SlideShare uma empresa Scribd logo
1 de 6
Baixar para ler offline
REMEMBER VI
                                         COD. 955

                                                                  b) todas as pessoas lentas em aprender não freqüentam esta
01. Qual dos valores a seguir não equivale a 0,000 000 357?       escola
a) 3,75 . 10 -7    b) 3 ¾ . 10 -7           c) 375 . 10 -9        c) algumas pessoas lentas em aprender freqüentam esta
              -7                         –6
d) 3 / 8 . 10              e) 3 / 8 . 10                          escola
                                                                  d) algumas pessoas lentas em aprender não freqüentam esta
02. O menor ângulo formado pelos ponteiros de um relógio          escola
quando são 12h e 25 min é:                                        e) nenhuma pessoa lenta em aprender freqüenta esta escola
a) 132°30’ b) 137°30’      c) 150° d) 137°32’ e) 137°
                                                                  12. A solução de 5x x 1     x x 1 1 2 é:
03. Se cada número em um conjunto de dez números é
aumentado de 20 unidades, então a média aritmética dos dez        a) { 2,1 } b) { 2/3 } c) { 2 } d) { 1 } e) { 0 }
números originais:
a) permanece a mesma b) é aumentada em 20 unidades
c) é aumentada em 200 unidades      d) é aumentada em 10                           aa4 4b b4
unidades                e) é aumentada em 2 unidades              13. A fração     aa2 2b b2
                                                                                               é igual a:
                                                                       a6     b6
                                                                  a) a 6 b              b) a a2 2 b b2      c) a a2  b b2
                     1         1
04. A igualdade     xx1
                          1   xx2
                                    é satisfeita:                 d) a 2  b 2          d) a 2 2 b 2
a) por nenhum valor real de x b) por xx1 ou xx2
c) apenas x x 1 d) apenas x x 2 e) apenas x x 0                   14. O comprimento de um retângulo R é 10% maior que o
                                                                  lado de um quadrado Q. A largura do retângulo é 10%
05. y varia com o inverso do quadrado de x. Quando y = 16,        menor que o lado do quadrado. A razão entre as áreas de R e
x = 1. Quando x = 8, y é igual a:                                 Q é:
a) 2     b) 128      c) 64        d) 1 / 4  e) 1024               a) 99 : 100                b) 101 : 100            c) 1 : 1
                                                                  d) 199 : 200               e) 201 : 200
06. Um feirante compra certa quantidade de laranjas à base
de 3 por 10 centavos, e igual quantidade à base de 5 por 20       15. A razão entre as áreas de dois círculos concêntricos é de
centavos. Para não ter lucro nem prejuízo, ele deve vender à      1: 3. Se o raio do círculo menor é r, então a diferença entre
base de:                                                          os raios é aproximadamente:
a) 8 por R$ 0,30      b) 3 por R$ 0,11      c) 5 por R$ 0,18      a) 0,41 r    b) 0,73 c) 0,75      d) 0,73 r   e) 0,75 r
d) 11 por R$ 0,40     e) 13 por R$ 0,50
                                                                  16. O valor de 3 / (a + b) quando a = 4 e b = -4 é:
07. Se um trabalhador recebe um corte de 20% no seu               a) 3          b) 3 / 8     c) 0    d) qualquer número finito
salário, ele só vai readquirir o salário original se tiver um     e) não definida
aumento de:
a) 20%      b) 25% c) 22,5% d) R$ 20,00           e) R$25,00      17. Se log x – 5 log 3 = -2, então x é igual a:
                                                                  a) 1,25 b) 0,81 c) 2,43         d) 0,8 e) 0,8 ou 1,25
08. O gráfico de x² - 4y² = 0 é:
a) é uma hipérbole que corta apenas o eixo dos x                  18. O discriminante da equação x² + 2x√3 + 3 = 0 é zero.
b) é uma hipérbole que corta apenas o eixo dos y                  Portanto, suas raízes são:
c) é uma hipérbole que não corta nenhum dos eixos                 a) reais e iguais       b) racionais e iguais c) racionais e
d) é um par de retas                                              distintas     d) irracionais e distintas      e) imaginárias
e) não existe
                                                                  19. Dois números cuja soma é 6 cujo valor absoluto da
09. Um círculo é inscrito em um ∆ de lados 8, 15 e 17. O          diferença é 8 são as raízes da equação:
raio do círculo é:                                                a) x² - 6x + 7 = 0     b) x² - 6x - 7 = 0 c) x² + 6x – 8 = 0
a) 6     b) 2      c) 5 d) 3   e) 7                               d) x² - 6x + 8 = 0    e) x² + 6x – 7 = 0

10. Quantas horas demoram um trem que viaja a velocidade          20. A expressão √25 – t² +5 se anula para:
média de 40 km/h, para que percorra a quilômetros se              a) em nenhum valor real ou imaginário de t
durante o trajeto ele faz n paradas de m minutos cada uma?        b) em nenhum valor real de t, mas para alguns valores
a) (3 a + 2mn) / 120       b) 3 a + 2mn     c) (3 a + 2mn) / 12   imaginários        c) em nenhum valor imaginário de t, mas
d) (a + mn) / 40           e) (a + 40 mn) / 40                    para alguns valores reais d) t = 0      e) t = ±5
11. A negação da afirmação “Nenhuma pessoa lenta em               21. Seja c a hipotenusa de um ∆ retângulo e A sua área.
aprender freqüenta esta escola” é:                                Então altura relativa à hipotenusa mede:
a) todas as pessoas lentas em aprender freqüentam esta            a) A / c      b) 2A / c     c) A / 2c   d) A² / c e) A / c²
escola
                                                                  22. Para pagamento de R$ 10.000,00 um cliente pode optar
                                                                  entre três descontos sucessivos de 20%, 20% e 10% ou



                                                                                                                             1
então, três descontos sucessivos de 40%, 5% e 5%                                       b) eles formam uma progressão geométrica
Escolhendo a proposta mais vantajosa ele economiza:                                    c) eles são distintos  d) eles são números negativos
a) absolutamente nada      b) R$ 400,00      c) R$ 330,00                              e) apenas b é negativo e a e c são positivos
d) R$ 345,00          e) R$ 360,00
                                                                                       33. Carine inicia uma viagem quando os ponteiros do
23. Ao rever o cálculo de moedas do caixa, o atendente                                 relógio estão sobrepostos (apontam para a mesma direção e
contou q moedas de 25 centavos, d de 10 centavos, n de 5 e                             sentido) entre 8h e 9h da manhã. Ela chega a seu destino
c moedas de 1 centavo. Mais tarde Mais tarde ele descobre                              entre 2h e 3h da tarde quando os ponteiros do relógio
que a moedas de 5 centavos foram contadas como moedas                                  formam um ângulo de 180°. O tempo de duração da viagem
de 25 centavos e que x moedas de 10 centavos, contadas                                 é:
como sendo de 1 centavo. Para corrigir o total o atendente                             a) 6h    b) 6h 43 7/11 min c) 5h 16 4/11 min d) 6h 30 min
deve:                                                                                  e) nra
a) deixar o total inalterado b) subtrair 11 centavos
c) subtrair 11x centavos     d) somar 11 x centavos                                    34. Uma estaca de 6 cm e outra
e) somar x centavos                                                                    de 18 cm de diâmetro dão
                                                                                       colocadas lado a lado como
24. A função 4x² - 12x – 1:                                                            mostra a figura, e amarradas
a) sempre cresce à medida que x cresce                                                 com um arame. O menor
 b) sempre decresce à medida que x decresce                                            comprimento de arame que
c) não se pode anular                                                                  contorna as duas estacas em cm é:
d) tem um valor máximo quando x é negativo                                             a) 12√3 + 163          b) 12√3 + 73            c) 12√3 + 143
e) tem um valor mínimo em -10.                                                         d) 12 + 15d               e) 24

25. Um dos fatores de x4 + 2x² + 9 è :                                                 35.Três meninos concordam em dividir um saco de bolinhas
a) x² + 3  b) x + 1    c) x² - 3   d) x² -2x – 3                       e)n.r.a.        de gude da seguinte maneira: o primeiro fica com a metade
                                                                                       das bolinhas mais uma. O segundo fica com um terço das
26. Édio tem uma casa que vale R$ 10.000,00. Ele vende a                               restantes. O terceiro descobre que desta forma ele fica com o
casa para Camila com 10% de lucro. Camila vende a casa de                              dobro das bolas do segundo. O número de bolas é:
volta para Édio com 10% de prejuízo. Então:                                            a) 8 ou 38 b) não podem ser deduzidos por esses dados
a) Édio nem perde nem ganha            b) Édio lucra R$                                c) 20 ou 26        d) 14 ou 32      e) nra
100,00
c) Édio lucra R$ 1.000,00            d) Camila perde R$                                36. Um tanque de óleo cilíndrico, em posição horizontal,
100,00                                                                                 tem um comprimento interno de 10m e um diâmetro interno
e) Édio lucra R$ 1.100,00                                                              de 6m. Se a superfície retangular do óleo dentro do tanque
                                                                                       tem área de 40m², então a profundidade do óleo, em metros,
27. Se r e s são raízes da equação x² - px + q = 0 então r² +                          é:
s² é igual a:                                                                          a) √5   b) 2√5     c) 3 - √5 d) 3 + √5     e) 3 ± √5
a) p² + 2q     b) p² - 2q   c) p² + q²   d) p² - q² e) p²
                                                                                       37. Um número de três dígitos tem, da esquerda para a
28. Em um mesmo sistema de eixos são traçados o gráfico                                direita, os dígitos h, t e u, sendo h > u. Quando o número
de y = ax² + bx + c e o gráfico da função obtida substituindo                          com os dígitos em posição reversa é subtraído do número
x por –x na função dada. Se b x0 e c 0 0 então esses gráficos                         original, o dígito da unidade da diferença é 4. Então os dois
interceptam-se:                                                                        dígitos seguintes, da direita para a esquerda, são:
a) em dois pontos, um no eixo dos x e um no eixo dos y                                 a) 5 e 9        b) 9 e 5     c) impossível calcular  d) 5 e 4
b) em um ponto localizado fora dos eixos                                               e) 4 e 5
c) somente na origem d) em um ponto no eixo dos x
e) em um ponto no eixo dos y                                                           38. São dados quatro números inteiros. Escolha três inteiros
                                                                                       quaisquer dentre eles e calcule a média aritmética destes,
29. Na figura, PA é                                                                    depois some este resultado ao quarto inteiro. Desta forma se
tangente           ao                                                                  consegue os números 29, 23, 21 e 17. Um dos números
semicírculo SAR;                                                                       originais é:
PB é tangente ao                                                                       a) 19 b) 21       c) 23     d) 20      e) 17
semicírculo     RTB;
SRT é um segmento                                                                      39. Se y = x² + px + q, então se o menor valor possível de y
de reta e os arcos                                                                     é zero, q deve então valer:
estão indicados na                                                                     a) 0     b) p² / 4   c) p / 2    d) – p / 2 e) p²/4 - q
figura. O ângulo APB
mede:
                                                                                       40. Se b 4 d, então as frações ax + b     e b são distintas se:
a) ½ (a – b)       b) ½ (a + b)                          c) (c - a) - (d – b)
                                                                                                                        cx + d     d
d) a – b              e) a + b
                                                                                       a) a = c = 1 e x a 0     b) a = b = 0      c) a = c = 0
30. Cada uma das equações 3x 2 2 2 2 25;;2x x 112 2 2x x 112 e x 2 2 7 7 x x 1 têm :   d) x = 0           e) ad = bc
 a) duas raízes inteiras                b) nenhuma raíz maior que 3
 c) nenhuma raíz nula                    d) apenas uma raíz                            41. Um trem partindo da cidade A até a cidade B encontra
 e) uma raíz negativa e ooutra positiva                                                um acidente depois de 1 hora. Se ele parasse por meia hora e
                                                                                       depois prosseguisse a 4 / 5 da sua velocidade usual, chegaria
31. Um ∆ eqüilátero de lado 2 é dividido em um triângulo e                             à cidade B com 2 horas de atraso. Se o trem tivesse
em um trapézio por uma linha paralela a um de seus lados.                              percorrido 80 km mais antes do acidente, teria chegado
Se a área do trapézio é igual à metade da área do triângulo                            atrasado uma hora apenas. A velocidade usual do trem, em
original, o comprimento da mediana do trapézio é:                                      km/h, é:
a) √6 / 2      b) √2       c) 2 + √2       d) (2 + √2) / 2                             a) 20    b) 30   c) 40     d) 40     e) 50
e) (2√3 - √6) / 2

