r

= r cos  iˆ + r sin  jˆ
 At time t :  = wt  )jˆsiniˆ(cosFrˆFF 

 ]jˆsiniˆ[cos
m
F
a 


 
t
0
t
0
V
0
dt(sin wt)
m
F
iˆdtwt)(cos
m
F
vd


 ]jˆwt)cos–(1iˆ[sin wt
mw
F
V 


speed =
22
wt)cos–(1(sin wt)
mw
F
|V| 

 Speed = 2
wtsin
mw
2F
Ans.
(b) Distance is calculated by speed. Then 2
wtsin
mw
2F
V
dt
ds
  dt2
wtsin
mw
2F
ds
t
0
s
0
 
S = Distance S = –
t
0
2 2
wt
cos2
mw
2F
 S = 





2
wt
cos–1
mw
F4
2 .... (ii) velocity of particle

r
w
m
F
0
Compact ISC Physics (XII)48
will be zero : 0 = 0
2
wtsin
2
wtsin
mw
2F
  put value of t = w
2π in (ii)
S = 2
mw
F4
(1 – cos )  S = 2
mw
F8
 Average speed =
/w2
8F/mw
Time
Distance 2


Average speed = mw
4F
 Ans.
1.106: K = tan  = friction coefficient  When = W
= net
tangential acceleration/ Wx
= Acceleration
in x direction. Now W
=
m
cosmgk–cossinmg 
= g (sin  cos  – K cos ) = g [sin  cos  – sin ]  W
= g sin  (cos  – 1)... (i)
Acceleration in x dirn: Wx
=
m
coscosmgk–sinmg 
 WWx
= g sin  [1 – cos ] .... (ii)
From (i) and (ii) : W
= –Wx

dt
Vd
–
dt
Vd xτ
   V
= –Vx
+ cos  at t = 0 V
= V0
and Vx
= 0  V
= – Vx
+ V0
.... (iii) Then const = V0
 Also Vx
= V
cos  ....
(iv) From (iii) and (iv) : V
=
 cos1
V0
Ans.
1.107: Tangential force on system is F then  F
   sing(dm) =   sing)dR( = Rg



t
0
dsin   = R f
  in
= 0 = –  Rg
f
cos


 f
= R
  f
=
R

F
=
Rg   R
cos–1   a
=
m
gR
  Rcos–1  =
x
gR
  R
cos–1   a
=

Rg
  R
cos–1 

v
w
mg sin 
K mg cos 


x
f

y

R
d
dm= R d 
x
(dm)g
F


d
dm

49
1.108: At time of break off. normal reaction will be zero. Where mw0
= Psuedo force because observer at sphere.
R
mV2
0
= mg cos 
– m w0
sin 
 V2
0
= Rg cos 
– R w0
sin 
.... (i)
Energy equation: Wall
forces = Kf
– Ki
 Wpsuedo
+ Wmg
= Kf
–
Ki
m w0
R sin 
+ mg [R – R cos 
] =
2
1
m V2
0
– 0  V2
0
= 2w0
R sin 
+ 2 g R [1 – cos 
].... (ii) From (i) and (ii) : V2
0
= 2R








R
V– 2
0
+ 2 g R V2
0
= 2 g 3
R  V0
=
3
gR
 cos 






















g
w
13
g
wg5
3
w
0
00
Ans.
1.109 : Given F n
r
1
   F = n
r
K
Where K = Constannt.
A particle is said to steady if we displace particle away from origin, particle want to regain
its position and also it we displaced particle toward origin, particle want to regain its original
position. Then. At steady state (mean position) : F =
r
Vm 2
0
Then
r
Vm
r
K 2
0
n
 .... (i)
It we increases r then. F –
r
Vm 2
> 0  K r–n
– mV2
r–1
> 0  Differentiate both side
with respect to r for small increase of r: –n k r–n–1
dr + mV2
r–2
dr > 0 and
r
1
r
Vm
r
1
r
Kn– 2
0
n




















> 0 .... (ii)  From (i) and (ii) n < 1 Ans.
w = acceleration0
R
R0
0
mw0
V0
mg
R
O F
v0
r
r
0
v
Compact ISC Physics (XII)50
1.110: At steady state: mg sin  = m (R sin ) w2
cos   cos 
= 2
wR
g
. Case (i) : If Rw2
> g then cos 2
wR
g
is defined and
only one equilibrium position will be exist and will be steady.
Case (ii) : If Rw2
< g then only 2
wR
g
= 0º will be equilibrium
position because tangential fore along arch of ring due to mg
will be greater than that of pseudo force and object will come
at lower position of ring.
R
N
Y
mg
m (R sin ) w
2
Y
90–



FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS
FUNDAMENTALS OF PHYSICS

More Related Content

What's hot

Mechanics ppt 1
Mechanics ppt 1Mechanics ppt 1
Mechanics ppt 1IB School
 
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptxSYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptxGiridhar D
 
Circular Motion PPP
Circular Motion PPPCircular Motion PPP
Circular Motion PPPeliseb
 
Linear motion of a particle
Linear motion of a particleLinear motion of a particle
Linear motion of a particleKhanSaif2
 
FORCE | CONTACT AND NON-CONTACT FORCES
FORCE | CONTACT AND NON-CONTACT FORCESFORCE | CONTACT AND NON-CONTACT FORCES
FORCE | CONTACT AND NON-CONTACT FORCESSiddhesh Karangutkar
 
Physics - Oscillations
Physics - OscillationsPhysics - Oscillations
Physics - OscillationsCatherine He
 
Hookes law
Hookes lawHookes law
Hookes lawMrOakes
 
Equations of motion
Equations of motionEquations of motion
Equations of motionLily Kotze
 
Momentum
MomentumMomentum
Momentumitutor
 
MOTION Class IX PowerPoint Presentation
MOTION Class IX PowerPoint Presentation MOTION Class IX PowerPoint Presentation
MOTION Class IX PowerPoint Presentation Arpan Bose
 
Electricity magnetism & electromagnetic induction
Electricity magnetism & electromagnetic inductionElectricity magnetism & electromagnetic induction
Electricity magnetism & electromagnetic inductionAnita Malhotra
 
Physics a2 unit4_06_centripetal_force -centripetal force
Physics a2 unit4_06_centripetal_force -centripetal forcePhysics a2 unit4_06_centripetal_force -centripetal force
Physics a2 unit4_06_centripetal_force -centripetal forcesashrilisdi
 
Chapter : Force And Motion
Chapter : Force And MotionChapter : Force And Motion
Chapter : Force And Motiontehminafaizan
 
Lesson 2: Vectors and the Dot Product
Lesson 2: Vectors and the Dot ProductLesson 2: Vectors and the Dot Product
Lesson 2: Vectors and the Dot ProductMatthew Leingang
 

What's hot (20)

Mechanics ppt 1
Mechanics ppt 1Mechanics ppt 1
Mechanics ppt 1
 
Newton's Laws of Motion
Newton's Laws of Motion Newton's Laws of Motion
Newton's Laws of Motion
 
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptxSYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
SYSTEM OF PARTICLES AND ROTATIONAL MOTION.pptx
 
Circular Motion PPP
Circular Motion PPPCircular Motion PPP
Circular Motion PPP
 
Linear motion of a particle
Linear motion of a particleLinear motion of a particle
Linear motion of a particle
 
Center of mass
Center of massCenter of mass
Center of mass
 
FORCE | CONTACT AND NON-CONTACT FORCES
FORCE | CONTACT AND NON-CONTACT FORCESFORCE | CONTACT AND NON-CONTACT FORCES
FORCE | CONTACT AND NON-CONTACT FORCES
 
Physics - Oscillations
Physics - OscillationsPhysics - Oscillations
Physics - Oscillations
 
Forces and motion
Forces and motionForces and motion
Forces and motion
 
Hookes law
Hookes lawHookes law
Hookes law
 
Equations of motion
Equations of motionEquations of motion
Equations of motion
 
Momentum
MomentumMomentum
Momentum
 
MOTION Class IX PowerPoint Presentation
MOTION Class IX PowerPoint Presentation MOTION Class IX PowerPoint Presentation
MOTION Class IX PowerPoint Presentation
 
Types of forces
Types of forcesTypes of forces
Types of forces
 
Electricity magnetism & electromagnetic induction
Electricity magnetism & electromagnetic inductionElectricity magnetism & electromagnetic induction
Electricity magnetism & electromagnetic induction
 
Physics a2 unit4_06_centripetal_force -centripetal force
Physics a2 unit4_06_centripetal_force -centripetal forcePhysics a2 unit4_06_centripetal_force -centripetal force
Physics a2 unit4_06_centripetal_force -centripetal force
 
Newton's second law of motion
Newton's second law of motionNewton's second law of motion
Newton's second law of motion
 
Chapter : Force And Motion
Chapter : Force And MotionChapter : Force And Motion
Chapter : Force And Motion
 
Lesson 2: Vectors and the Dot Product
Lesson 2: Vectors and the Dot ProductLesson 2: Vectors and the Dot Product
Lesson 2: Vectors and the Dot Product
 
Mechanical Waves
Mechanical WavesMechanical Waves
Mechanical Waves
 

Similar to FUNDAMENTALS OF PHYSICS

Motion Graph & equations
Motion Graph & equationsMotion Graph & equations
Motion Graph & equationsNurul Fadhilah
 
Lecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfLecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfCyberMohdSalahShoty
 
Lec 02 (constant acc 051)
Lec 02 (constant acc 051)Lec 02 (constant acc 051)
Lec 02 (constant acc 051)nur amalina
 
Chapter 2-student
Chapter 2-studentChapter 2-student
Chapter 2-studentTommy Moss
 
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelerSolutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelertable3252
 

Similar to FUNDAMENTALS OF PHYSICS (7)

Rectilinear motion
Rectilinear motionRectilinear motion
Rectilinear motion
 
Motion Graph & equations
Motion Graph & equationsMotion Graph & equations
Motion Graph & equations
 
Lecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfLecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdf
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Lec 02 (constant acc 051)
Lec 02 (constant acc 051)Lec 02 (constant acc 051)
Lec 02 (constant acc 051)
 
Chapter 2-student
Chapter 2-studentChapter 2-student
Chapter 2-student
 
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelerSolutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
 

Recently uploaded

Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxPurva Nikam
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitterShivangiSharma879191
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 

Recently uploaded (20)

POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
An introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptxAn introduction to Semiconductor and its types.pptx
An introduction to Semiconductor and its types.pptx
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter8251 universal synchronous asynchronous receiver transmitter
8251 universal synchronous asynchronous receiver transmitter
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 

FUNDAMENTALS OF PHYSICS

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7. 1 raft Motor Boat V V 1.1. Method : 1 (Relative approach) V = Relative speed of motor boat w.r.t. river which is constant Observer on raft see that speed of motor boat is constant because duty of motor boat is constant. Hence if motor boat take 1 hrs in down stream journey then to reach again at raft motor boat will take 1 hrs in upstream journey. Hence Total time in complete journey = 2 hrs. Motion of raft : u = speed of river. Then 2 u = 6  u = 3 km/hr. Ans. Method : 2 (With frame of ground) Motion of raft : u (1 + t1 ) = 6 ––– (i) Motion of motor boat : (v + u) × 1 – (v – u) t1 = 6  v + u – vt1 + ut1 = 6  v – vt1 + u (1 + t1 ) = 6; from (i)  v – vt1 + 6 = 6  t1 = 1 hrs. put t1 = 1 hr in (i) : u (1 + 1) = 6  u = 3km/hr Ans. Q.1.2: Total distance travel by point is S. Then Time taken in first journey : t1 = 0V 2 S Time taken in second journey : 2 t V 2 t V 2 S 2 2 2 1   t2 = 21 VV S  Mean velocity = 21 tt S  = 210 VV S V S/2 S    Mean velocity = 021 210 2VVV )V(V2V   Ans. Q.1.3 Method : 1 (Graphical Approach) Given tan  =  timeTotal trapziumofArea tan 2 t– )t( 2 1 Time ntDisplaceme               4 –1t Ans. Fixed point 6 km u distance = 2 × u raft 1 hr. t1 6 km Part One Physical Fundamenatls of Mechanics 1.1 Kinematics V t   t  – t 2  – t 2
  • 8. Compact ISC Physics (XII)2 Method : 2 (Analytical) Total displacement (S) = 22 2 t– 2 1 t 2 t– 2 t– 2 1                             Time taken =  =                          22 2 t– 2 1 t 2 t– 2 t– 2 1 S t =    4 –1 Ans. Q.1.4 (a) S 2m 20 s t average velocity = 20 2 = 0.1 m/s = 10 cm/s Ans. (b) Velocitywill be maximum when slope of S (t) curve will be maximum. V = 10–14 0.4–1.4 m/s = 25 cm/s Ans. (c) Instanteneous velocity may be equal to mean velocity when slope of line joining final and initial point will be same to slope at point on curve. Ans. : to = 16 s Q.1.5 Velocity of B with respect to A : 12A–B V–VV   Position of B with respect to A : 12ABA–B r–rr–rr   A B VB – A Particle B will be collide with A if velocity of B with respect A is directed toward observer A. Then A–BA–BA–BA–B rˆVˆr||V   Then |r–r| r–r |V–V| V–V 12 12 12 12      Ans. Q.1.6 N EW S V = 15 km/hrW – E V = 30 km/hrS – E 60º Y X S 16 s approx t S 1.4 14 t 0.4 10 A r1 v1 v2 r2 B Y X 
  • 9. 3 E–SV  = 30 i; jˆ60sin15–iˆ60cos15V E–W    E–WE–SS–W VV–jˆ60sin15–iˆ30)–60cos(15V   km/hr4060)sin(1530)–60cos(15|V| 22 S–W    19º 30–60cos15 60sin15– tan  Ans Method 2 30 km/hr VW – S15 km/hr 60º  we know E–SE–WS–W V–VV   60cosVV2–VV|V| E–SE–W 2 E–S 2 E–WS–W    40 km/hr Ans. from figure : tan  = 60cos15–30 60sin15     = 19º Person : 1 Q.1.7 2 km/hr  d 2.5 km/hr Time to cross the river : t = cos2.5 d ––––– (i) from figure : sin  = 5 4 2.5 2   cos  = 5 3  Put in (i) : t = 1.5 d ––––– (ii) Person : B 2 km/hr  d 2.5 km/hr x Using trigonometry : x = d tan 1 Time to reach at destination point : t = t1 + t2 Here t1 = Time to cross the river = 2.5 d t2 = Time to walk on bank = u tand u x   And tan = 5 4 2.5 2   t = 5 4 u d 2.5 d  –––– (iii) from (ii) and (iii) : 5u 4d 2.5 d 1.5 d  u = 3 km/hr Ans.
  • 10. Compact ISC Physics (XII)4 Q.1.8 Boat A : d d time to reach again at same point. tA = – WV d WV d   –––– (i) where V = Speed of boat w.r.t. river W = Speed of water w.r.t. earth. Boat B : d W V Time to reach again at same point. tB = 22 – WV 2d ––––– (ii) Also given V =  ––––– (iii) now 1– – 2d – dd t t 2 222 B A          1–t t 2B A    = 1.8s 1.9: Method : 1  d Vm – r x Vr – E A Time to cross the river: t = cos|V| d mr  Then Drift (x) = (Vm – r sin  – Vr – E ) cosV d mr Since Vm – r < Vr – E . Hence this is not possible that drift will be zero. Hence we should have to minimize drift (x). Hence d dx = 0 d sec2  – mr E–r V d)(V sec tan  = 0  sin = 2 1 V V E–r r–m    = 30º Angle made by boat with flow velocity of water = 30º + 90º = 120º Ans. Method : 2 (Vector addition method)  Vr – E Vm – r E–rr–mE–m VVV   Hence  will taken any value between (0 – 180º) hence we can draw a semi circle of radius of length |V| r–m  . Then. 30º 90º
  • 11. 5 Vr – E A C4 C3 C2 C1 B And resultant is given by C1 , C2 , C3 and C4 , ....... Cn . But for minimum drift resultant must be tangent at semicircle. Then cos  = 2 1 V V E–r mr    = 60º Then   = 180 – 60º = 120º 1.10: Relative acceleration of particle (1) w.r.t. (2) = g – g = 0; Relative velocity of particle (1) w.r.t. (2) = V1 – 2 = )–(90cosV2V–VV 00 2 0 2 0  = V0 )sin–(12  Where 90 –  is angle b/w two velocity.. Since there is no relative acceleration of particle (1) hence its relative velocity does not change w.r.t time then. Distance b/w two particle at time t is : Distance = V0 t )sin–(12  = 22 m Ans. Q.1.11 : Method : 1 (Vector) + y 3 m/s 4 m/s x (+) 1 2 Initial velocity in y direction of both particle zero. Hence vertical velocity of particles (1) at time t : Vy = u + at  Vy = g t; Velocity of particle (1) at time t = : jˆtgiˆ3–V1   ; Velocity of particle (2) at time t : jˆtgiˆ4V2    Since 0V.VVV 2121   Then – 12 + g2 t2 = 0  t = 0.12 s. Hence distance between two particle will be : Distance = Vrelative × t = (4 – (–3)) × 0.12 = 7 × 0.12  2.5 m Ans. Method : 2 (Graphical) : Since 21 VV     +  = 90   = 90 –   tan  = tan (90 – )  tan  = cot  tan  × tan  = 1 ––––– (i) And tan  = 3 gt  tan  = 4 gt Vr – E  C Vmr  V0  = 60º g g 1 2 V0 3 m/s 4 m/s V1 gt gt     
  • 12. Compact ISC Physics (XII)6 put in (i): 1 4 gt 3 gt              t = 0.12 Distance = Vrel × time = 7 0.12  2.5 m Ans. 1.12 : Method : 1 (Velocity of approach) Since particle A heading to particle B and B to C and C to A. Then position of all particle at t = dt is as figure 2. Again position of all particle at t = 2 dt is as figure 3. Again position at t = 3 dt and so on ........ Since at any time all particle travel same distance then at each moment of time, all particle will be at equilateral tringle. Then by symmetry you can say that all particle will be met at centriod of tringle then path of each particle will as : Suppose at any instant of time, distance b/w particle A and centriod P is r. Then, line joing particle A and P make 30º angle with side of equilateral tringe then dt dr will always constant and equal to v cos 30º then – dt dr = V cos 30º, (–)ive sign because r is dicreasing function. Finally r = 0 while initial / 3r a   t 0 0 3 a dt 30cosv dr –  t = 3V 2a  A P = 2 a sec 30º = 3 a Ans. a 60º 60º 60º A B C a V V V a Vdt Vdt Vdt Vdt Vdt Vdt Vdt Vdt Vdt  A B C 30º P30º A P A 30º a 2/ / 3 a