32. Se o discriminante de ax² + 2bx + c = 0 é zero, então                              42. Se a, b e c são inteiros positivos, os radicais √(a + b/c) e
outra afirmação verdadeira sobre a, b e c é:                                           a.√(b /c) são iguais se e somente se:
a) eles formam uma progressão aritmética                                               a) a = b = c = 1     b) a = b e c = a = 1 c) c = [b(a²-1)] / a



                                                                                                                                                     2
d) a = b e c qualquer valor      e) a = b e c = a – 1.          a) 30 km/h       b) 10 km/h       c) 5 km/h      d) 15 km/h
43. Os pares de valores x e y que são soluções comuns das          01.D         11.C         21.B         31.D      41.A
equações y = (x + 1)² e xy + y = 1 são:                            02.B         12.D         22.D         32.B      42.C
a) 3 pares reais b) 4 pares reais c) 4 pares imaginários
d) 2 pares reais e 2 pares imaginários                             03.B         13.C         23.C         33.A      43.E
e) 1 par real e 2 pares imaginários.                               04.E         14.A         24.E         34.C      44.A

44. Em um círculo de centro O é traçado uma corda AB de            05.D         15.D         25.E         35.B      45.A
tal forma que BC é igual ao raio do círculo. CO é traçada e        06.B         16.E         26.E         36.E      46.B
estendida até D. CO é traçada e estendida até D e AO é             07.B         17.C         27.B         37.B      47.C
traçada. Qual das expressões abaixo expressa a relação entre
x e y?                                                             08.D         18.A         28.E         38.B      48.B
a) x = 3y                                                          09.D         19.B         29.E         39.B      49.C
b) x = 2y
c) x = 60°                                                         10.A         20.A         30.B         40.A      50.C
d) não existe                                                   e) 3 km /h.
nenhuma
relação especial
entre x e y
e) x = 2y ou x =
3y, dependendo do comprimento de AB.

45.Dadas uma série geométrica com primeiro termo não            GABARITO
nulos e razão não nula e uma série aritmética com primeiro
termo nulo. É formada a 3ª seqüência 1, 1, 2, . . . pela soma   01(D) Trata-se de uma questão que envolve números
dos termos correspondentes das duas séries. A soma dos dez      decimais. Temos então que:
primeiros termos da terceira seqüência é:                       3/8 = 0,375 e que 3/8x10-6 = 0,000 000 375 ∴ (D) é a
a) 978     b) 557     c) 467       d) 1 068       e) n.r.a.     alternativa correta.

46. Os gráficos de 2x + 3y – 6 = 0; 4x – 3y – 6 = 0; x = 2 e    02(B) Em 25 minutos temos os deslocamentos:
y = 2 / 3 se interceptam em:                                    O ponteiro Grande (dos minutos) desloca-se: 5 x 30° = 150°.
a) 6 pontos b) 1 ponto       c) 2 pontos   d) nenhum ponto      O ponteiro pequeno (das horas) desloca-se: 1/12 do
e) em um número não limitado de pontos                          deslocamento do ponteiro dos minutos = 1/12 (150°) = 12,5°
                                                                ∴ ângulo = 150° - 12,5° = 137,5° = 137°30’.
47. As expressões a + bc e (a + b) (a + c) são:
a) sempre iguais b) nunca iguais c) iguais quando a + b
+c=1          d) iguais a + b + c = 0       e) iguais somente   03(B) Seja x1, x2, . . . , xn os n números cuja média
quando a = b = c = 0.                                           aritmética é A. Então A = (x1 + x2 + . . . + xn) / n.
                                                                Os n números aumentados de 20 unidades cada um terão
48. Dado um ∆                                                   uma média aritmética M tal que:
ABC            com                                              M = [(x1 + 20) + (x2 + 20) + . . . + (xn + 20) ] / n =
medianas AB, BF e                                                   = (x1 + x2 + . . . + xn) / n + ( 20 + 20 + ... + 20 ) / n =
CD;     com     FH                                                  = A + 20.n / n = A + 20. Portanto B é a alternativa certa.
paralela a AF e de
igual comprimento.                                              04(E) Multiplicando os dois membros da equação por (x –
Traça-se BH e HE                                                1)(x – 2), temos : 2x – 2 = x – 2 ∴ x = 0.
e estende-se FE até
encontrar BH em G. Qual das afirmações a seguir não é           05(D) Temos: y / (1/x²) = k ∴ y = k / x².
necessariamente correta?                                        Para y = 16 e x = 1 → 16 = k / 1² → k = 16.
a) AEHF é um paralelogramo b) HE = HG c) BH = DC                Então para x = 8 temos: y = 16 / 8² = 1 / 4.
d) FG = ¾ AB        e) FG é a mediana do ∆BGF
                                                                06(B) Considerando as duas compras temos dois preços:
49. Os gráficos de y = x² - 4 e y = 2x se interceptam em:       1ª) Compra de n laranjas a 3 por R$ 0,10 →(10 / 3) e vender
                        x–2                                     por x, temos: n.x = (10 / 3) n
a) um ponto cuja abscissa é 2            b) um ponto cuja       2ª) Compra de n laranjas a 5 por R$ 0,20 →(20 / 5) e vender
abscissa é 0                                                    por x, temos: n.x = (20 / 5) n.
 c) nenhum ponto           d) dois pontos distintos    e)       Para o cálculo da venda: 1ª + 2ª → 2n. x = 10n /3 + 20n /5
dois pontos distintos                                           ∴ x = 11 / 3, ou seja, 3 laranjas por R$ 0,11.

50.       Para                                                  07(B) Considere Sn (novo salário) e S (salário original).
poder                                                           Temos que: Sn = S – 20%S = S – 1/5 S = 4/5 S ∴
ultrapassar B                                                   S = 5/4 Sn. O aumento necessário é Sn / 4, ou seja, 25% de
que corre a                                                     Sn.
40 Km/h em
uma estrada                                                     08(D) Fatorando o dado, temos:
de       pista                                                   x² - 4y² = (x + 2y)(x – 2y) = 0 ∴ x + 2y = 0 e x – 2y = 0.
simples,    A                                                   Cada uma dessas equações representa uma reta.
que corre a
50 km/h deve adiantar-se a B 8m. Ao mesmo tempo                 09(D) O triângulo de lados 8, 15 e 17 é retângulo. Para
C, que corre em direção a A com velocidade de 50                qualquer ∆ retângulo pode-se mostrar (veja REMEMBER I
                                                                – Problema 35) que: a – r + b – r = c ∴ 2r = a + b – c = 8 +
km/h. Se B e C mantêm suas velocidades, para poder
ultrapassar com segurança A deverá aumentar sua                 15 – 17 = 6 ∴ r = 3. (Considerar no ∆: c → hipotenusa; a e
velocidade de:                                                  b → catetos e r = raio do círculo inscrito).




                                                                                                                              3
a- b=8            a - b = - 8 cujas soluções são: a= -1 e
                                                                   b = 7 . Então a equação do 2º grau que admite estas raízes
                                                                   em que Soma = 6 e produto das raízes P = -7 é:
10(A) Iniciando com o cálculo do tempo (∆t1) do trem em            x² - 6x – 7 = 0.
velocidade média de 40 km/h ( V = 40 km/h) no percurso de
a km (∆x = a km) → V = ∆x / ∆t1 ∴ ∆t1 = ∆x / V = a / 40            20(A) A equação √ 25 - t² nunca pode ser igual a zero um
horas.                                                             vez que é a soma de um número positivo com um número
Cálculo do tempo das n paradas de m minutos (∆t2):                 não negativo.(Para √ 25 – t² estamos querendo nos referir
∆t2 = (n. m) min = (n. m) / 60 horas.                              somente à raiz positiva). Logo (A) é a opção correta.
Nº. de horas de demora = ∆t1 + ∆t2 = a / 40 + (n.m) / 60 =         21(B)2Como A = ½ h . c ∴ h = 2 a / c.
 ( 3 a + 2mn)/120 .

11(C) A negação consiste em dizer que é falso que “
nenhuma pessoa lenta em aprender freqüenta esta escola”, o
que é o mesmo de dizer: “algumas pessoas lentas em                 22(D) Temos um problema de descontos. Vamos operar
aprender freqüentam esta escola”.                                  cada desconto único da forma D = 1 – (1 – i1)(1 – i2)(1 - i3)
                                                                   onde i1, i2 e i3 representam a taxa centesimal de cada
12(D) Trata-se de uma equação irracional. Não se pode              desconto sucessivo. Vejamos o desconto de cada proposta:
esquecer no final de fazer à verificação para cada raiz.           1ª Proposta: Descontos sucessivos de 20%; 20% e 10%.
A princípio transfere-se √x - 1 para o segundo membro e                  D1 = 1 – (1 – 0,2)(1 – 0,2)(1 – 0,1) =
                                                                             = 1 – (0,8)(0,8)(0,9) = 1 – 0,576 = 0,424 = 42,4%
quadra-se a equação, ou seja:                                      2ª Proposta: Descontos sucessivos de 40%; 5% e 5%.
 5x x 1 1 2 2 x x 1 1quadrando)                                          D2 = 1 – (1 – 0,4)(1 – 0,05)(1 – 0,05)
                                                                            = 1 – (0,6)(0,95)² = 1 – 0,5415 = 0,4585 = 45,85%.
5x x 1 1 2 2 4 x x 1  x x 1 1 4x x 4 4 44 x x 1
                                                                   Verifica-se então que a 2ª proposta é mais vantajosa e temos
1 x x 1 1 1 x x 1 1quadrando-se ss x² ² 2x  1 1 x x 1             como economia em relação a 1ª de:
1 x² ² 3x  2 2 0 0 x x x 1 e x" " 2.                              (D2 – D1). 10.000 = (3,45%). 10.000 = R$ 345,00.
Verificação: Para x x 1 1 5.1 1 1     11 1 1 4       0 0 22      (Veja também outra maneira de resolução modelo
2 2 22VV V x x 1 é raiz.                                           REMEMBER I – problema 22).
           Para x x 2 2 5.2 2 1      22 1 1 9      1 1 44
4 4 22FF F x x 2 não é raiz.Logo a opção certa é a aDD.            23(C) A quantia contada em centavos = 25q + 10c + 5n + c.
                                                                   Valor correto = 25(q – x) + 10(c + x) + 5(n + x) + (c – x).
                                                                   A diferença = -25x + 10x + 5x – x = -11x ∴ 11x centavos
13(C) Usando uma das propriedades dos produtos notáveis,           devem ser subtraídos.
a² - b² = (a + b)(a – b) , temos:
                                                                   24(E) A função y = 4x² -12x -1 possui como gráfico uma
aa4 4b b4           2aa2  b b2 22aa2 2bb2 2
             2                                   2 aa2  b b2 .    parábola com concavidade voltada para cima, pois a = 4 > 0
                                                                   cujo ponto vértice V (xv, yv) = (-b /2a; -∆ / 4 a) ∴ xv = 3/2
aa2 2b b2                  aa2 2bb2
                                                                   = 1,5 e yv = - 10 (mínimo).
14(A) As dimensões do retângulo R são: Comprimento =               (Veja REMEMBER I- Problema 4) .
1,1L e Largura = 0,9L ∴ Áret. = 1,1 . 0,9 = 0,99 L².
A área do quadrado de lado L = Aq. = L². Daí então:                25(E) Trata-se de uma questão sobre complementar
Aret. / Aq = 0,99L² / L² = 0,99 = 99 / 100.                        quadrado perfeito e regra dos produtos notáveis. Fazendo:
                                                                    x4      2x 2  9 9 x4  2x 2  9  4x 2 2 4x 2 2 x 4  6x 2  9 9 4x 2 2
                                                                                                   2
                                                                        2    2       2   22x 2  33 2 22x x2 2 2x 2  3 3 2xxxx 2  3  2x x x
 Área Círc.menor             r2
                    m1 3
                     3     2 R²
                                  ²   1
                                      3
                                          3 R R r 3.
 Área Círc. maior
                                                                        x4       4   9   99x 2 2 2x  333x 2  2x  33.
Então a diferença entre os raios r                                  .        .       .
r R R r r r 3 3r r r                  3 3 1 1 rr1,73 3 111 0,73r
                                                                    x2 2.x2 . 3 3
15(D) Seja R o raio do círculo maior, temos:
                                                                        6x2