  • 13. 7 Method : 2 (Relative approach) let distance b/w A and B at time t is r then. At any instant of time, rate of decreasement of distance b/w two particle A and B will be constant as shown in figure. Then dt dr = – (V + V cos 60º) = 2 3V –    dt 0 0 a dt 3V– dr2  t = V 3a Ans. 1.13: Suppose at time t distance b/w A and B is r. Then rate of decreasement of r is : dt dr– = – v + u cos     o t 0 dtθ)cosu(–vdr–   –l = – vt + u  t 0 cos  dt.... (i) Now since  t 0 cos  dt is not known then to find this integration, we use rate of decreasement of component: Then dt dx = – V cos  + u dtu)cosV(–dx t 0 0 0   0 = ut – V  cos t 0 dt   cos t 0 dt = V ut now put in (1) : –l = –vt + u         V ut  t = 22 u–V V  1.14:With frame of train : With frame of train, train appear in rest then distance b/ there two event is equal to l. With frame of earth : When event (1) will happen. Velocity of train is V = u + at = wt. Since event (2) will be happen after time  then. Distance travelled by headlight (A) = Distance travelled by head light (B) = u1 t1 +   a t2 1 = wt() +   w w         t Then distance b/ two events is =        2t– w = 0.24 km. Ans. A A 1 A11 B 11 C11 C 1 C B 1 B V cos60º V cos 60º V V V V V V 60º 60º 60º V V cos 60º B  A W  AB event 2 B A  event 1 w (t + /2)   A  V B u x y x r
  • 14. Compact ISC Physics (XII)8  It we want that both event will be happen at same point then velocity of reference frame will be Vreference frame = 60 km24.0 = 4 m/s Ans. 1.15: (a) For observer inside lift at t = 2s. velocity of bolt = 0 Accn of bolt = 10 + 1.2 = 11.2 m/s2 . Then assume t time is taken by bolt to reach at floor. s =   at2  2.7 =   × 11.2 t2  t = 0.7s (b) Velocity of bolt with respect to ground at t = 2 sec. V =1.2×2 = 2.4 m/s Displacement then S= ut +   at2  S = 2.4 (0.7) –   ×10 (.7)2  – 0.7 m Distance : H = 2g 2.4.  = 0.288 Distance travelled = 2 × 0.288 + 0.7  1.3 m Ans. 1.16: Method : 1 (Relative velocity) from figure tan  = 1 2 V V  cos = 2 2 2 1 1 VV V  also tan  = 1 2 1 V Vy   y = 1 2 1 V V   BC = 1 21 2 V V –   Shortest distance = CM = BC cos = 2 2 2 1 1 1 21 2 VV V V V –            shaft a=1.2 m/s 2 2.7m 2.4m/s H 0.7m Shortest distance = 2 2 2 1 2112 VV |V–V|   now t = 2 2 2 1 221 2 2 2 1 1 2 2 2 1 2 2 2 1 VV VV VV tanCMsec VV BMAB VV AM             2 2 2 1 2211 VV VV t     Ans. 1 2 y 0V1 B C M  V2 1 2 V2 0 V1
  • 15. 9 Method : 2 (Velocity of approach) At shortest distance velocity of approach = 0. Then V1 cos  = V2 sin   tan  = 2 1 V V In tringle BA  O : tan  = 2 1 1 2 V V tV– –tV      V2 2 t – l2 V2 = l1 V1 – V2 1 t  t = 2 2 2 1 21 VV VV     Ans. And Shortest distance is : )–t(Vt)V–( 2 2 2 1    Shortest distance = 2 2 2 1 21 VV VV     Method :3 V t1 1 1– V t V1 V t –2 2 V2 )–t(Vt)V–( 2 2 2 1    ... (1). for shortest distance dt dl = 0  )–t(Vt)V–( V)–t(V2Vt)V–(2– 2 2 2 1 2211         = 0 t = 2 2 2 1 21 VV VV     Ans. put value of t in (1) : 2 2 2 1 21 VV |V–V|      Ans. 1.17: Method : 1 Time to reach at point D : T = V/n sec V tan–m     . For minimum time : dθ dT = 0 Then – V  sec2  + V n  sec × tan  = 0  sec  = n tan   sin  =  1 . Then distance BC = l tan   BC =  –  Ans. 1 1– V t V1 V t2 V2 V t1 A A 1 B 1 2 B 90– O B C m– tan  m D A   tan 
  • 16. Compact ISC Physics (XII)10 Method: 2 (Help of light wave) We know that light travel via that path in which time will be less. Then. (2)mediuminspeed (1)mediuminspeed θsin isin  = V V sin 90sin     sin     length BC = l tan = 1–η2  Ans. 1.18: 1.19: (a) Mean velocity in irodov is misprint and it is mean speed then mean speed = τ Rπ Ans. (b) Mean velocity = τ R2 Ans. (c) We know                 ....(i) And    t2      2   2 τ 2  ii from (i) and (ii) :          2 τ 2    τ 2  now V = RW then V = R        τ 2 . Average accleration :  cf V–V = τ 0– τ R2   Avg. Accn = 2 τ R2  Ans. B C medium (1) i    medium (2) B R A Time taken =  WX 1 3 6 1m/s 2 –1m/s 2 x Distance t t t
  • 17. 11 1.20:This is one dimension motion be cause direction of position vector r  is same as constant vector a  . Then t)–(1tar   at–ta 2   (a) at2–a dt rd V     a2– dt vd acc      aV   (1 – 2 t) Ans. (b) At initial position t = 0  r  = 0 Now at final position r  = 0 then. a  t (1 – t) = 0 t = 0 ro t =   Ans. Initial A B At point B velocity will be equal to zero so that particle will be turn back. Then 0 = a  (1 – 2t)  t =   Then position B is : r = a                  4 a –1 . The Distance travelled in up and down journcy is:      2 a 4 a 4 a Ans. 1.21:(a) V = V0 (1 – t/)  dt τ t –1Vdx x 0 t 0 0         x = V0         2τ t –t 2  Position at time t is x then : x = V0 t       2τ t –t Ans. (b) Henc we see that velocity will change dirn at t =  because When t >   v =  And t <     v = – ive. Then Case I : t <  x VV0 t       2τ t –l Ans. Case II : t >  Total distance travelled = AB + BC = V0                            2τ t –ltV– 2τ –lV 2τ –l 00 =           2 t –ltV– 2 V 2 V 0 00 Distance = V0  – V0 t       2τ t –l when t >  Ans. 1.22 : (a) v =  1 xx differentiate w. r. t. time : 2 1 2 1 2 1 xαx 2 α a dt dx xα 2 1 dt dv ––  a = 2 α 2 1 Since acceleration is constant; velocity will be : V = u + at  V = 2 α 2 1 t C A B t = 
  • 18. Compact ISC Physics (XII)12 (b) S = ut + 2 1 at2  S = 2 1         2 α2 t2  t = α s2 Mean velocity <V> = s2 s t s   < V > = s   Ans. 1.23:Calculation of time : w = – a v ( – i ve sign is used to show deacceleration) dt dv = – a v    ot 0 0 0v dta– v dv  t0 = a V 2 1 0 Ans.Ans. Calculation of distance : va–  va– dx dv v     0 0 2 1 x 0 0 v dxa–dvv x0 = 3a V 2 3 0 1.24 : (a) jˆbt–iˆatr 2    x = at  y = – bt2  y= – b 2 a x       a2 y = – bx2 Ans. (b) jˆ2bt–iˆa dt rd v     jˆ2bt–iˆav   222 tb4a|v|    jˆ2b– dt vd a     jˆ2b–a   2b|a|   (c) Since direction of acceleration is toward y dirn then angle made by velocity vector with y axis is known as angle b/w two vectors then. tan  = 2bt a Ans. (d) t jˆbt–iˆat t s V 2 mean    jˆbt–iˆaVmean    222 mean tba|V|   1.25: (a) x = at  y= at (1 – t)  y= x          a x –1 Ans. (b) vx = dt dx = a  ay = dt dvy = a – 2 a  t  jˆt)2a–(aiˆav    22 t)2a–(aa|v|    2 t)2–(11a|v|    jˆ2a– dt vd a      2a|a|  Ans.  2bt x y a