16(E) Quando a = 4 e b = -4 temos que: a + b = 0. Logo a
                                                                   26(E) Édio vende com lucro de 10% =
expressão não tem sentido para esses valores, pois não se
                                                                   = 10.000 + 10%.10.000= 10.000 + 1.000 = R$ 11.000,00
divide por zero.
                                                                   Camila vende com prejuízo de 10% sobre preço de compra=
                                                                   = 10.000 – 10%.11.000 = 11.000 – 1.100 = R$ 9.900,00.
logx x 5 log3 3 32 2 logx x log3 5 5 52 2                          A opção correta é (E), pois na transação Édio ganhou:
log x5 5 52 2 243 3 10 02 2 x x 2, 43 (que satisfaz
                 x                                                 11.000 – 9.900 = R$ 1.100,00.
    3
                                                                   (Veja REMEMBER II - Problema 5)
a condição do log x, que é x x 0).
17(E) Na resolução do problema usaremos a propriedade do           27(B) Da equação x² - px + q = 0 temos como coeficientes:
quociente entre logarítmos (log a – log b = log a / b); a          a = 1; b = - p e c = q; como soma das raízes (r e s) : r + s = -
propriedade do expoente (a log b = log b a) e a definição de       b / a = p e como produto: r . s = c / a = q. Para o cálculo de
logarítmos (logx a = b → x b = a) Lembrar que: a > 0; b > 0 e      r² + s², vamos partir de que r + s = p, quadrar a igualdade,
0 < x 0 1, sendo todos reais.                                      fazer uso de substituições e isolar o pedido do problema.
                                                                   Vejamos como é fácil:
18(A) O discriminante valendo zero (∆ = 0) significa que as        (r + s)² = p² ∴ r² +2rs + s² = p² ∴ r² + s² = p² - 2rs = p² - 2q.
raízes são reais e iguais desde que os coeficientes da
equação sejam números reais.                                       28(E) Para x 2 0, temos: y = ax² + bx + c ax² - bx +c.
                                                                          Para x = 0, temos: y = ax² + bx + c = ax² - bx + c ∴
19(B) Denominando os números de a e b temos:                       existe um ponto de interseção (0, c) ∴ (E) é a alternativa
a + b = 6 e !a – b ! = 8 onde a – b = 8 ou a – b = -8.             correta.
Formamos então os sistemas:
 a+b=6      e     a+b=6                                            29(E) Trata-se de uma questão que envolve ângulos
                                                                   replementares, ou seja, ]APB + ]BPA = 360° ∴]APB =



                                                                                                                                             4
360° - ]BPA (veja sempre a figura para acompanhar                              ponteiro das horas entre 2 e 3 horas e (ii) seja 240° + y o
cálculos). Vamos ao problema:                                                  deslocamento do ponteiro dos minutos. Como o ponteiro
Fazendo ]BPA = ]BPR + ]RPA (que são dois ângulos                               dos minutos possui velocidades 12 vezes maior no mesmo
                                                                               intervalo de tempo, então: 12y = 240° + y ∴ y = 240°/11 =
excêntricos exteriores) temos:
                                                                               43,6min.
   (i) ) RPA R ABAAR
                      2 2a cc x2 c cc caa 2 2ccx                             Daí então, a CHEGADA = 2 h 43,6 min.
                 2                             2
                       2b b d dddbbxx 2d x                                  Logo o tempo da viagem = 2h 43,6min (14h 43,6min) – 8hs
   2iiii BPR B BRBBM 2                   2 2
                 2             2                                               43,6 min = 6 h.
   Então:: BPA B 2cc x  2d2 x 2 c  d.
                   2
   Como C APB A 360° ° BPA B 360° ° °c  dd                                    34(C) O menor comprimento consiste nas duas tangentes
   d d APB A A  180° ° cc   180° ° dd d a  b.                               externas T e nos dois arcos A1 e A2 ∴ m.C = 2T + A1 + A2.
   Nota:a)No semi-círculo SAR: a  c c 180° ° a a 180° ° c                     Na figura temos: 0102 = 12 cm; No ∆ABC (retângulo)
       b)No semi-círculo RMT: x   b b x x  d d 180° ° b b 180° ° d
                                                                               temos: BC // 0102 ∴ BC = 12 cm; AB = (9 – 3)cm = 6 cm ∴
                                                                               12² = 6² + T² ∴ T = 6 √3. Logo 2 T = 12 √3 cm
                                                                               No ∆DCO2 ≈ ∆DAO1 → DC / O2C = DA / O1A ∴
                                                                               DC / 3 = DC + 6√3 / 9 ∴ DC = 3√3 cm ∴ tg α = CO2 / DC
                                                                               = √3 / 3 → α = 30° ∴
                                                                               Arco CE = A1 = 120°/ 360°. 2 .3 = 2. ∴ A1 = 2
                                                                               e o arco AGB = A2 = 240°/ 360 . 2 .9 = 12. ∴ A2 = 12




30(B) Resolvendo individualmente cada                           equação
encontram-se os seguintes conjuntos soluções:

   Para : ii 3x² ² 2 2 25 5 x x x3 3 Si S SS33
   ii) (2x – 1)² ² (x – 1)² ² 2x – 1 1 1x x 11² ²
    2x x 1 1 1 1x x 11 onde:
    2x – 1 1 x – 1 1 x x 0
                                                                               ∴ m.C = 12√3 + 143 .
    e 2x – 1 1 - (x – 1) ) x x 2 / 3 3 Sii S {0, 2 / 3}
    iii) x² ² 7 7 x x 1 (quadrando a equação, temos)
                                                                               35(B) Considerando que o número total de bolas = b, temos
    x² - 7 7 x – 1 1 x² - x – 6 6 0 0 x’ ’ -2 e x” ” 3.
    Como se trata de equação irracional deve-se fazer a verificação
                                                                               que cada menino pega:
   com as raízes encontradas, ou seja:
                                                                                            b           b 2
   Parax P P2 2 2222² ² 7 7 72 2 1 1 13 3 33 , , FFpoisnãoexistereal             1ºmen. .   2
                                                                                                 11      2
                                                                                                             ; 2ºmen. . 1 bb2 2 bb2
                                                                                                                        3  2        6
                                                                                                                                        e
   comraizquadrada negativa. Então E 2nãosatisfaz.                                               bb2
                                                                                 3ºmen. . 2       6
                                                                                                        6 bb2 .Podemos então armar a
                                                                                                             3
   Parax P 3 3 3² ² 7 7 3 3 1 1 2 2 2 , , VV
   V Siii S { 3 }.                                                               equação: b     b b22  bb2  bb2 3 0b b 0.
                                                                                                            6     3
   Observando os três conjuntos soluções, temos que a opção correta é a (B).
                                                                                 Portanto o valor de b é indeterminado, podendo assumir
31(D) Sejam Am; Ao e Atrap as áreas do triângulo menor;                          qualquer valor inteiro da forma 2  6b para b b 1, 2, ...
do ∆original e do trapézio. Pelo enunciado Atrap = ½ Ao.
Veja pela figura que então: Am = Atrap = ½ Ao, pois                            36(E)A área da superfície retangular é dada por:
Am + Atrap = Ao ∴ Am / Ao = 1                                                  Área = comprimento x largura ∴ 40 = 10.2x ∴ x = 2. No
/ 2.                                                                           ∆retângulo raio² = y² + x² ∴ 3² = y² + 2² ∴ y = √5 .
Usando o teorema das áreas,                                                    A profundidade é : 3 - √5 ou 3 + √5 (veja as figuras).
temos:
Am / Ao = DE²/ 2² = 1 / 2 ∴ DE
= √2.
A mediana m de um trapézio é a média aritmética de seus
lados paralelos (suas bases)
∴ m = ( DE + 2) / 2 = = (√2 + 2) / 2.

32(B) Se ∆= 0 temos: (2b)² - 4 a.c = 0 ∴ 4b² - 4 a.c = 0 (:4)
                                                                               37(B) O número original é 100c + 10 d + u. Quando o
∴ b² - ac = 0 ∴ b² = a.c . Temos que b é média geométrica
                                                                               número é revestido temos 100u +10 d + c. Como c > u, para
de a e c, logo (a,b,c) formam uma progressão geométrica.
                                                                               subtrairmos, é necessário acrescentar 10 a u (transformar 1 d
                                                                               = 10 ). O mesmo acontece com as centenas e dezenas, ou
33(A) Seja x o número de graus que o
                                                                               seja, 10 a d (transformar 1c = 10 d) ∴
ponteiro das horas se move entre 8
                                                                                    100(c – 1)     + 10(d + 9) + u + 10
horas e o começo da viagem e por sua
                                                                                    100u           + 10 d          +c
vez é 240° + x o deslocamento em
graus do ponteiro dos minutos. Como o                                           100( c – 1 – u ) + 10( d + 9 – d) + ( u + 10 – c ) =
ponteiro dos minutos é 12 vezes mais                                                         = 100(c – 1 – u) + 10 .9 + u + 10 – c.
rápido que o das horas, em qualquer                                            Pelo enunciado do problema: u + 10 – c = 4 ∴ c – u = 6.
intervalo de tempo, temos:                                                     Então: 100(6 – 1) + 9.10 + 4 = 5.100 + 9.10 + 4 ∴
12x = 240°+ x ∴ x = 240° / 11 21,82°                                           as dezenas d = 9 e as centenas c = 5.
 43,6 minutos ∴
Horário da saída 8h 43,6minutos.                                               38(B) Considerando os quatro números inteiros e positivos
                                                                               como a, b, c e d e escolhendo sempre três para executar a
Para a CHEGADA, entre 2 e 3 horas                                              média aritmética adicionada ao quarto número, formamos o
da tarde, vamos considerar que: (i) seja y = deslocamento do