  • 19. 13 Method:1 (c) Velocity= a (–2a t) a acceleration = 2a cos  = |v||a| v.a    222 )(2at)2a–(aa t)2a–(a2a– 2 1    t =  1 Method:2 t2a–a a 4 – tan    – a = a – 2 a t  t =   Ans. 1.26 : x = a sin wt y= a (1 – cos wt)          1– a y = – cos wt ––– (i)  a x = sin wt ––– (ii) 11– a y a x 22                  x2 + (y – a)2 = a2 Equation of circle of radius a. jˆ dt dy iˆ dt dx v   jˆsin wtawiˆwtcoswav    wa|v|   = const.  Uniformcircular motion. (a) Distance travelled in time  is = (aw)  Ans. (b) Since motion is uniform circular motion. Hence only radial acceleration is present then Angle b/w velocity vector and accn will be   Ans. 1.27 : y = ax – bx2 differentiate w.r.t. time : dt dx 2xb– dt dx a dt dy  Vy = a VVx – 2bx Vx –––– (i) At x= 0 Vy =a Vx ––– (ii)differentiateequation (i)w.r.t.time : 2 x xxy 2bV– dt dV 2bx– dt dV a dt dV  ay = a ax – 2bx ax – 2b Vx 2 At x = 0 Given ax = 0 and ay =w ay = |– 2b Vx 2 |w =2b Vx 2 –– (iii) Speed at origin will be : V = 2 y 2 x VV  = 2b wa 2b w 2  V = 2b w (1 + a2 ) Ans. 1.28 : (a) 2 ta 2 1 tus    2 0 tg 2 1 tVs   g  V 0 Ans. a (0, a)
  • 20. Compact ISC Physics (XII)14 (b) t s v     tg 2 1 vv 0   Ans. we know T = g sinu2   u sin  = g g.v– 0   g 2 g g.v– 2 g vv 0 0             2 0 0 g g.v g–vv     1.29 : (a) S = 0 in y direction  0 = (V0 sin ) T – 2 1 g T2 T = g sinV2 0  (b) At maximum height final velocityin ydirection = 0 Vy 2 = uy 2 +2 aH 02 = (V0 sin )2 + 2 (–g) H H = 2g sinV 22 0  Range R = V0 cos           g sin2V0  R = g 2sinV2 0  when H= R  g cossin2V 2g sinV 2 0 22 0    tan  = 4  = tan– 1 (4) (c) x = (v0 cos ) t  y = (v0 sin ) t – 2 1 g t2  y = v0 sin  2 00 cosv x g 2 1 – cosv x                  y = x tan  – cos2u gx 22 2 Ans. (d) Radius of currature = onacceleratinormal V2  R0 = cosg V2 0  g V cos0  A V0 RA = g cosV 22 0  Ans. 1.30 : w = g sin  andw = g cos Here  is first dicreasing and then increasing and projection of total accn on velocity vector will be (–)ive then. wv = vˆ.w1  = – g sin  – g  – V y  x V cos0  V0V sin0    g V0  g wn w V  t wV w g sinw = w V  w = g cosn 
  • 21. 15 1.31 : Time to collide with incline T = g 2g2 cosg cos2gh2 cosg u2 y      Length MO = (velocityin MO) × T =        sincos2ghsincos2gh Range OC = (MO) sin  = cos MO =        cosg 2gh2)sincos2gh2 R = 8 h sin  Ans. 1.32: We know R = g 2θsinu2 5.1 × 103 = g sin)( 2    1 = 32.5º. Also we know that range will be same for 2 = 90 – 31.5 = 59.5º. Then time of flight will be: T1 = g usin  T1 = 10 31.5sin240 = 24.3s = 0.41min Ans. T2 = 10 59.5sin240 = 42.3s = 0.69 min Ans. 1.33: Method: 1   º      º. For both particles x and y co-ordinate must be same then. Particle (1): y = x tan 1 – 1 22 0 2 cosV2 xg  .... (i) Particle (ii): y = x tan 2 – 2 22 0 2 cosV2 xg  .... (ii) From (i) and (ii) : x tan 1 cos2V xg– 1 22 0 2  = x tan 2 2 22 0 cos2V gt–   V = 2gh0  Just before collision 2gh 2gh sin    Just after collision 2gh sin  2gh cos  O C x M y 5.1×10 m 3 240m/s  250 m/s = v0 250 m/s = v0 60º 45º= 
  • 22. Compact ISC Physics (XII)16 x = 2 2 1 2 2121 2 0 cos–cos coscos)–(sin g V   .... (iii)  Time for particle (1) : t1 = 10 θcosV x TIme for particle (ii) : t2 = 20 θcosV x Then t =        210 cos 1 – cos 1 V x .... (iv) Put value of x on (iv) :t =        21 210 θcosθcos )θ–(θsin g V2 = 11s Ans. Method: 2 Particle (1) : x = V0 cos (t + t) .... (i)  y = V0 sin (t + t) –   g (t + t)2 .... (ii) Particle (2) : x = V0 cos (t).... (iii)  y = V0 sin (t) –   gt2 .... (iv)  From (i), (ii), (iii) and (iv): t =        21 210 θcosθcos )θ–(θsin g 2V = 11s Ans. 1.34 : (a) tan = ay V0  Time to reach at hight y : t = y/V0 Also dt dx = ay  dt dx = a [V0 t]    t 0 x 0 0 dttaVdx x =         0 0 2 0 V y 2 Va 2 taV x =         0V2 a y2 Ans. (b) ay = 0 ax = dt dya dt dVx  = aVy = aV0  anet = aV0 Tangential acceleration = a = aV0 cos  a = 2 0 2 22 0 0 )(ay/V1 ya (ay)V (ay)Va    Ans. Radial acc n or normal acc n : (an ) = a V0 sin  an =        0 0 V yaVa Ans. y 0 x x v = ayx v0  y
  • 23. 17 1.35: (a) tan  = bx a  x = at .... (i) Vy = (a t) b   y 0 t 0 dttabdy  2 tab y 2  Then y =        a x 2 ab  y =       2a b x2 Ans. (b) ax = 0 ay = dt dx b dt dVy  = ab  anet = ab  Then normal accn : an = anet cos anet = ab Then an = ab 22 (bx)a a   R = ba )xb(a a V 2 3/2222 n 2    R =                  / a xb 1 b a Ans. 1.36: Method: 1 (Work-Energy) Tangential accn is given by :   .a|w| = a cos  Suppose at time t particle at posetion A and in small time dt particle displacement by ds. Work done : dw = Ft ds = (ma cos) ds = ma (ds cos)  dw = ma (ds cos) = ma (ds) cos  ma  ds cos Using work energy theorem : W = max    mV2 = max  V = xa Ans. y x a = vx bx=Vy  v an anet 0   a  ds x
  • 24. Compact ISC Physics (XII)18 Method : 2 (Kinematics) Tangential accn : at =   .a = a cos. Also since we know that tangential accn is rate of change of speed then. dt |v|d = a cos  ds dvv = a cos  v dv = a (ds) cos = a dx   x 0 v 0 dxadvv   2 v = ax  v = xa Ans. 1.37: Angle travel by particle:  = 2n. Speed of particle : v = Rw = at w =    t 0 n2 0 dt R at ds dt dθ R at 2n = 2R at2  t2 = a nR  t2 = a nR Now : Radial accn : ar = R ta R V 222  = a Rn4 R a2  = 4na Tangential accn : at = dt dv = a  Total accn = 2 t 2 r aa  = 22 na)(4a  Total accn = a 2 n)(41  = 0.8 m/s2 Ans. 1.38: (a) At any time t : at = ar = R V2 Since at is rate of change of speed then. –   V V t 0 2– 2 0 R dt dVV– R V dt dv (–) sign because V is decreasing R tV 1 V VR t V V V 0 0 0 1–   (b) anet = 2 r 2 t aa  = at  at = R v2 = –v ds dv  –v dv = R v2 dt Where ds = distance travel by particle in time dt. –v dv = R v2 ds   V V S 00 R ds v dv – –  n R S V V 0  Then V = V0 e–S/R  at = R eV R v 2S/R–2 0 2   ds V dx a R v R at ar Given a = a at t = 0 u = V t r 0
  • 25. 19 anet = 2 R V R e2V 22S/R–2 0   anet = 2 R V eR 2V 2 2S/R 2 0  Ans. 1.39: Method : 1 v = a s Squaring both side : v2 = as Compare with : v2 = u2 + 2 acc S  u = 0 acc = 2 a Hence motion is constant magnitude tangential accn . Then. At any time t : at = a/2  ar = R V2 = R as Since we know that velocity vector and tangential accn is parallel then. tan   R 2S a/2R as a a t r  Ans. Method : 2 v2 = as  differiate w.r.t time : 2v = dt ds a dt dv  = av  2 a dt dv  = at ar = R as R V2   tan  = R 2S a a t r  Ans. 1.40 : (a)  = a sin wt now  = 0    t = 0  = ± a   t = 2 3, 2  , V = wtcoswa dt d   a = sin wtwa dt dv 2  Then at = – aw2 sin wt ar = R wtcoswa R V 2222   anet = 2 r 2 t aa  anet = aw2 wtcos R a wtsin 4 2 2 2  –––– (i) at t = 0   = 0  at t = 2 3or 2   anet = R wa 22  anet = aw2 Ans. at ar  at ar  x  = a sin wt y
  • 26. Compact ISC Physics (XII)20 (b) For minimum value of acceleration  0 dt danet   cos wt = a2 R put in equation(i) amin = aw2        2a R –1   =        a2 R –1a   = 2 2 a2 R –1a Ans.Ans. 1.41: Speed of particle when distance is S. V2 = 2aS –––– (i) (Because a = const.) S = 2 1 at2  t2 = a 2S Then wn = b 2 22 a 4bS a 2S       Radius of curvature : R = 2 2 n 2 4bS 2aSa w V   R = 2bS a3 Ans. Net accn : w = 2 n 2 T wa   w = 2 2 2 2 a 4bS a          Ans. 1.42: (a) y = ax2 diff. w.r.t. time : dt dx 2ax dt dy  Vy = 2ax VVx Again diff. w.r.t. time : ay = 2ax ax + 2aVx 2 At x = 0 Vy = 0 Then Vx = v  ay = 2aV2 Since speed is const. its tangential acceleration will be zero. Then ax = dt dV = 0  anet = 2 a VV2  R = 2 2 n 2 2av V a V   R = 2a 1 Ans. (b) 2 2 2 2 b y a x  = 1 diff. w.r.t. time : 0 b V2y a V2x 2 y 2 x  Again diff. w.r.t. time : 0 b 2V b a2y a V2 a a2x 2 2 y 2 y 2 2 x 2 x  At x = 0 and y = b : 0 b V2 b a2 a V2 2 2 yy 2 2 x  a = a  w = bt n 4 x y V0