                                                                                                                                             5
sistema de equações                                             abaixo,           que       resolvendo              por      44(A) Um modo de resolução do problema usando a
  escalonamento temos:                                                                                                         propriedade do ângulo externo de um ∆.Na figura, temos:
                                                                                                                               i) O ∆OBC (é isóscele), pois OB = BC = r (raio) ∴
                1/33a  b  cc  d d 29                                                a  b  c  3d d 87                        ]O = ]C = y.
              1/33b  c  dd  a a 23                                                  3a  b  c  d d 69                     ii) O ∆OBC (é isóscele), pois AO = OB = r e ] OBA =
                                                                          7
                1/33c  d  aa  b b 21                                                a  3b  c  d d 63                                                                         ] OAB
                1/33d  a  bb  c c 17                                                a  b  3c  d d 51
                                                                                                                                                                               = 2y pois
                                                                                                                                                                               ] OBA é
                     a  b  c  3d d 87                                                                                                                                       externo ao
                         a  b  3c  d d 51                                                                                                                                   ∆OBC.
                                                                                                                                                                               iii) Então
                         a  3b  c  d d 63
                                                                                                                                                                               ] x =
                         3a  b  c  d d 69
                                                                                                                                                                               ]OAC + y
  Escalonando o sistema, temos:                                                                                                                                                ( ]x é
       a  b  c  3d d 87                             a  b  c  3d d 87                 a  b  c  3d d 87                 externo ∆OAC ) ∴
          2c c 2d d d36                                         c c d d d18                    b b d d d12                          ]x = 2y + y = 3y.
                                                2                                  6
       2b b 2d d               d 24                        b bdd          d 12               c cdd          d 18
      42b b 2c c 8d d d192                                2b b c c 4d d d96                 8b b c c 4d d d96
Fazendo L2 L4 e finalmente L3  L4, temos:
      a  b  c  3d d 87                              a  b  c  3d d 87                  d d 21
                                                                                                                               45(A) Sendo a PG (a, aq, aq², . . . ) e a PA ( 0, r, 2r, . . . )
         b b d d d12                                        b b d d d12                      cc 3
                                            8                                      6                   Logo B é a opção        onde PA + PG (1, 1, 2, . . . ), logo: a + 0 = 1 ∴ a = 1 (i);
       c cdd                 d 18                         c cd d         d 18                bb 9
                                                                                                                               aq + r = 1 ∴ q + r = 1 (ii); aq² + 2r = 2 ∴ q² + 2r = 2 (iii).
       8c c 5d d d108                                       86d d d126                      a a 12
                                                                                                                               Em (ii), r = 1 – q que substituído em (iii), temos:
                                                                                                                               q² + 2 – 2q = 2 ∴ q(q – 2) = 0 ∴ q = 0 (não satisfaz) e q = 2.
                                                                                                                               e então r = 1 – 2 = 1.
  39(B)                                                                                                                        Logo PG ( 1, 2, 4, ... ) ∴ Sn = a1 (qn – 1) / (q – 1)
                                                                                                                      p²       S10 = 1.(210 – 1) / (2 – 1) ∴ S10 ‘= 1 023.
         y min m mm a 0 0 0 0 0 0 p² ² 4. 1. q q 0 0 q q
                 4a                                                                                                   4
                                                                                                                           .
         . Veja REMEMBER I, problema 41)                                                                                       a PA (0, -1, -2, . . . ) ∴Sn = n (a1 + a n) / 2 =n(a 1+(n –1)r)/2
                                                                                                                               ∴ S10 = 10( 0 + 9.(-1)) = -45 ∴ S10 “ = - 45.
  40(A) Se diferenciado as frações dadas, temos:
      ax b                                                                                                                    Assim: S10’ + S10” = 1 023 +(-45) = 978.
      cx d
              d b a adx  bd b bcx  bd b x x adabc
                a
                                                1

                                                            b     a
      ad a bc b 0 0 ad a bc b d c 1 1                       d     c                                                            46(B) Temos que resolver o sistema abaixo, para determinar
      b b d ; a a c e x x 0.                                                                                                   o ponto interseção das quatro retas.
      A fração terá seu valor alterado somando-se qualquer valor x não
                                                                                                                                    2x  3y y 6
      nulo ao seu numerador e ao denominador. Logo (A) é a opção.
  41(A) Sendo x a distância do ponto do acidente ao final da                                                                        4x x 3y y 6
  viagem, e v a velocidade do trem antes do acidente. O tempo                                                                          x        x 2
  normal da viagem, em horas, é dado por:                                                                                                       1
  x/v + 1 = (x + v) / v .                                                                                                                  yy   2
  Considerando o tempo em cada viagem temos:
               1              x                 x v                  4v 2v 5x          4x 4v 8v
 a) 1         2
                             4v
                                        5         v     22               4v
                                                                                    v         4v
                                                                                                        v x x 6v vii           Pode-se verificar que x = 2 e y = ½ é solução do sistema.
                              5
                80             1            xx80             x v                  320 2v 5xx 400          4x 4v            Logo (B) é a opção correta.
 bb 1           v            2
                                               4v
                                                       5       v       11                4v
                                                                                                        v      4v
                                                 5

       v v80 0 0x  2v v x x 2v  80 (ii).              42(C)                                                                  47(C) Para que a + bc = a² + ab + ac + bc → a = a²+ ab + ac
                                                                                                                               ∴ a + b + c = 1.
       Fazendo (i) ) (ii),temos: 6v v 2v  80 0 v v 20km/h.
  Devemos considerar nas operações abaixo a, b e c sempre                                                                      48(A) Analisado cada opção, verifica-se:
  números inteiros e positivos.                                                                                                (A) é verdadeira porque FH é paralela a AE.
                                                                                                                               (C) é verdadeira porque, quando se estende HE, que é
                                        b                   b                                          b                       paralela a CA, esta encontra AB em D. DC e BH são lados
        Temos: a                       c           c a     c     cquad rand oo o a                   c    c a² b c
                                                                                                                 c             correspondentes dos ∆s congruentes ACD e HDB.
        ac b                a²b                                                        bba²² 11                               (D) é verdadeira
          c        c          c         c ac a a²b b b b c c                               a                                        FG = FE + EG = AD + ½ DB = ¾ AB.
  43(E) Armando um sistema com as duas equações, temos                                                                         (E) é verdadeira porque G é o ponto médio de HB.
                                                                                                                               (B) não pode ser provada a partir da informação dada. Um
                                                                                                                               desafio: que informação é necessária para provar (B)?

                                                                                                                               49(C) Sendo y = (x²- 4) / (x – 2) = (x – 2)(x + 2) / (x – 2) =
                                                                                                                               x + 2 ( para x x 2, ou então y 4; que é a condição de
                                                                                                                               domínio da função) , é uma reta excluindo no ponto (2, 4).
                                                                                                                               A reta y = 2x cruza a reta anterior no ponto que não faz
                                                                                                                               parte do gráfico. Logo (C) é a opção correta. Para melhor
                                                                                                                               entendimento faça os gráficos das funções no mesmo plano.

                                                                                                                               50(C)



  :



                                                                                                                                                                                               6

Mais conteúdo relacionado

Mais procurados

Supertestes 7ª série
Supertestes 7ª sérieSupertestes 7ª série
Supertestes 7ª sérieROGERIOCBUENO
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentadoprof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentadoProfCalazans
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05ProfCalazans
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02ProfCalazans
 
Matemática básica números decimais 2
Matemática básica números decimais 2Matemática básica números decimais 2
Matemática básica números decimais 2Alessandro Lisboa
 
Olimpíada de MATEMÁTICA (nível 2)
Olimpíada de MATEMÁTICA  (nível 2)Olimpíada de MATEMÁTICA  (nível 2)
Olimpíada de MATEMÁTICA (nível 2)Robson Nascimento
 
Respostas De Exercicios 8ª
Respostas De Exercicios 8ªRespostas De Exercicios 8ª
Respostas De Exercicios 8ªAntonio Carneiro
 
Olimpíada Brasileira de matemática 1ª fase nível 2
Olimpíada Brasileira de matemática 1ª fase nível 2Olimpíada Brasileira de matemática 1ª fase nível 2
Olimpíada Brasileira de matemática 1ª fase nível 2Prof. Leandro
 
F ficha de revisões nº 3 9º janeiro2017
F ficha de revisões nº 3   9º janeiro2017F ficha de revisões nº 3   9º janeiro2017
F ficha de revisões nº 3 9º janeiro2017Susana Chaves
 
Olimpíadas de matemática (nível 1)
Olimpíadas de matemática (nível 1)Olimpíadas de matemática (nível 1)
Olimpíadas de matemática (nível 1)Robson Nascimento
 
Prova de raciocönio quantitativo
Prova de raciocönio quantitativoProva de raciocönio quantitativo
Prova de raciocönio quantitativoAndre Somar
 

Mais procurados (20)

Supertestes 7ª série
Supertestes 7ª sérieSupertestes 7ª série
Supertestes 7ª série
 
Avaliação da aprendizagemmatemat9jv
Avaliação da aprendizagemmatemat9jvAvaliação da aprendizagemmatemat9jv
Avaliação da aprendizagemmatemat9jv
 
Avaliação da aprendizagemmatemat9cs
Avaliação da aprendizagemmatemat9csAvaliação da aprendizagemmatemat9cs
Avaliação da aprendizagemmatemat9cs
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentadoprof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
prof.Calazans(Mat. e suas Tecnologias)-Simulado 04 comentado
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 05
 
Exer
ExerExer
Exer
 
Exercicios 7ª
Exercicios 7ªExercicios 7ª
Exercicios 7ª
 
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
prof.Calazans(Mat. e suas Tecnologias)-Simulado comentado 02
 
1 fase nivel2_gabarito_2011
1 fase nivel2_gabarito_20111 fase nivel2_gabarito_2011
1 fase nivel2_gabarito_2011
 
Matemática básica números decimais 2
Matemática básica números decimais 2Matemática básica números decimais 2
Matemática básica números decimais 2
 
Olimpíada de MATEMÁTICA (nível 2)
Olimpíada de MATEMÁTICA  (nível 2)Olimpíada de MATEMÁTICA  (nível 2)
Olimpíada de MATEMÁTICA (nível 2)
 
MATEMÁTICA 3
MATEMÁTICA 3MATEMÁTICA 3
MATEMÁTICA 3
 
Exercicios 8ª
Exercicios 8ªExercicios 8ª
Exercicios 8ª
 
Respostas De Exercicios 8ª
Respostas De Exercicios 8ªRespostas De Exercicios 8ª
Respostas De Exercicios 8ª
 
Aulafuncao
AulafuncaoAulafuncao
Aulafuncao
 
Emef
EmefEmef
Emef
 
Olimpíada Brasileira de matemática 1ª fase nível 2
Olimpíada Brasileira de matemática 1ª fase nível 2Olimpíada Brasileira de matemática 1ª fase nível 2
Olimpíada Brasileira de matemática 1ª fase nível 2
 
F ficha de revisões nº 3 9º janeiro2017
F ficha de revisões nº 3   9º janeiro2017F ficha de revisões nº 3   9º janeiro2017
F ficha de revisões nº 3 9º janeiro2017
 
Olimpíadas de matemática (nível 1)
Olimpíadas de matemática (nível 1)Olimpíadas de matemática (nível 1)
Olimpíadas de matemática (nível 1)
 
Prova de raciocönio quantitativo
Prova de raciocönio quantitativoProva de raciocönio quantitativo
Prova de raciocönio quantitativo
 

Destaque

Cibermedios, genesis bahoque
Cibermedios, genesis bahoqueCibermedios, genesis bahoque
Cibermedios, genesis bahoquegenebahoque
 
ANYTIME FITNESS 7-29-15
ANYTIME FITNESS 7-29-15ANYTIME FITNESS 7-29-15
ANYTIME FITNESS 7-29-15Terrie Chism
 
BASE DE DATOS (Informatica Yoshira)
BASE DE DATOS (Informatica Yoshira)BASE DE DATOS (Informatica Yoshira)
BASE DE DATOS (Informatica Yoshira)Yoshi Wutxd
 
Recnei música - quadro sinótico
Recnei   música - quadro sinóticoRecnei   música - quadro sinótico
Recnei música - quadro sinóticoCarlosEdMusical
 
Programa de rastreo espia para celular
Programa de rastreo espia para celularPrograma de rastreo espia para celular
Programa de rastreo espia para celularespiarmoviles
 
Pedofilia Palestina
Pedofilia PalestinaPedofilia Palestina
Pedofilia Palestinajjobrasil
 
Base de datos 2♥ Yoshira
Base de datos 2♥ YoshiraBase de datos 2♥ Yoshira
Base de datos 2♥ YoshiraYoshi Wutxd
 
Bullying & Cyberbullying
Bullying & CyberbullyingBullying & Cyberbullying
Bullying & Cyberbullyinglopez7494
 
Webinar slides on "New Frontiers in Microinsurance Distribution"
Webinar slides on "New Frontiers in Microinsurance Distribution"Webinar slides on "New Frontiers in Microinsurance Distribution"
Webinar slides on "New Frontiers in Microinsurance Distribution"Impact Insurance Facility
 
El avion: Daños ambientales
El avion: Daños ambientalesEl avion: Daños ambientales
El avion: Daños ambientalesPaulaquintero06
 

Destaque (20)

Cibermedios, genesis bahoque
Cibermedios, genesis bahoqueCibermedios, genesis bahoque
Cibermedios, genesis bahoque
 
Tp2 tic (1)
Tp2 tic (1)Tp2 tic (1)
Tp2 tic (1)
 
CERTIFICAT DE TRAVAIL MEDICUS
CERTIFICAT DE TRAVAIL MEDICUSCERTIFICAT DE TRAVAIL MEDICUS
CERTIFICAT DE TRAVAIL MEDICUS
 
ANYTIME FITNESS 7-29-15
ANYTIME FITNESS 7-29-15ANYTIME FITNESS 7-29-15
ANYTIME FITNESS 7-29-15
 
TECTONICA DE PLACAS
TECTONICA DE  PLACASTECTONICA DE  PLACAS
TECTONICA DE PLACAS
 
BASE DE DATOS (Informatica Yoshira)
BASE DE DATOS (Informatica Yoshira)BASE DE DATOS (Informatica Yoshira)
BASE DE DATOS (Informatica Yoshira)
 
R esp 712566
R esp 712566R esp 712566
R esp 712566
 
Tecno Jean's
Tecno Jean'sTecno Jean's
Tecno Jean's
 
Remember 07
Remember 07Remember 07
Remember 07
 
Recnei música - quadro sinótico
Recnei   música - quadro sinóticoRecnei   música - quadro sinótico
Recnei música - quadro sinótico
 
Programa de rastreo espia para celular
Programa de rastreo espia para celularPrograma de rastreo espia para celular
Programa de rastreo espia para celular
 
Pedofilia Palestina
Pedofilia PalestinaPedofilia Palestina
Pedofilia Palestina
 
Base de datos 2♥ Yoshira
Base de datos 2♥ YoshiraBase de datos 2♥ Yoshira
Base de datos 2♥ Yoshira
 
skydrive_word_doc
skydrive_word_docskydrive_word_doc
skydrive_word_doc
 
Bullying & Cyberbullying
Bullying & CyberbullyingBullying & Cyberbullying
Bullying & Cyberbullying
 
Webinar slides on "New Frontiers in Microinsurance Distribution"
Webinar slides on "New Frontiers in Microinsurance Distribution"Webinar slides on "New Frontiers in Microinsurance Distribution"
Webinar slides on "New Frontiers in Microinsurance Distribution"
 
El avion: Daños ambientales
El avion: Daños ambientalesEl avion: Daños ambientales
El avion: Daños ambientales
 
MULTIMEDIA
MULTIMEDIAMULTIMEDIA
MULTIMEDIA
 
Remember 09
Remember 09Remember 09
Remember 09
 
Avaliacao neuropsicologica infantil
Avaliacao neuropsicologica infantilAvaliacao neuropsicologica infantil
Avaliacao neuropsicologica infantil
 

Semelhante a Remember 06

10225155 matematica-1000-exercicios-resolvidos
10225155 matematica-1000-exercicios-resolvidos10225155 matematica-1000-exercicios-resolvidos
10225155 matematica-1000-exercicios-resolvidosafpinto
 
Verificação parcial ii de matemática 7º ano
Verificação parcial ii de matemática 7º anoVerificação parcial ii de matemática 7º ano
Verificação parcial ii de matemática 7º anoCarlos Magno Braga
 
Lista de Exercícios 1 – Semelhança
Lista de Exercícios 1 – SemelhançaLista de Exercícios 1 – Semelhança
Lista de Exercícios 1 – SemelhançaEverton Moraes
 
Lista de Exercícios 1 – Semelhança
Lista de Exercícios 1 – SemelhançaLista de Exercícios 1 – Semelhança
Lista de Exercícios 1 – SemelhançaEverton Moraes
 
Simuladinho Diagnóstico 11
Simuladinho Diagnóstico 11Simuladinho Diagnóstico 11
Simuladinho Diagnóstico 11Prof. Materaldo
 
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...Josie Michelle Soares
 
Vestibular ufsm 1999
Vestibular ufsm 1999Vestibular ufsm 1999
Vestibular ufsm 1999auei1979
 
Vestibular ufsm 1999
Vestibular ufsm 1999Vestibular ufsm 1999
Vestibular ufsm 1999auei1979
 
Vestibular ufsm 1999
Vestibular ufsm 1999Vestibular ufsm 1999
Vestibular ufsm 1999auei1979
 

Semelhante a Remember 06 (20)

10225155 matematica-1000-exercicios-resolvidos
10225155 matematica-1000-exercicios-resolvidos10225155 matematica-1000-exercicios-resolvidos
10225155 matematica-1000-exercicios-resolvidos
 
Remember 03
Remember 03Remember 03
Remember 03
 
Descomplica ENEM 2012: Matemática
Descomplica ENEM 2012: MatemáticaDescomplica ENEM 2012: Matemática
Descomplica ENEM 2012: Matemática
 
At8 mat
At8 matAt8 mat
At8 mat
 
Verificação parcial ii de matemática 7º ano
Verificação parcial ii de matemática 7º anoVerificação parcial ii de matemática 7º ano
Verificação parcial ii de matemática 7º ano
 
Comentario exatas
Comentario exatasComentario exatas
Comentario exatas
 
1ª fase - nível 3
1ª fase - nível 31ª fase - nível 3
1ª fase - nível 3
 
Remember 01
Remember 01Remember 01
Remember 01
 
Lista de Exercícios 1 – Semelhança
Lista de Exercícios 1 – SemelhançaLista de Exercícios 1 – Semelhança
Lista de Exercícios 1 – Semelhança
 
Lista de Exercícios 1 – Semelhança
Lista de Exercícios 1 – SemelhançaLista de Exercícios 1 – Semelhança
Lista de Exercícios 1 – Semelhança
 
Remember 10
Remember 10Remember 10
Remember 10
 
Simuladinho Diagnóstico 11
Simuladinho Diagnóstico 11Simuladinho Diagnóstico 11
Simuladinho Diagnóstico 11
 
Revisão
RevisãoRevisão
Revisão
 
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
 
1ª fase - Nível 1
1ª fase - Nível 11ª fase - Nível 1
1ª fase - Nível 1
 
1ª fase nível 1
1ª fase   nível 11ª fase   nível 1
1ª fase nível 1
 
Vestibular ufsm 1999
Vestibular ufsm 1999Vestibular ufsm 1999
Vestibular ufsm 1999
 
Vestibular ufsm 1999
Vestibular ufsm 1999Vestibular ufsm 1999
Vestibular ufsm 1999
 
Vestibular ufsm 1999
Vestibular ufsm 1999Vestibular ufsm 1999
Vestibular ufsm 1999
 
Simuladinho 11
Simuladinho 11Simuladinho 11
Simuladinho 11
 

Mais de resolvidos

Matematica num decimais
Matematica num decimaisMatematica num decimais
Matematica num decimaisresolvidos
 
Livrocalculo2 miolo
Livrocalculo2 mioloLivrocalculo2 miolo
Livrocalculo2 mioloresolvidos
 
Alg lini mod quimica
Alg lini   mod quimicaAlg lini   mod quimica
Alg lini mod quimicaresolvidos
 
Pre calculo modulo 4
Pre calculo modulo 4Pre calculo modulo 4
Pre calculo modulo 4resolvidos
 
Cidos e bases inognicos
Cidos e bases inognicosCidos e bases inognicos
Cidos e bases inognicosresolvidos
 
Mdulo ii unidade 2 contedo
Mdulo ii unidade 2 contedoMdulo ii unidade 2 contedo
Mdulo ii unidade 2 contedoresolvidos
 
Mdulo i unidade 2 contedo
Mdulo i unidade 2 contedoMdulo i unidade 2 contedo
Mdulo i unidade 2 contedoresolvidos
 
03 grandezas e vetores
03 grandezas e vetores03 grandezas e vetores
03 grandezas e vetoresresolvidos
 
02 cinemtica escalar-conceitos
02 cinemtica escalar-conceitos02 cinemtica escalar-conceitos
02 cinemtica escalar-conceitosresolvidos
 
Mdulo i unidade 1 contedo
Mdulo i unidade 1 contedoMdulo i unidade 1 contedo
Mdulo i unidade 1 contedoresolvidos
 
01 conceitos iniciais
01 conceitos iniciais01 conceitos iniciais
01 conceitos iniciaisresolvidos
 
Apos eletro fisica
Apos eletro fisicaApos eletro fisica
Apos eletro fisicaresolvidos
 
Calculando formulas-quimicas
Calculando formulas-quimicasCalculando formulas-quimicas
Calculando formulas-quimicasresolvidos
 
Aposteletrotecnica2
Aposteletrotecnica2Aposteletrotecnica2
Aposteletrotecnica2resolvidos
 
09 calculo estequiometrico
09 calculo estequiometrico09 calculo estequiometrico
09 calculo estequiometricoresolvidos
 
07 cilindro e cone
07 cilindro e cone07 cilindro e cone
07 cilindro e coneresolvidos
 

Mais de resolvidos (20)

Matematica num decimais
Matematica num decimaisMatematica num decimais
Matematica num decimais
 
Alg lin2
Alg lin2Alg lin2
Alg lin2
 
Livrocalculo2 miolo
Livrocalculo2 mioloLivrocalculo2 miolo
Livrocalculo2 miolo
 
Alg lini mod quimica
Alg lini   mod quimicaAlg lini   mod quimica
Alg lini mod quimica
 
Pre calculo modulo 4
Pre calculo modulo 4Pre calculo modulo 4
Pre calculo modulo 4
 
Cidos e bases inognicos
Cidos e bases inognicosCidos e bases inognicos
Cidos e bases inognicos
 
Mdulo ii unidade 2 contedo
Mdulo ii unidade 2 contedoMdulo ii unidade 2 contedo
Mdulo ii unidade 2 contedo
 
Mdulo i unidade 2 contedo
Mdulo i unidade 2 contedoMdulo i unidade 2 contedo
Mdulo i unidade 2 contedo
 
03 grandezas e vetores
03 grandezas e vetores03 grandezas e vetores
03 grandezas e vetores
 
02 cinemtica escalar-conceitos
02 cinemtica escalar-conceitos02 cinemtica escalar-conceitos
02 cinemtica escalar-conceitos
 