  • 27. 21 As shown in figure : Vy = 0 and Vx = V0  0 b a2 a V2 y 2 2 0   ay = 2 02 V a b Since speed is Const. tangential accn = ax = 0 at; t = 0  anet = 2 02 V a b Radius of curvature : R = n 2 0 a V R = 2 02 2 0 V a b V  R = b a2 Ans. 1.43 : Given dt d = w = const. Then dt d 2 dt )d(2    = 2w = const. Hence angular velocity of point A w.r.t. point P is constnat then. WP = 2W and velocity will be perpendicular to position of A w.r.t. P then V = R WP = 2RW Ans. Since WP = const. 0 dt dWP  Then  Tangential accn = 0 Radial accn = R WP 2 = 4 RW2 = anet  Direction is toward the centre. Ans. 1.44 :  = at2  dt d = w = 2at  dt dw =  = 2a Tangential acceleration : at = R = 2aR Radial acceleration : ar = RW2 = R (2at)2 = 4 a2 t2 R And. v = RW = R 2at 2at = R v –––– (i) Now anet = 2 r 2 t aa  = 2aR 22 )(2at1 from (i) : anet = 22 )(2at1 t v  = 0.7 m/s Ans. 1.45 : Since acceleration is constant. l = 2 1 at2 and V = at Then l = 2 Vt –––––– (i) and also. angular acceleration is const. then  = 2 1  t2 and w = at then  = 2 1 wt and since particle taken n turn in its journey.. V O A    P at  ar l Va
  • 28. Compact ISC Physics (XII)22  = 2  n Now 2 = 2 1 wt –––– (ii) (II) (I) : W V 2     W =  v2 Ans. 1.46 :  = at – bt3  w = dt d = a – 3bt2 when body is in rest then w = 0  a – 3bt2 = 0 t = 3b a  in = 0 and final = t (a – bt2 ) =       3 2a 3b a Wavg = t – infinal   =   3 2a 3b a 3 2a 3b a  Ans. Win = a and Wfinal = a – 3b       3b a = 0  avg = 3ab 3b a a t – WW infinal  Ans. And.  = dt dw = – 6bt = – 6b 3b a   = 2 3ab Ans. 1.47 : Given  =  = at To find tangential accn : (at ) : at = R = Rat To find radial accn : (ar ) :  = dt dw  ar = Rw2   t 0 w 0 dtdw  w = 2 at dtat 2t 0   ar = 4 taR 42 Then at  ar tan  = t r a a  tan  = taR4 taR 42  t = s7tan a 4 3  Ans. 1.48 : Given   W    = angular accn.   = k W  k = const.  Wk d dW – W    (–)ive because W is decreasing. –    0 0 W 2 1 dkdwW 0 at ar y x R
  • 29. 23  k3 W2 2 3 0 ––– (i)  = Angular displacement.  Also  = k W – dW = k W dt    t 0 0 w 2 1– dtkdwW 0  t k 2W 2 –1 0  ––– (ii) Avg. angular velocity : Wavg = <W> = t  = 3 W k W2 k3 W2 0 2 1 0 2 3 0            Ans. 1.49: (a) Given W = W0 – a –––– (i). At t = 0   = 0  W = W0 Also dt d = W0 – a      t 00 0 dt a–W d  t)a–(Wn a 1– 0 0     at– W a–W n 0 0     = )e–(1 a W at–0 Ans. (b) Put value of  in equation (i) : W = W0 – a       )e–(1 a W at–0  W = WW0 e–at Ans. 1.50: Given  = 0 cos    = W d dW = 0 cos      0 0 w 0 dcosdww  2 W2 = 0 sin   W = ±  sin2 0 Ans. 1.51: (a) Instanteneous axis of rotation is passing through that point which velocity is zero always. If we observe carefully its point must be at line joining AB. Then. at time t : VP – 0 = RW = Rt = yt  y x B A V y  –0 0 0 2–  sin2–w 0  sin2w 0  cos0
  • 30. Compact ISC Physics (XII)24 x = vt ––– (i) Velocity of point P : VP = 0  v = ty x = v       y v t = y v  put in (i) y = x v2  Ans. (b) Velocity of point O = 0 VO – P = Rw VP = u + at = wt Then yw = wt  t = w wy x = 2 1 at2 = 2 1 w 2 w wy        x = w yw 2 1 22 Ans. 1.52 : Since there is no slipping at ground. VC = 0  V = RW where VC = velocity of contact point. To find distance, we have to find speed of a particle of rim then.  = wt  Time to one complets journey = 2/w VP = )–(cosvv2vv 22  = 2 v sin /2 = 2V sin (wt)/2  Again dt ds = 2 v sin wt/2     w2 0 s 0 dtsin wt/2v2ds S = w v8 = 8 R Ans. y xO P (x, y) Vy t y x O P (x, y) yw = RW y x C w V A W O  R C B P  v v  1.53: (a) Acceleration of point C : aC = w  Velocity of point C at time t : VC = u + at = wt Angular accn of ball about its centre:  = R w R w R aC   Angular velocity of ball at time t : w = w0 t = R w t  Velocity of point AA w.r.t. centre C : VA – C = RW = w t iˆ VC – E = w t iˆ  VA – E = 2 w t Ans.
  • 31. 25 Point B : A wt  wtC B y x VB–C = Rw = wt (– j) VC–E = wt i  VB–E = wt (i – j) VB–E = wt Ans. Point O : VO–C = – wt i  VC–E = wt i  VO–E = O Ans. (b) Acceleration Calculations : PointA: A ar C at y x aC–E = wi .... (i)  aA–C = at i – ar j  Where at = tangential acceleration. ar = radial acceleration. at = R = w  ar = R tw R 2(wt) R v 222   aA–C = wi – R tw 22 j .... (ii) (i) + (ii) : aA–E = 2 wi – R tw 22 j  aA–E = 2w           2R wt2 Ans. wt wtC 0 A wt wt y x
  • 32. Compact ISC Physics (XII)26 Point B : a  C–E = wi .... (i)  a  B–C = (–R) jˆ +         R v2 iˆ = – wjˆ – R tw 22 iˆ .... (ii) (i) + (ii) : a  B =         R tw –w 22 iˆ + w jˆ  aB = w           2R wt2 Ans. Point O: a  C–E = w iˆ .... (i)  a  O–C = (–R) iˆ +         R v2 jˆ = –w iˆ – R tw 22 jˆ .... (ii) (i) + (ii) : a  O–E = – R tw 22 j  aO–E = R tw 22 Ans. 1.54 : Velocity of point A = 2v  Velocity of point B = v   accn of point A = R v2  accn of point B = R v2 Again Radius of curvature = onacceleratinormal (speed)2  RA = /RV (2V) 2 2 = 4R Again an = R v2 cos 45º = R2 v2  RB = R22 R2 v )2(V 2   1.55 : Method : 1 (axis is rotating): w  1–0 = w1 iˆ  w  1–0 = w2 jˆ  w  1–2 = w1 iˆ – w2 jˆ w1–2 = 2 2 2 1 ww     1–2 = dt wd 2–1  = w1 dt iˆd – w2 dt jd direction of dt iˆd is toward y axis and this is rate of change of dirn of x axis. y x  RC B y x C 0 A 2V B v v V x B an v 2 R V 45º V V 2 v 2 A 2V R
  • 33. 27 Method : 2 (axis is not rotating) w  1–C = w1 cos  iˆ + w1 sin  kˆ   w  C–0 = w2 j  w  1–0 = w1 cos  iˆ + w1 sin  kˆ + w2 jˆ  2 2 2 10–1 ww|w|    dt wd 0–1    = – w1 sin           dt d iˆ + w1 cos           dt d kˆ And dt d = w2    = – w1 w2 sin  iˆ + w1 w2 cos  kˆ |  | = w1 w2 . Here x axis is directly attached with observer. Then dt iˆd = – w2 kˆ  dθ1|iˆd|   dt dθ dt |iˆd|  = w2 But dt jˆd = 0 Because with frame of this observed dirn of axis does not rotating then.   1–2 = – w1 w2 kˆ  1–2 = w1 w2 1.56 : w  = at iˆ + b t2 jˆ  dt dw   = a iˆ + 2b t jˆ (a)         t a b 1at|w|   (b)         a t2ab 1at||     w = w cos   cos     w .w  cos   2224222 322 t4batbta t2bta      = 17º Ans y x0 w2 w1 y x0 w2 y x0 w2 w1 w2z  C 1 y z passing y axis 1 unit 1 unit d j d i i
  • 34. Compact ISC Physics (XII)28 1.57: Method : 1 (axis are moving): It we see carefully then x axis is moving while ydirection is not rotating. Angular velocity of disc with respect to centre M is : iˆ R V W O–M   .... (i) Angular velocity of centre M w.r.t. origen. jˆ OM V W O–M    OM = R cot   jˆtan R V W O–M   . Since angular velocity is vector quantityit followvectoradditionlaw ]jˆtaniˆ[ R V W O–D      cosR V tan1 R V |W| 2 O–D  Ans. Again Angular acceleration () is : dt wd β             dt jˆd tan dt iˆd R V β  And since ydirn isconstant dt jˆd =0  But dt iˆd  |iˆd| = d dt d dt iˆd   = wMO  kˆtan R V – dt iˆd  kˆtan R V R V β                    kˆtan R V –β 2 2    2 2 R V |β|   tan  Method : 2 (axis are not rotating) angular velocity of disc w.r.t. M : WD–M = R V cos  iˆ + R V sin  jˆ angular velocity of M w.r.f. O : jˆtan R V jˆ cotR V W O–M     angular velocity of disc wrt O: W  D–O = W  D–M + W  M–0  W  D–O = R V cos  iˆ  R V sin  jˆ   R V tan  jˆ                       cosR V tan R V sin R V cos R V |W| O–M  Ans. y x R0 v M p   z y axis y axis d j d i i y x0 w =0 D z   V R V M