Mdulo i unidade 1 contedo
Mdulo i unidade 1 contedoMdulo i unidade 1 contedo
Mdulo i unidade 1 contedo
 
01 conceitos iniciais
01 conceitos iniciais01 conceitos iniciais
01 conceitos iniciais
 
04 mru e mruv
04 mru e mruv04 mru e mruv
04 mru e mruv
 
Apos eletro fisica
Apos eletro fisicaApos eletro fisica
Apos eletro fisica
 
Calculando formulas-quimicas
Calculando formulas-quimicasCalculando formulas-quimicas
Calculando formulas-quimicas
 
Aposteletrotecnica2
Aposteletrotecnica2Aposteletrotecnica2
Aposteletrotecnica2
 
09 calculo estequiometrico
09 calculo estequiometrico09 calculo estequiometrico
09 calculo estequiometrico
 
08 esfera
08 esfera08 esfera
08 esfera
 
07 funes
07 funes07 funes
07 funes
 
07 cilindro e cone
07 cilindro e cone07 cilindro e cone
07 cilindro e cone
 

Último

Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxLuizHenriquedeAlmeid6
 
Orientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxOrientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxJMTCS
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfmarialuciadasilva17
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas BrasileirosMary Alvarenga
 
As variações do uso da palavra "como" no texto
As variações do uso da palavra "como" no  textoAs variações do uso da palavra "como" no  texto
As variações do uso da palavra "como" no textoMariaPauladeSouzaTur
 
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...nexocan937
 
Free-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptxFree-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptxkarinasantiago54
 
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptxQUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptxAntonioVieira539017
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxLuizHenriquedeAlmeid6
 
Revolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptxRevolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptxHlioMachado1
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terraBiblioteca UCS
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoCelianeOliveira8
 
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURACRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURADouglasVasconcelosMa
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...Martin M Flynn
 
19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileirosMary Alvarenga
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024GleyceMoreiraXWeslle
 
Prova de Empreendedorismo com gabarito.pptx
Prova de Empreendedorismo com gabarito.pptxProva de Empreendedorismo com gabarito.pptx
Prova de Empreendedorismo com gabarito.pptxJosAurelioGoesChaves
 

Último (20)

Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
 
Orientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxOrientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptx
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
 
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
“O AMANHÃ EXIGE O MELHOR DE HOJE”       _“O AMANHÃ EXIGE O MELHOR DE HOJE”       _
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas Brasileiros
 
As variações do uso da palavra "como" no texto
As variações do uso da palavra "como" no  textoAs variações do uso da palavra "como" no  texto
As variações do uso da palavra "como" no texto
 
Os Ratos - Dyonelio Machado FUVEST 2025
Os Ratos  -  Dyonelio Machado  FUVEST 2025Os Ratos  -  Dyonelio Machado  FUVEST 2025
Os Ratos - Dyonelio Machado FUVEST 2025
 
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
Minha Luta (Mein Kampf), A História do País que Lutou contra a União Soviétic...
 
Free-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptxFree-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptx
 
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptxQUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
QUIZ – GEOGRAFIA - 8º ANO - PROVA MENSAL.pptx
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
 
Revolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptxRevolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptx
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terra
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e feminino
 
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURACRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
CRONOGRAMA: AÇÕES DO PROJETO ESTAÇÃO LEITURA
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
 
19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros19 de abril - Dia dos povos indigenas brasileiros
19 de abril - Dia dos povos indigenas brasileiros
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024
 
Prova de Empreendedorismo com gabarito.pptx
Prova de Empreendedorismo com gabarito.pptxProva de Empreendedorismo com gabarito.pptx
Prova de Empreendedorismo com gabarito.pptx
 

Remember 06

  • 1. REMEMBER VI COD. 955 b) todas as pessoas lentas em aprender não freqüentam esta 01. Qual dos valores a seguir não equivale a 0,000 000 357? escola a) 3,75 . 10 -7 b) 3 ¾ . 10 -7 c) 375 . 10 -9 c) algumas pessoas lentas em aprender freqüentam esta -7 –6 d) 3 / 8 . 10 e) 3 / 8 . 10 escola d) algumas pessoas lentas em aprender não freqüentam esta 02. O menor ângulo formado pelos ponteiros de um relógio escola quando são 12h e 25 min é: e) nenhuma pessoa lenta em aprender freqüenta esta escola a) 132°30’ b) 137°30’ c) 150° d) 137°32’ e) 137° 12. A solução de 5x x 1  x x 1 1 2 é: 03. Se cada número em um conjunto de dez números é aumentado de 20 unidades, então a média aritmética dos dez a) { 2,1 } b) { 2/3 } c) { 2 } d) { 1 } e) { 0 } números originais: a) permanece a mesma b) é aumentada em 20 unidades c) é aumentada em 200 unidades d) é aumentada em 10 aa4 4b b4 unidades e) é aumentada em 2 unidades 13. A fração aa2 2b b2 é igual a: a6 b6 a) a 6 b b) a a2 2 b b2 c) a a2  b b2 1 1 04. A igualdade xx1 1 xx2 é satisfeita: d) a 2  b 2 d) a 2 2 b 2 a) por nenhum valor real de x b) por xx1 ou xx2 c) apenas x x 1 d) apenas x x 2 e) apenas x x 0 14. O comprimento de um retângulo R é 10% maior que o lado de um quadrado Q. A largura do retângulo é 10% 05. y varia com o inverso do quadrado de x. Quando y = 16, menor que o lado do quadrado. A razão entre as áreas de R e x = 1. Quando x = 8, y é igual a: Q é: a) 2 b) 128 c) 64 d) 1 / 4 e) 1024 a) 99 : 100 b) 101 : 100 c) 1 : 1 d) 199 : 200 e) 201 : 200 06. Um feirante compra certa quantidade de laranjas à base de 3 por 10 centavos, e igual quantidade à base de 5 por 20 15. A razão entre as áreas de dois círculos concêntricos é de centavos. Para não ter lucro nem prejuízo, ele deve vender à 1: 3. Se o raio do círculo menor é r, então a diferença entre base de: os raios é aproximadamente: a) 8 por R$ 0,30 b) 3 por R$ 0,11 c) 5 por R$ 0,18 a) 0,41 r b) 0,73 c) 0,75 d) 0,73 r e) 0,75 r d) 11 por R$ 0,40 e) 13 por R$ 0,50 16. O valor de 3 / (a + b) quando a = 4 e b = -4 é: 07. Se um trabalhador recebe um corte de 20% no seu a) 3 b) 3 / 8 c) 0 d) qualquer número finito salário, ele só vai readquirir o salário original se tiver um e) não definida aumento de: a) 20% b) 25% c) 22,5% d) R$ 20,00 e) R$25,00 17. Se log x – 5 log 3 = -2, então x é igual a: a) 1,25 b) 0,81 c) 2,43 d) 0,8 e) 0,8 ou 1,25 08. O gráfico de x² - 4y² = 0 é: a) é uma hipérbole que corta apenas o eixo dos x 18. O discriminante da equação x² + 2x√3 + 3 = 0 é zero. b) é uma hipérbole que corta apenas o eixo dos y Portanto, suas raízes são: c) é uma hipérbole que não corta nenhum dos eixos a) reais e iguais b) racionais e iguais c) racionais e d) é um par de retas distintas d) irracionais e distintas e) imaginárias e) não existe 19. Dois números cuja soma é 6 cujo valor absoluto da 09. Um círculo é inscrito em um ∆ de lados 8, 15 e 17. O diferença é 8 são as raízes da equação: raio do círculo é: a) x² - 6x + 7 = 0 b) x² - 6x - 7 = 0 c) x² + 6x – 8 = 0 a) 6 b) 2 c) 5 d) 3 e) 7 d) x² - 6x + 8 = 0 e) x² + 6x – 7 = 0 10. Quantas horas demoram um trem que viaja a velocidade 20. A expressão √25 – t² +5 se anula para: média de 40 km/h, para que percorra a quilômetros se a) em nenhum valor real ou imaginário de t durante o trajeto ele faz n paradas de m minutos cada uma? b) em nenhum valor real de t, mas para alguns valores a) (3 a + 2mn) / 120 b) 3 a + 2mn c) (3 a + 2mn) / 12 imaginários c) em nenhum valor imaginário de t, mas d) (a + mn) / 40 e) (a + 40 mn) / 40 para alguns valores reais d) t = 0 e) t = ±5 11. A negação da afirmação “Nenhuma pessoa lenta em 21. Seja c a hipotenusa de um ∆ retângulo e A sua área. aprender freqüenta esta escola” é: Então altura relativa à hipotenusa mede: a) todas as pessoas lentas em aprender freqüentam esta a) A / c b) 2A / c c) A / 2c d) A² / c e) A / c² escola 22. Para pagamento de R$ 10.000,00 um cliente pode optar entre três descontos sucessivos de 20%, 20% e 10% ou 1
  • 2. então, três descontos sucessivos de 40%, 5% e 5% b) eles formam uma progressão geométrica Escolhendo a proposta mais vantajosa ele economiza: c) eles são distintos d) eles são números negativos a) absolutamente nada b) R$ 400,00 c) R$ 330,00 e) apenas b é negativo e a e c são positivos d) R$ 345,00 e) R$ 360,00 33. Carine inicia uma viagem quando os ponteiros do 23. Ao rever o cálculo de moedas do caixa, o atendente relógio estão sobrepostos (apontam para a mesma direção e contou q moedas de 25 centavos, d de 10 centavos, n de 5 e sentido) entre 8h e 9h da manhã. Ela chega a seu destino c moedas de 1 centavo. Mais tarde Mais tarde ele descobre entre 2h e 3h da tarde quando os ponteiros do relógio que a moedas de 5 centavos foram contadas como moedas formam um ângulo de 180°. O tempo de duração da viagem de 25 centavos e que x moedas de 10 centavos, contadas é: como sendo de 1 centavo. Para corrigir o total o atendente a) 6h b) 6h 43 7/11 min c) 5h 16 4/11 min d) 6h 30 min deve: e) nra a) deixar o total inalterado b) subtrair 11 centavos c) subtrair 11x centavos d) somar 11 x centavos 34. Uma estaca de 6 cm e outra e) somar x centavos de 18 cm de diâmetro dão colocadas lado a lado como 24. A função 4x² - 12x – 1: mostra a figura, e amarradas a) sempre cresce à medida que x cresce com um arame. O menor b) sempre decresce à medida que x decresce comprimento de arame que c) não se pode anular contorna as duas estacas em cm é: d) tem um valor máximo quando x é negativo a) 12√3 + 163 b) 12√3 + 73 c) 12√3 + 143 e) tem um valor mínimo em -10. d) 12 + 15d e) 24 25. Um dos fatores de x4 + 2x² + 9 è : 35.Três meninos concordam em dividir um saco de bolinhas a) x² + 3 b) x + 1 c) x² - 3 d) x² -2x – 3 e)n.r.a. de gude da seguinte maneira: o primeiro fica com a metade das bolinhas mais uma. O segundo fica com um terço das 26. Édio tem uma casa que vale R$ 10.000,00. Ele vende a restantes. O terceiro descobre que desta forma ele fica com o casa para Camila com 10% de lucro. Camila vende a casa de dobro das bolas do segundo. O número de bolas é: volta para Édio com 10% de prejuízo. Então: a) 8 ou 38 b) não podem ser deduzidos por esses dados a) Édio nem perde nem ganha b) Édio lucra R$ c) 20 ou 26 d) 14 ou 32 e) nra 100,00 c) Édio lucra R$ 1.000,00 d) Camila perde R$ 36. Um tanque de óleo cilíndrico, em posição horizontal, 100,00 tem um comprimento interno de 10m e um diâmetro interno e) Édio lucra R$ 1.100,00 de 6m. Se a superfície retangular do óleo dentro do tanque tem área de 40m², então a profundidade do óleo, em metros, 27. Se r e s são raízes da equação x² - px + q = 0 então r² + é: s² é igual a: a) √5 b) 2√5 c) 3 - √5 d) 3 + √5 e) 3 ± √5 a) p² + 2q b) p² - 2q c) p² + q² d) p² - q² e) p² 37. Um número de três dígitos tem, da esquerda para a 28. Em um mesmo sistema de eixos são traçados o gráfico direita, os dígitos h, t e u, sendo h > u. Quando o número de y = ax² + bx + c e o gráfico da função obtida substituindo com os dígitos em posição reversa é subtraído do número x por –x na função dada. Se b x0 e c 0 0 então esses gráficos original, o dígito da unidade da diferença é 4. Então os dois interceptam-se: dígitos seguintes, da direita para a esquerda, são: a) em dois pontos, um no eixo dos x e um no eixo dos y a) 5 e 9 b) 9 e 5 c) impossível calcular d) 5 e 4 b) em um ponto localizado fora dos eixos e) 4 e 5 c) somente na origem d) em um ponto no eixo dos x e) em um ponto no eixo dos y 38. São dados quatro números inteiros. Escolha três inteiros quaisquer dentre eles e calcule a média aritmética destes, 29. Na figura, PA é depois some este resultado ao quarto inteiro. Desta forma se tangente ao consegue os números 29, 23, 21 e 17. Um dos números semicírculo SAR; originais é: PB é tangente ao a) 19 b) 21 c) 23 d) 20 e) 17 semicírculo RTB; SRT é um segmento 39. Se y = x² + px + q, então se o menor valor possível de y de reta e os arcos é zero, q deve então valer: estão indicados na a) 0 b) p² / 4 c) p / 2 d) – p / 2 e) p²/4 - q figura. O ângulo APB mede: 40. Se b 4 d, então as frações ax + b e b são distintas se: a) ½ (a – b) b) ½ (a + b) c) (c - a) - (d – b) cx + d d d) a – b e) a + b a) a = c = 1 e x a 0 b) a = b = 0 c) a = c = 0 30. Cada uma das equações 3x 2 2 2 2 25;;2x x 112 2 2x x 112 e x 2 2 7 7 x x 1 têm : d) x = 0 e) ad = bc a) duas raízes inteiras b) nenhuma raíz maior que 3 c) nenhuma raíz nula d) apenas uma raíz 41. Um trem partindo da cidade A até a cidade B encontra e) uma raíz negativa e ooutra positiva um acidente depois de 1 hora. Se ele parasse por meia hora e depois prosseguisse a 4 / 5 da sua velocidade usual, chegaria 31. Um ∆ eqüilátero de lado 2 é dividido em um triângulo e à cidade B com 2 horas de atraso. Se o trem tivesse em um trapézio por uma linha paralela a um de seus lados. percorrido 80 km mais antes do acidente, teria chegado Se a área do trapézio é igual à metade da área do triângulo atrasado uma hora apenas. A velocidade usual do trem, em original, o comprimento da mediana do trapézio é: km/h, é: a) √6 / 2 b) √2 c) 2 + √2 d) (2 + √2) / 2 a) 20 b) 30 c) 40 d) 40 e) 50 e) (2√3 - √6) / 2 32. Se o discriminante de ax² + 2bx + c = 0 é zero, então 42. Se a, b e c são inteiros positivos, os radicais √(a + b/c) e outra afirmação verdadeira sobre a, b e c é: a.√(b /c) são iguais se e somente se: a) eles formam uma progressão aritmética a) a = b = c = 1 b) a = b e c = a = 1 c) c = [b(a²-1)] / a 2
  • 3. d) a = b e c qualquer valor e) a = b e c = a – 1. a) 30 km/h b) 10 km/h c) 5 km/h d) 15 km/h 43. Os pares de valores x e y que são soluções comuns das 01.D 11.C 21.B 31.D 41.A equações y = (x + 1)² e xy + y = 1 são: 02.B 12.D 22.D 32.B 42.C a) 3 pares reais b) 4 pares reais c) 4 pares imaginários d) 2 pares reais e 2 pares imaginários 03.B 13.C 23.C 33.A 43.E e) 1 par real e 2 pares imaginários. 04.E 14.A 24.E 34.C 44.A 44. Em um círculo de centro O é traçado uma corda AB de 05.D 15.D 25.E 35.B 45.A tal forma que BC é igual ao raio do círculo. CO é traçada e 06.B 16.E 26.E 36.E 46.B estendida até D. CO é traçada e estendida até D e AO é 07.B 17.C 27.B 37.B 47.C traçada. Qual das expressões abaixo expressa a relação entre x e y? 08.D 18.A 28.E 38.B 48.B a) x = 3y 09.D 19.B 29.E 39.B 49.C b) x = 2y c) x = 60° 10.A 20.A 30.B 40.A 50.C d) não existe e) 3 km /h. nenhuma relação especial entre x e y e) x = 2y ou x = 3y, dependendo do comprimento de AB. 45.Dadas uma série geométrica com primeiro termo não GABARITO nulos e razão não nula e uma série aritmética com primeiro termo nulo. É formada a 3ª seqüência 1, 1, 2, . . . pela soma 01(D) Trata-se de uma questão que envolve números dos termos correspondentes das duas séries. A soma dos dez decimais. Temos então que: primeiros termos da terceira seqüência é: 3/8 = 0,375 e que 3/8x10-6 = 0,000 000 375 ∴ (D) é a a) 978 b) 557 c) 467 d) 1 068 e) n.r.a. alternativa correta. 46. Os gráficos de 2x + 3y – 6 = 0; 4x – 3y – 6 = 0; x = 2 e 02(B) Em 25 minutos temos os deslocamentos: y = 2 / 3 se interceptam em: O ponteiro Grande (dos minutos) desloca-se: 5 x 30° = 150°. a) 6 pontos b) 1 ponto c) 2 pontos d) nenhum ponto O ponteiro pequeno (das horas) desloca-se: 1/12 do e) em um número não limitado de pontos deslocamento do ponteiro dos minutos = 1/12 (150°) = 12,5° ∴ ângulo = 150° - 12,5° = 137,5° = 137°30’. 47. As expressões a + bc e (a + b) (a + c) são: a) sempre iguais b) nunca iguais c) iguais quando a + b +c=1 d) iguais a + b + c = 0 e) iguais somente 03(B) Seja x1, x2, . . . , xn os n números cuja média quando a = b = c = 0. aritmética é A. Então A = (x1 + x2 + . . . + xn) / n. Os n números aumentados de 20 unidades cada um terão 48. Dado um ∆ uma média aritmética M tal que: ABC com M = [(x1 + 20) + (x2 + 20) + . . . + (xn + 20) ] / n = medianas AB, BF e = (x1 + x2 + . . . + xn) / n + ( 20 + 20 + ... + 20 ) / n = CD; com FH = A + 20.n / n = A + 20. Portanto B é a alternativa certa. paralela a AF e de igual comprimento. 