  • 35. 29 0jˆ dt dθ θcos R V iˆ dt dθ θsin R V– dt wd α O–D O–D                and dt dθ is angular velocity of M w.r.t. 0 : d/dt = R V tan   2 2 O–D R V– α   sin  tan  iˆ + 2 2 R V cos  tan  jˆ | O–Dα  | = 2 2 R V tan  Ans. 1.58 : Method : 1 : (Direction of Co-ordinate axis is fixed) At time t line AB rotate by  angle then A–PW  = w0 cos  iˆ + w0 sin  kˆ     t jˆ | A–PW  | = 22 0 22 0 22 0 tsinwcosw   | A–PW  | = w0           0 0 w t Now jˆkˆ dt d cosW dt d )iˆ(sin– W dt Wd 000 A–P               = –W0 0 t sin  iˆ + W0 0 t cos  kˆ + 0 jˆ  2 0 22 0 2 0 tw||    22 00 tw1||   Ans. Method : 2 (x axis is moving) : Here we take line AB along x dirn . jˆtiˆwW 00A–P    2 0 2 0A–P w t 1w|W|      jˆ dt jˆd t dt iˆd w dt wd 000 A–P     Here 0 dt jˆd  But dt iˆd =  t kˆ  Then kˆtkˆ dt ds dt di 0   = w0  t kˆ +  jˆ   2 1 20 20 tw1||   Ans. y xA 0 w0 w0 z  y x A 0 w0 z P 
  • 36. Compact ISC Physics (XII)30 1.2 The FundamentalsEquation of Dynamcis 1.59: Where F is force due to air which will be constant then. mg – F = mw .... (1). When m mass is taken then F – (m – m) g + (m – m) w .... (ii) From (i) and (ii) : m = w mw2  Ans. 1.60 : Net pulling force = (  m) a  m0 g – k m1 g – k m2 g = (m1 + m2 + m0 ) a  a =           021 210 mmm )m(mk–m g Ans. F. B. D of m2 : m2 a k m g2 T T – k m2 g = m2 a. Put value of a then T = 210 0 mmm mk)(1   m2 g Ans. 1.61 : (a) Pulling force F = m1 g sin  + m2 g sin  – k1 m1 g cos  – k2 m2 g cos . Then acceleration a is : a = 21 2211 mm )mkm(kcosg–m2)(m1sing   .... (i) F. B. D of m1 : N = Normal force between two blocks. m2 g sin  + N + k1 m1 g cos  = m1 a .... (ii) put value of (a) in (ii) : N = 21 2121 mm αcosmm)k–(k  Ans. F mg m F (m – m) g m – m w km g2 m2m1 a km g1 m0 m g0 (b) For minimum value of acceleration will be zero and friction force will at maxm value then 0 = [g sin (m1 + m2 ) – g cos (k1 m1 + k2 m2 )] / m1 +m2  tan  = 21 2211 mm mkmk   a m g sin 1   k m g cos 2 2  k m g cos 1 1  m g sin 2  m 2 m 1 N m g sin 1   k m g cos 1 1  m1
  • 37. 31 1.62 : Upward Journey : We know S = Vt – 2 1 at2 where V = final velocity in this situation Vf = 0 Then  = 2 1 (g sin  + µg cos ) t2 –––– (i) t = Time taken in upward journey. Downward journey : We know S = ut + 2 1 at2 u = initial velocity. Then  = 2 1 (g sin  – µg cos ) (t)2 –– (ii) and u = 0  now : (ii) (i)  = 2 1 cosug–sing cosugsing            µ =           1 1– 2 2 tan  Ans. 1.63 : (a) Starts coming down. m2 g > m1 g sin  + fmax m2 g > m1 g sin  + k m1 g cos   1 2 m m > sin  + k cos  (b) m1 g sin  > m2 g + k m1 g cos   g sin  > 1 2 m m + k cos   1 2 m m < g sin  – k cos  (c) At rest : Friction will be static : g sin  – k cos  < 1 2 m m < sin  + k cos     a v v = 0 f a = (g sin + µ g cos )    a v u = 0 a = (g sin – µg cos )   m 1  m2 m g2 m g sin 1  f = k m gcos m ax 1   m g2 m g sin 1  a fmax m g2 m g sin 1  a fmax
  • 38. Compact ISC Physics (XII)32 1.64: To find tendency of sliding check value of m2 g and m1 g sin  = m1 g sin 30º = m1 g/2  0.5 m1 g  Here m2 g = m1  g = 3 2 m1 g  0.66 m1 g Then m2 g > m1 g sin Block m2 has tendency to move down ward. Then.Pullingforce =m2 g– m1 gsin – k m1 gcos acceleration a= 21 112 mm cosgmk–singm–gm   a = 1 ]cosk–sin–[g   Ans. 1.65 : (a) Before no sliding b/w m1 and m2 : F.B.D. of System : Acceleration of both block will be same. w1 = w2 = w = 2121 mm at mm F    But friction b/w m1 and m2 will be static then. m1 fr fr = m1 [w1 ] = 21 1 mm atm  < k m2 g  t < 1 212 ma )m(mgmk   w1 = w2 = 21 mm at  ––– (i) If t > k m2 g 1 21 ma )m(m  . Sleeping b/w two block will be start then F.B.D. of m2 : m2 F = at km g2 w2  w2 = 2 2 m gkm–at –––(ii) Ans. F.B.D. of m1 : m1 k m g2  w1 = 1 2 m gmk ––––– (iii) Ans. Assume to = 1 212 ma )m(mgmk   t > to : Slope of w2 > Slope of w1 = w2 because of Slope of w2 =         2m a from (ii) [After sliding] Slope of w1 =          21 mm a from (i) [Before sliding] Slope w1 = 0 from (iii) [After sliding] m 1  m2 m g2 m gsin 1  f = k m g cos m ax 1  k Given  m m 1 2 . m2 m1 fr = k m g2 F = at m2 m1 w F = at w t0 t w1 w = w1 2 w2
  • 39. 33 1.66 : F.B.D. of block : ma = mg sin  – k mg cos   a = g sin  – kg cos  Time to reach at bottom : s = ut + 2 1 at2  sec  = 2 1 (g sin  – kg cos ) t2 A R   k = coefficient of friction mg sin   k mg cos  t2 = ]cosk–cos[sing 2 )cosk–(sing sec2 2      t = ]cosk–cos[sing 2 2   –– (i) To minimise t  (sin  cos  – k cos2 ) will be minimum also. Assume. x = sin  cos  – k cos2   Now d dx = 0 – sin  sin  + cos2  + 2 k cos  sin  = 0 cos 2 = – k sin 2 tan 2 = – k 1 Ans. Put value of k :  = 49º Put value of  in equation (i) : tmin = 49]cos0.14–49ºcos49º[sin10 2.102 2   1.0 s. Ans. 1.67 : When block pull up Direction of friction will be downward. F.B.D. of block : N = mg cos  – T sin   fr = k (mg cos  – T sin ). At just sliding: T cos  = mg sin  + k (mg cos  – T sin ) T =   sinkcos cosmgksinmg  Tmin    m k T   m T mg sin  mg mg cos  µN T cos T sin  N (cos +k sin ) min  minimumvalueof cos +k sin = 2 k1  Tmin = 2 k1 )cosk(sinmg  
  • 40. Compact ISC Physics (XII)34 1.68 : (a) At time of breaking off the plane vertical component of F  must be equal to weight mg. Then F sin  = mg = at sin  t = sina mg . Motion equation of block : a1 = Accelration of block. F cos  = m a1  a1 = dt dv m cosat      1t 0 V 0 dtt cosa dVm  2 t αcosa mV 2 1    sina gm 2 1 αcosa mV 22 22  V ==   sina2 cosgm 2 2 Ans. (b)    t 0 V 0 dtt cosa dVm  2 t αcosa mV 2  1.69 : Motion equation :  = aS  3 mg cos  = m a1 a1 = acceleration of block of mass m. a1 = m3 mg cos  = 3 g cos   a1 = 3 g cos as    s 0 v 0 dsascos 3 g dvv  s 0 v 0 2 a assin 3 g 2 v   v2 = a3 g2 sin as  v = assin a3 g2  v = m2 cosa  t2  2 tcos m2 a dt ds      t 0 2 s 0 dtt m2 cosa ds  s = 3 3 x t m2 cosa   s =   sina6 cosgm 32 32 Ans.Ans. 1.70 : Method : 1 Motion of mass 2 m : T – k2mg = 2 mw  T = 2 mw + 2kmg Motion of motor : T – kmg = ma  2 mw + 2 k mg – k mg = ma  a = 2 w – kg Acceleration of 2 m w.r.t. m : a2m – m = 2w – kg + w = 3w – kg  Suppose in time t both will be met then.  = 2 1 (3w – kg) t2  t = kg–3w 2  Ans. m F = at  µ = 0 m F = m g/3  2m w k2mg m a k mgT T kk
  • 41. 35 Method : 2 On system : Tension will be internal force hence k2 mg – k mg = – 2 mw + ma  a = 2w – kg  a2m – m = 3 w – kg then  = 2 1 (3w – kg) t2  t = kg–3w 2  Ans. 1.71: For observer inside elevator : a1–2 = 21 010212 mm wm–wmgm–gm   = 21 012 mm )w(g)m–(m   But in form of vector : a1–car = 21 012 mm )w–g()m–(m   Ans. Acceleration of m1 w. r. t. shaft : a1–shaft = a1–car + acar = 21 012 mm )w–(g)m–(m  + w0    a1–shaft = 21 021112 mm wmmgm)m–(m   Ans. Tension in string : T – m1 g = m1 a1–shft   T = 21 021 mm )w(gmm2   Force applied by pulley on ceiling = 2 T = 21 021 mm )w(gmm4    as vector form: 2T = )w–g( mm mm4 0 21 21   Ans. 1.72: Motion of body (2) : mg – T/2 =  ma  2 mg – T = 2 ma .... (i) Motion of body (1): T – mg sin  = m a/2 .... (ii) from (1) and (ii) : ]1[ ]sin–[22g    Ans. 1.73 : Equationof motion : T = m0        2 aa 21 .... (i) m1 g = T/2 = m1 a1 .... (ii) m2 g – T/2 = m2 a2 .... (iii) from(i), (ii) and(iii): a1 = )m(mmmm g).m–(mmmm4 21021 21021   Ans. m g1 m1 T T T m2 m g2 2T shaft w0  m mg sin  a/2 T T/2 a m mg  T/2 T/2 m2 m1 a1 mg m g2 m0 T a + a1 2 a2 2
  • 42. Compact ISC Physics (XII)36 1.74: Motion equation on system: Mg – mg = M a1 + m a2 .... (i) Motion equation of m : fr – mg = ma2 .... (ii) Since length of rod is  then. 2 1  (a1 + a2 ) t2 .... (iii). From (i), (ii) and (iii) : fr = 2 tm)–(M mm  Ans. 1.75:  = 100 cm – T + mg = m a1 .... (i) + 2T mg = m 2 a1 .... (ii) from (i) and (ii) : a1 = 4 g2)(–   arel = 2 a3 1 . Suppose t time is taken then  = 2 1 arel t2  t = g)–(2 4)(   Ans. 1.76 : Motion equations T – mg = ma .... (i)  mg – 2T =  m a/2 .... (ii) from (i) and (ii) : a = 4 2)–(2g   . When body (1) travel h distance then in same time body (2) travel 2h distance in upward dirn using constraint relation. Nowvelocity of body (2) Just before string slack. V2 = 2a (2h). It body (2) travel x distance again then V2 = 2a (2h) = 2gx x = g ah2 . Total hight from ground : 4 = 4 h6 h g ah2    Ans. 1.77: F. B. D. of N sin  = m a2 .... (i) F. B. D. of rod : mg – N cos  = m a1 .... (ii) Constraints: a2 sin = a1 cos  .... (iii) From (i), (ii) and (iii) : a1 =  cot1 g 2 a2 =  cottan g T 2T mg nm T a1  m nmg a 2 1 mg Mg Ma1 m a2 mg 2 mg T a 2T h a 2 N mg a1  a1  a2   m a2 a1  N a2 
  • 43. 37 1.78: F. B. D. of m : mg – KN – T = m a2 .... (i) N = m a1 .... (ii) F. B. D. of wedge : a1 = a2 .... (iv) From (i), (ii), (iii) and (iv) : a1 = m M k2 g kmM2m mg    Ans. mg T m KN M a1 a2 1.79: F.B.D of bodies on frame of wedge: Since system is stationary on frame of wedge hence : mg = kma + ma + kmg  a = k1 k)–(1g  Ans. a2 a1 mg m N TKN 1.80: F.B.D. of block (2) with frame of wedge: At maximum accn w : fr1 will be maxm then fr1 = k [mg cos  + mw sin ]. Since block is under rest with frame of wedge, then equilibrium equation of block along incline. k (mg cos  + mw sin ) + mg sin  = mw cos   w = k–cot )cotk(1g   a m ma mg 2 m N 1 m ma m ma kmg kma mg  mg mw   fr1  2 mg mw w m 1 fr 1.81 : Method : 1 F.B.D. of System a2 = accn of bar w.r.t. incline. Since no force on system in horizontal direction then O = ma1 + m [a1 – a2 cos ] –––– (1) F.B.D. of bar w.r.t. wedge : m2 a1 cos  + m2 g sin  = m2 a2 –––– (ii) from (1) and (2) : a1 =   sinmm cossingm 2 21 2 Ans.
  • 44. Compact ISC Physics (XII)38 Method : 2 F.B.D. of bar : with frame of wedge, bar has zero accn in perpendicular to incline then. N + m2 a1 sin  = m2 g cos  –––– (i) F.B.D. of wedge : N sin  = m1 a1 –––– (ii) from (i) and (ii) : a1 =   sinmm sincosgm 2 21 2  2 m2 1 m1  a2 m2 m1 a1 m a2 1 m2 m g2 Method : 3 F.B.D. of bar with frame of ground observes : Motion equation in perpendicular dirn of incline then : m2 g cos  – N = m2 a1 sin  ––– (i) 1.84: v = 360 km/hr = s m100 3600 1000360   At point A : N – mg = R mv2 N = mg + R mv2 = 70 g + 500 [100]70 2 = 70 g + 500 10010070  = 70 g + 140 g = 210 g = 2.1 kN Ans. At point B : N = R mv2 ––– (i) put value of m, V and R N = 1.5 kN Ans. At point C : N + mg = mv2 /R N = mv2 /R – mg ––– (ii) put value of V, m, R in (ii) N = 0.7 kN Ans. a2 m g2 N   a1 v C v B R A v N mg N m a2 1 m g2 N    N m1 a190 –  N mg
  • 45. 39 1.85: Tangential acceleration (at ) : mg sin  = m at  at = g sin  Radial acceleration (ar ) : Energy conservation : mg  cos  = 2 1 mv2  v = cosg2   ar =  2 v = 2 g cos   anet =  cos4singaa 22 rt 22 anet =g  cos31 2 Now : T – mg cos  =  2 mv = 2 mg cos   T = 3 mg cos  Ans. (b) Component of velocity in y dirn: vy = v sin  vy = cosg2  sin   v2 y = 2 g  cos  sin2  For vy maximum v2 y will be maximum. Then x = cos  sin2  will be maximum. d dx = 0 = 2 cos2  sin  – sin3  = 0  2 cos2  = sin2   tan  = 2  sin  = 3 2 cos  = 3 1  v2 y = 2 g  3 2 3 1   33 g4 vmax y    T = 3 mg cos  = 3 mg       3 1 = mg 3 Ans. (c) If no acceliration in y direction then. ar cos  = at sin  2 g cos2  = g sin2   tan  = 2  cos  = 3 1 Ans. 1.86 : Extreme position : Only tangential acceleration is prerent at extreme position. at = g sin  Lowest Position : Energy conservation : mg [ –  cos ] = 2 1 m v2  v2 = 2 g  (1 – cos )  ar =  2 v = 2 g (1 – cos ) A/C condition : ar = at  g sin  = 2 g (1 – cos ) sin  + 2 cos  = 2  cos  = 5 3   = 53º Ans. m T  mg v  v y dirn.  at  ar   mgv
  • 46. Compact ISC Physics (XII)40 1.87: Particle will break off sphere when normal reaction will be zero. mg cos  = R mv2  v2 = Rg cos . Energy conservation : mgR (1 – cos ) = 2 1 mv2 mgR (1 – cos ) = 2 1 mRg cos   1 – cos  = 2 cos   cos  = 3 2  2 cos3  = 1  v2 = Rg       3 2  v = 3 Rg2 Ans. 1.88: Top view : Spring force = F =  N = normal reaction on sleeve. Since no acceleration in tangential direction. N sin  =    cos  ––– (i). Equation in radial direction: N cos  +   sin  = m r w2 = m ( + ) cosec  w2 from (i):   sin cosx  (cos ) +   sin  = m ( + ) cosec  (w2 )  x   = m  + m   w2   = 2 mw–x m  Ans. A A v mg R R   N w  r v   l  w  1.89:k = k0 =       R r –1 friction coefficient. Suppose cyclist at radius of r. then friction provide centripital force to motion on circular path. Then where kmg = friction force. k0 r mv mg R r –1 2        v2 = k0 g         R r –r 2 . To maximum value of v : x = R r –r 2 will be maxm. Then dr dx = 0  0 R 2r –1   r = 2 R  4 Rgk 4 R – 2 R gkV 0 0 2 max         Vmax = gRk 2 1 0 Ans.Ans. O R r kmg mv /r2
  • 47. 41 1.90: Tangential and radial both acceleration is only provided by friction because friction is acting as external force. Then maximum value of friction = k mg. Velocity of car after d distance travel. v2 = 2 w d. Then ar = Radial acceleration = R dw2 R v2     at = Tangential acceleration = w   anet = 2 2 2 2 R 4d 1ww R d2w          Fnet = m w 2 2 R 4d 1 = k mg Squaring :          2 2 2 R 4d 1w = k2 g2  d = 1– w kg 2 R 2          Ans. 1.91 : y = a sin  α x  k = frictioncoefficient. Centripital force = R vm 2 and centripital force will be provided by friction. At limiting condition : mgk R vm 2  v2  k Rg. For v maximum  R willbe minimum.And weknow : speed is constant also we are secing that radius of curvature will be minimum at maximum point of curve then. ay = 2 2 2 2 av dt yd   sin  α x . At maximum value of curve : sin α x = 1  ay = 2 2 α av R = av αv a v 2 22 y 2  R = a 2  . Then v2 g a α k 2    v a kg  Ans.Ans. 1.92: F.B.D. of differential element of length dl. Equation of motion : 2T sin  – N cos  = (dm) Rw2 ––– (i)  N sin  = (dm) g put value of N in (i) : 2 T  – (dm) g cot  = (dm) Rw2 2T R v /R2 w y x y x v ay mg N w     T T (dm) N  g T T  = very small angle. sin = 
  • 48. Compact ISC Physics (XII)42  – R2 m  (R 2 ) g cot  = (R 2 ) R2 m  Rw2  T –     2 wRm 2 cotgm 2 T = 2 m [Rw2 + g cot ]  T = 2 gm          g Rw cot 2 Ans. 1.93 : 1 2 m m = 0   T1 – m1 g = m1 a ––– (i)  m2 g – T2 = m2 a ––– (ii) Relation between T1 and T2 : (T + dT) sin 2 d + T sin 2 d = dN Td = dN  dfr = µ dN = µ Td ––––– (i) Since  is very small. sin d  d  cos d  1 In horizontal direction : (T + dT) cos 2 d – T cos 2 d = dfr dT = dfr ––– (i)  dT = µ T d     0 T T dµ T dT 2 1   n (T2 – T1 ) = µ  T2 = T1 eµ ––– (iii) from (i) and (ii) : a)(gm a)–(gm T T 1 2 1 2   from (iii) :   µ 1 2 e T T  Then eµ =               ag a–g ag a–g m m 1 2 ––– (iv). Since pulley is fixed : Before skiding a = 0   = 0  eµ = 0  µ =  1 n 0 (b) from equaiton (iv) : en0 =         ag a–g  ag a–g0      a = g 0 0 n ]–[n   Ans. T1T2 m1m2 m g1 m g2 a d T + dT dN dfr T y x
  • 49. 43 1.94: Hence velocity along yaxis is not responsible for circular motion only velocity along Z-axis is responsible. Then N = R Vm 2 Z VZ = V0 cos  N = R cosVm 22 0  1.95: x = a sin wt  ax = 2 2 dt xd = – aw2 sin wt  y = b cos wt  ay = 2 2 dt yd = – bw2 cos wt  jˆayiˆaa xnet   = jˆwtcoswb–iˆsin wtwa– 22  ]jˆwtcosbiˆsin wt[amw–F 2    jˆwtcosbiˆsin wtajˆyiˆxr    2 wrm–F   where r  =positionvectorofparticle.F = mw2 22 wt)cos(bsin wt)(a   F = mw2  22 yx  Ans. 1.96 : Method : 1 (Impluse equation) (a) We know P   = Impluse in time t =  t 0 dtF =  t 0 dtmg– P   = – mg t Ans.  v0 x R Z O y V0 w  x y g V0 m (b) T = g sinV2 0   g.V0  = V0 g cos (90 + )  g sinV2 mgP 0    – g.V0  = V0 g sin   = 2 m V0 sin   V0 sin  = g g.V– 0   g g.V 2mP 0    Ans. Method : 2 (Kinematic) (a) jˆsinViˆcosVV 000    jˆgt)–sin(ViˆcosVV 00f   where fV  = final velocity vector then 0f Vm–VmP    jˆtgm–P   Ans. V0  y x V0  90+ g
  • 50. Compact ISC Physics (XII)44 (b) T = g sinV2 0   jˆ g sinV2 gm–P 0     P   = – 2 m V0 sin  jˆ From method : 1 : V0 sin  = g g.V– 0   jˆ g g.Vm2 P 0    Ans. 1.97 : m – t)(TtaF   (a) wmF    w  =linearacceleration. ]– tt[ m a w dt Vd 2                 t 0 2 t 0 V 0 dtt–dtt m a Vd             3 – 2 t m a V 32  f 3 P 6 a Vm     Ans. (b) ]– tt[ m a w 2              t 0 2 t 0 V 0 dtt–dtt m a Vd             3 t – 2 t m a V 32             0 3 0 2S 0 dt 3 t –dt 2 t m a dS             12 – 6 . m a S 43  12m a S 4    S = m12 a 4  Ans. 1.98: sin wtFF 0    a = dt dV sin wt m F0     t 0 0 V 0 dtsin wt m F dV  V = t 0 0 wtcos mw F – V = wt]cos–[1 mw F0    t 0 0 S 0 dtwt]cos–[1 mw F dS  S =       sin wt w 1 –t mw F0  S = 2 0 mw F [tw – sin wt] distance distance will be increasing function w.r.t. time then dt dS = (+)ive or > 0  w – w cos wt > 0  cos wt < 1 0 < wt <  2 < wt < 3  4 < wt < 5  wt   
  • 51. 45 1.99: F = F0 cos wt  m F a dt dv 0 cos wt    t 0 0 0 0 dtwtcos m F dV 0 = wm F0 sin wt  sin wt = 0  wt =   t = w π Ans. Now :   t 0 0 0 0 wtcos m F dV  V = wm F0 sin wt .... (i)    t 0 0 s 0 dtsin wt wm F ds  S = wt)cos–(1 wm F– 2 0 at t = w π s = 2 0 wm 2F velocity will be maximum when sin wt = 1  Vmax = wm F0 Ans. 1.100 : (a) F = – rV  V m –r dt dV     t 0 V V dt m r– V dV 0  t m r –Vn V V0    V = V0 e–r/m t  V will be zero when t  Ans. (b) a = – m r V = ds dv v    s 0 V V dsv m r –dVv 0 V – V0 = m r – S  V = V0 m r – S Total distance travel by particle is S1 then final velocity = 0  0 = V0 m r– S1  S1 = r Vm 0 Ans. (c)  0V = VV0 – m r S2  S2 =         1– r Vm 0 –––– (i)  Also  0V = VV0 2tm r– e t2 = n r m  –––– (i)  <V> =    n 1)–(V t S 0 2 2  Ans. 1.101 : F  v2  F = – kv2  a = m kv– 2    t 0 V V 2 dt m k– v dv 0  m kt– V 1– V V0   m kt V 1 V 1 – 0   t k m VV V–V 0 0         ––– (i) V0 V h
  • 52. Compact ISC Physics (XII)46 Also a = dx dv v m kv– 2    v dv = m dxkv– 2    h 0 V V dxk– V dvm 0  m n 0V V = – kh k = h m n 0V V put in (i) : t = V V n h VV V–V 00 0        Ans. 1.102: Suppose at time t distance travel is x then F = mg sin  – ax mg cos   mw = mg sin  – ax mg cos  where w = acceleration of block. w = g sin  – ax g cos  .... (i) v = g sin  – ax g cos   dx dvv = g sin  – a x g cos     mx 0 0 0 dxα)cosaxg–αsin(gdvv  0 = (g sin ) x – 2 cosgxa 2  x =   cosga sing2 x = a 2 tan . Velocity will be maximum when dt dv = 0 = acceleration  g sin  = ax g cos   x = a 1 tan   now    tanay 0 maxv 0 dxα)cosgxa–αsin(gdvv    maxV = g sin  tan a 1 2 cosg2 –tan a 1                  VVmax = a g αcos αsin a g 2  sin  tan  Ans. 1.103: K = friction coefficient  Block start sliding when. F = at1 = k m g  t1 = a gmk . Assuming over time start from block start sliding then. Suppose acceleration of block is w then. mw = at – kmg = a (t1 + t) – kmg = a t  w = m a  t  2 t 0 v 0 t 2m a Vt)(dt( m a dV     t)(dt 2m a ds t 0 2 s 0     S = 6m a (t)3 = 6m a (t – t1 )3 Ans.  mg sin  K mg cos  k= ax t = 0 t = t1 t = t – t1 t = t mK F = at
  • 53. 47 1.104 : h v = 0 V0 Upward journey : mg F = Kv 2 V0 Fnet = mg + kv2  a = g + m kv 2     m kvmg ds dvv – 2 mv dv = (mg – kv2 ) ds    0 v h 0 2 0 ds– kvmg dvmv  h = mg mgKV n 2k m 2 0   .... (i) Downward Journey : Fnet = mg – kv2 mg k v 2 v  a = m kv–mg 2 = v dv/ds  mg mgKV n 2k m hds kv–mg dvmv 2 0 v 0 h 0 2      2 2 0 kv–mg mg n 2k m mg mgKV n 2k m     v = mg KV 1 v 2 0 0  Ans. 1.105 :(a) Position vector of particle : r  = r cos  iˆ + r sin  jˆ  At time t :  = wt  )jˆsiniˆ(cosFrˆFF    ]jˆsiniˆ[cos m F a      t 0 t 0 V 0 dt(sin wt) m F iˆdtwt)(cos m F vd    ]jˆwt)cos–(1iˆ[sin wt mw F V    speed = 22 wt)cos–(1(sin wt) mw F |V|    Speed = 2 wtsin mw 2F Ans. (b) Distance is calculated by speed. Then 2 wtsin mw 2F V dt ds   dt2 wtsin mw 2F ds t 0 s 0   S = Distance S = – t 0 2 2 wt cos2 mw 2F  S =       2 wt cos–1 mw F4 2 .... (ii) velocity of particle  r w m F 0
  • 54. Compact ISC Physics (XII)48 will be zero : 0 = 0 2 wtsin 2 wtsin mw 2F   put value of t = w 2π in (ii) S = 2 mw F4 (1 – cos )  S = 2 mw F8  Average speed = /w2 8F/mw Time Distance 2   Average speed = mw 4F  Ans. 1.106: K = tan  = friction coefficient  When = W = net tangential acceleration/ Wx = Acceleration in x direction. Now W = m cosmgk–cossinmg  = g (sin  cos  – K cos ) = g [sin  cos  – sin ]  W = g sin  (cos  – 1)... (i) Acceleration in x dirn: Wx = m coscosmgk–sinmg   WWx = g sin  [1 – cos ] .... (ii) From (i) and (ii) : W = –Wx  dt Vd – dt Vd xτ    V = –Vx + cos  at t = 0 V = V0 and Vx = 0  V = – Vx + V0 .... (iii) Then const = V0  Also Vx = V cos  .... (iv) From (iii) and (iv) : V =  cos1 V0 Ans. 1.107: Tangential force on system is F then  F    sing(dm) =   sing)dR( = Rg    t 0 dsin   = R f   in = 0 = –  Rg f cos    f = R   f = R  F = Rg   R cos–1   a = m gR   Rcos–1  = x gR   R cos–1   a =  Rg   R cos–1   v w mg sin  K mg cos    x f  y  R d dm= R d  x (dm)g F   d dm 
  • 55. 49 1.108: At time of break off. normal reaction will be zero. Where mw0 = Psuedo force because observer at sphere. R mV2 0 = mg cos  – m w0 sin   V2 0 = Rg cos  – R w0 sin  .... (i) Energy equation: Wall forces = Kf – Ki  Wpsuedo + Wmg = Kf – Ki m w0 R sin  + mg [R – R cos  ] = 2 1 m V2 0 – 0  V2 0 = 2w0 R sin  + 2 g R [1 – cos  ].... (ii) From (i) and (ii) : V2 0 = 2R         R V– 2 0 + 2 g R V2 0 = 2 g 3 R  V0 = 3 gR  cos                        g w 13 g wg5 3 w 0 00 Ans. 1.109 : Given F n r 1    F = n r K Where K = Constannt. A particle is said to steady if we displace particle away from origin, particle want to regain its position and also it we displaced particle toward origin, particle want to regain its original position. Then. At steady state (mean position) : F = r Vm 2 0 Then r Vm r K 2 0 n  .... (i) It we increases r then. F – r Vm 2 > 0  K r–n – mV2 r–1 > 0  Differentiate both side with respect to r for small increase of r: –n k r–n–1 dr + mV2 r–2 dr > 0 and r 1 r Vm r 1 r Kn– 2 0 n                     > 0 .... (ii)  From (i) and (ii) n < 1 Ans. w = acceleration0 R R0 0 mw0 V0 mg R O F v0 r r 0 v
  • 56. Compact ISC Physics (XII)50 1.110: At steady state: mg sin  = m (R sin ) w2 cos   cos  = 2 wR g . Case (i) : If Rw2 > g then cos 2 wR g is defined and only one equilibrium position will be exist and will be steady. Case (ii) : If Rw2 < g then only 2 wR g = 0º will be equilibrium position because tangential fore along arch of ring due to mg will be greater than that of pseudo force and object will come at lower position of ring. R N Y mg m (R sin ) w 2 Y 90–   