04(E) Multiplicando os dois membros da equação por (x – Traça-se BH e HE 1)(x – 2), temos : 2x – 2 = x – 2 ∴ x = 0. e estende-se FE até encontrar BH em G. Qual das afirmações a seguir não é 05(D) Temos: y / (1/x²) = k ∴ y = k / x². necessariamente correta? Para y = 16 e x = 1 → 16 = k / 1² → k = 16. a) AEHF é um paralelogramo b) HE = HG c) BH = DC Então para x = 8 temos: y = 16 / 8² = 1 / 4. d) FG = ¾ AB e) FG é a mediana do ∆BGF 06(B) Considerando as duas compras temos dois preços: 49. Os gráficos de y = x² - 4 e y = 2x se interceptam em: 1ª) Compra de n laranjas a 3 por R$ 0,10 →(10 / 3) e vender x–2 por x, temos: n.x = (10 / 3) n a) um ponto cuja abscissa é 2 b) um ponto cuja 2ª) Compra de n laranjas a 5 por R$ 0,20 →(20 / 5) e vender abscissa é 0 por x, temos: n.x = (20 / 5) n. c) nenhum ponto d) dois pontos distintos e) Para o cálculo da venda: 1ª + 2ª → 2n. x = 10n /3 + 20n /5 dois pontos distintos ∴ x = 11 / 3, ou seja, 3 laranjas por R$ 0,11. 50. Para 07(B) Considere Sn (novo salário) e S (salário original). poder Temos que: Sn = S – 20%S = S – 1/5 S = 4/5 S ∴ ultrapassar B S = 5/4 Sn. O aumento necessário é Sn / 4, ou seja, 25% de que corre a Sn. 40 Km/h em uma estrada 08(D) Fatorando o dado, temos: de pista x² - 4y² = (x + 2y)(x – 2y) = 0 ∴ x + 2y = 0 e x – 2y = 0. simples, A Cada uma dessas equações representa uma reta. que corre a 50 km/h deve adiantar-se a B 8m. Ao mesmo tempo 09(D) O triângulo de lados 8, 15 e 17 é retângulo. Para C, que corre em direção a A com velocidade de 50 qualquer ∆ retângulo pode-se mostrar (veja REMEMBER I – Problema 35) que: a – r + b – r = c ∴ 2r = a + b – c = 8 + km/h. Se B e C mantêm suas velocidades, para poder ultrapassar com segurança A deverá aumentar sua 15 – 17 = 6 ∴ r = 3. (Considerar no ∆: c → hipotenusa; a e velocidade de: b → catetos e r = raio do círculo inscrito). 3
  • 4. a- b=8 a - b = - 8 cujas soluções são: a= -1 e b = 7 . Então a equação do 2º grau que admite estas raízes em que Soma = 6 e produto das raízes P = -7 é: 10(A) Iniciando com o cálculo do tempo (∆t1) do trem em x² - 6x – 7 = 0. velocidade média de 40 km/h ( V = 40 km/h) no percurso de a km (∆x = a km) → V = ∆x / ∆t1 ∴ ∆t1 = ∆x / V = a / 40 20(A) A equação √ 25 - t² nunca pode ser igual a zero um horas. vez que é a soma de um número positivo com um número Cálculo do tempo das n paradas de m minutos (∆t2): não negativo.(Para √ 25 – t² estamos querendo nos referir ∆t2 = (n. m) min = (n. m) / 60 horas. somente à raiz positiva). Logo (A) é a opção correta. Nº. de horas de demora = ∆t1 + ∆t2 = a / 40 + (n.m) / 60 = 21(B)2Como A = ½ h . c ∴ h = 2 a / c. ( 3 a + 2mn)/120 . 11(C) A negação consiste em dizer que é falso que “ nenhuma pessoa lenta em aprender freqüenta esta escola”, o que é o mesmo de dizer: “algumas pessoas lentas em 22(D) Temos um problema de descontos. Vamos operar aprender freqüentam esta escola”. cada desconto único da forma D = 1 – (1 – i1)(1 – i2)(1 - i3) onde i1, i2 e i3 representam a taxa centesimal de cada 12(D) Trata-se de uma equação irracional. Não se pode desconto sucessivo. Vejamos o desconto de cada proposta: esquecer no final de fazer à verificação para cada raiz. 1ª Proposta: Descontos sucessivos de 20%; 20% e 10%. A princípio transfere-se √x - 1 para o segundo membro e D1 = 1 – (1 – 0,2)(1 – 0,2)(1 – 0,1) = = 1 – (0,8)(0,8)(0,9) = 1 – 0,576 = 0,424 = 42,4% quadra-se a equação, ou seja: 2ª Proposta: Descontos sucessivos de 40%; 5% e 5%. 5x x 1 1 2 2 x x 1 1quadrando) D2 = 1 – (1 – 0,4)(1 – 0,05)(1 – 0,05) = 1 – (0,6)(0,95)² = 1 – 0,5415 = 0,4585 = 45,85%. 5x x 1 1 2 2 4 x x 1  x x 1 1 4x x 4 4 44 x x 1 Verifica-se então que a 2ª proposta é mais vantajosa e temos 1 x x 1 1 1 x x 1 1quadrando-se ss x² ² 2x  1 1 x x 1 como economia em relação a 1ª de: 1 x² ² 3x  2 2 0 0 x x x 1 e x" " 2. (D2 – D1). 10.000 = (3,45%). 10.000 = R$ 345,00. Verificação: Para x x 1 1 5.1 1 1  11 1 1 4  0 0 22 (Veja também outra maneira de resolução modelo 2 2 22VV V x x 1 é raiz. REMEMBER I – problema 22). Para x x 2 2 5.2 2 1  22 1 1 9  1 1 44 4 4 22FF F x x 2 não é raiz.Logo a opção certa é a aDD. 23(C) A quantia contada em centavos = 25q + 10c + 5n + c. Valor correto = 25(q – x) + 10(c + x) + 5(n + x) + (c – x). A diferença = -25x + 10x + 5x – x = -11x ∴ 11x centavos 13(C) Usando uma das propriedades dos produtos notáveis, devem ser subtraídos. a² - b² = (a + b)(a – b) , temos: 24(E) A função y = 4x² -12x -1 possui como gráfico uma aa4 4b b4 2aa2  b b2 22aa2 2bb2 2 2 2 aa2  b b2 . parábola com concavidade voltada para cima, pois a = 4 > 0 cujo ponto vértice V (xv, yv) = (-b /2a; -∆ / 4 a) ∴ xv = 3/2 aa2 2b b2 aa2 2bb2 = 1,5 e yv = - 10 (mínimo). 14(A) As dimensões do retângulo R são: Comprimento = (Veja REMEMBER I- Problema 4) . 1,1L e Largura = 0,9L ∴ Áret. = 1,1 . 0,9 = 0,99 L². A área do quadrado de lado L = Aq. = L². Daí então: 25(E) Trata-se de uma questão sobre complementar Aret. / Aq = 0,99L² / L² = 0,99 = 99 / 100. quadrado perfeito e regra dos produtos notáveis. Fazendo: x4  2x 2  9 9 x4  2x 2  9  4x 2 2 4x 2 2 x 4  6x 2  9 9 4x 2 2 2 2 2 2 22x 2  33 2 22x x2 2 2x 2  3 3 2xxxx 2  3  2x x x Área Círc.menor r2 m1 3 3 2 R² ² 1 3 3 R R r 3. Área Círc. maior x4 4 9 99x 2 2 2x  333x 2  2x  33. Então a diferença entre os raios r . . . r R R r r r 3 3r r r 3 3 1 1 rr1,73 3 111 0,73r x2 2.x2 . 3 3 15(D) Seja R o raio do círculo maior, temos: 6x2 16(E) Quando a = 4 e b = -4 temos que: a + b = 0. Logo a 26(E) Édio vende com lucro de 10% = expressão não tem sentido para esses valores, pois não se = 10.000 + 10%.10.000= 10.000 + 1.000 = R$ 11.000,00 divide por zero. Camila vende com prejuízo de 10% sobre preço de compra= = 10.000 – 10%.11.000 = 11.000 – 1.100 = R$ 9.900,00. logx x 5 log3 3 32 2 logx x log3 5 5 52 2 A opção correta é (E), pois na transação Édio ganhou: log x5 5 52 2 243 3 10 02 2 x x 2, 43 (que satisfaz x 11.000 – 9.900 = R$ 1.100,00. 3 (Veja REMEMBER II - Problema 5) a condição do log x, que é x x 0). 17(E) Na resolução do problema usaremos a propriedade do 27(B) Da equação x² - px + q = 0 temos como coeficientes: quociente entre logarítmos (log a – log b = log a / b); a a = 1; b = - p e c = q; como soma das raízes (r e s) : r + s = - propriedade do expoente (a log b = log b a) e a definição de b / a = p e como produto: r . s = c / a = q. Para o cálculo de logarítmos (logx a = b → x b = a) Lembrar que: a > 0; b > 0 e r² + s², vamos partir de que r + s = p, quadrar a igualdade, 0 < x 0 1, sendo todos reais. fazer uso de substituições e isolar o pedido do problema. Vejamos como é fácil: 18(A) O discriminante valendo zero (∆ = 0) significa que as (r + s)² = p² ∴ r² +2rs + s² = p² ∴ r² + s² = p² - 2rs = p² - 2q. raízes são reais e iguais desde que os coeficientes da equação sejam números reais. 28(E) Para x 2 0, temos: y = ax² + bx + c ax² - bx +c. Para x = 0, temos: y = ax² + bx + c = ax² - bx + c ∴ 19(B) Denominando os números de a e b temos: existe um ponto de interseção (0, c) ∴ (E) é a alternativa a + b = 6 e !a – b ! = 8 onde a – b = 8 ou a – b = -8. correta. Formamos então os sistemas: a+b=6 e a+b=6 29(E) Trata-se de uma questão que envolve ângulos replementares, ou seja, ]APB + ]BPA = 360° ∴]APB = 4
  • 5. 360° - ]BPA (veja sempre a figura para acompanhar ponteiro das horas entre 2 e 3 horas e (ii) seja 240° + y o cálculos). Vamos ao problema: deslocamento do ponteiro dos minutos. Como o ponteiro Fazendo ]BPA = ]BPR + ]RPA (que são dois ângulos dos minutos possui velocidades 12 vezes maior no mesmo intervalo de tempo, então: 12y = 240° + y ∴ y = 240°/11 = excêntricos exteriores) temos: 43,6min. (i) ) RPA R ABAAR 2 2a cc x2 c cc caa 2 2ccx Daí então, a CHEGADA = 2 h 43,6 min. 2 2 2b b d dddbbxx 2d x Logo o tempo da viagem = 2h 43,6min (14h 43,6min) – 8hs 2iiii BPR B BRBBM 2 2 2 2 2 43,6 min = 6 h. Então:: BPA B 2cc x  2d2 x 2 c  d. 2 Como C APB A 360° ° BPA B 360° ° °c  dd 34(C) O menor comprimento consiste nas duas tangentes d d APB A A 180° ° cc   180° ° dd d a  b. externas T e nos dois arcos A1 e A2 ∴ m.C = 2T + A1 + A2. Nota:a)No semi-círculo SAR: a  c c 180° ° a a 180° ° c Na figura temos: 0102 = 12 cm; No ∆ABC (retângulo) b)No semi-círculo RMT: x   b b x x  d d 180° ° b b 180° ° d temos: BC // 0102 ∴ BC = 12 cm; AB = (9 – 3)cm = 6 cm ∴ 12² = 6² + T² ∴ T = 6 √3. Logo 2 T = 12 √3 cm No ∆DCO2 ≈ ∆DAO1 → DC / O2C = DA / O1A ∴ DC / 3 = DC + 6√3 / 9 ∴ DC = 3√3 cm ∴ tg α = CO2 / DC = √3 / 3 → α = 30° ∴ Arco CE = A1 = 120°/ 360°. 2 .3 = 2. ∴ A1 = 2 e o arco AGB = A2 = 240°/ 360 . 2 .9 = 12. ∴ A2 = 12 30(B) Resolvendo individualmente cada equação encontram-se os seguintes conjuntos soluções: Para : ii 3x² ² 2 2 25 5 x x x3 3 Si S SS33 ii) (2x – 1)² ² (x – 1)² ² 2x – 1 1 1x x 11² ² 2x x 1 1 1 1x x 11 onde: 2x – 1 1 x – 1 1 x x 0 ∴ m.C = 12√3 + 143 . e 2x – 1 1 - (x – 1) ) x x 2 / 3 3 Sii S {0, 2 / 3} iii) x² ² 7 7 x x 1 (quadrando a equação, temos) 35(B) Considerando que o número total de bolas = b, temos x² - 7 7 x – 1 1 x² - x – 6 6 0 0 x’ ’ -2 e x” ” 3. Como se trata de equação irracional deve-se fazer a verificação que cada menino pega: com as raízes encontradas, ou seja: b b 2 Parax P P2 2 2222² ² 7 7 72 2 1 1 13 3 33 , , FFpoisnãoexistereal 1ºmen. . 2  11 2 ; 2ºmen. . 1 bb2 2 bb2 3 2 6 e comraizquadrada negativa. Então E 2nãosatisfaz. bb2 3ºmen. . 2 6 6 bb2 .Podemos então armar a 3 Parax P 3 3 3² ² 7 7 3 3 1 1 2 2 2 , , VV V Siii S { 3 }. equação: b b b22  bb2  bb2 3 0b b 0. 6 3 Observando os três conjuntos soluções, temos que a opção correta é a (B). Portanto o valor de b é indeterminado, podendo assumir 31(D) Sejam Am; Ao e Atrap as áreas do triângulo menor; qualquer valor inteiro da forma 2  6b para b b 1, 2, ... do ∆original e do trapézio. Pelo enunciado Atrap = ½ Ao. Veja pela figura que então: Am = Atrap = ½ Ao, pois 36(E)A área da superfície retangular é dada por: Am + Atrap = Ao ∴ Am / Ao = 1 Área = comprimento x largura ∴ 40 = 10.2x ∴ x = 2. No / 2. ∆retângulo raio² = y² + x² ∴ 3² = y² + 2² ∴ y = √5 . Usando o teorema das áreas, A profundidade é : 3 - √5 ou 3 + √5 (veja as figuras). temos: Am / Ao = DE²/ 2² = 1 / 2 ∴ DE = √2. A mediana m de um trapézio é a média aritmética de seus lados paralelos (suas bases) ∴ m = ( DE + 2) / 2 = = (√2 + 2) / 2. 32(B) Se ∆= 0 temos: (2b)² - 4 a.c = 0 ∴ 4b² - 4 a.c = 0 (:4) 37(B) O número original é 100c + 10 d + u. Quando o ∴ b² - ac = 0 ∴ b² = a.c . Temos que b é média geométrica número é revestido temos 100u +10 d + c. Como c > u, para de a e c, logo (a,b,c) formam uma progressão geométrica. subtrairmos, é necessário acrescentar 10 a u (transformar 1 d = 10 ). O mesmo acontece com as centenas e dezenas, ou 33(A) Seja x o número de graus que o seja, 10 a d (transformar 1c = 10 d) ∴ ponteiro das horas se move entre 8 100(c – 1) + 10(d + 9) + u + 10 horas e o começo da viagem e por sua 100u + 10 d +c vez é 240° + x o deslocamento em graus do ponteiro dos minutos. Como o 100( c – 1 – u ) + 10( d + 9 – d) + ( u + 10 – c ) = ponteiro dos minutos é 12 vezes mais = 100(c – 1 – u) + 10 .9 + u + 10 – c. rápido que o das horas, em qualquer Pelo enunciado do problema: u + 10 – c = 4 ∴ c – u = 6. intervalo de tempo, temos: Então: 100(6 – 1) + 9.10 + 4 = 5.100 + 9.10 + 4 ∴ 12x = 240°+ x ∴ x = 240° / 11 21,82° as dezenas d = 9 e as centenas c = 5. 43,6 minutos ∴ Horário da saída 8h 43,6minutos. 38(B) Considerando os quatro números inteiros e positivos como a, b, c e d e escolhendo sempre três para executar a Para a CHEGADA, entre 2 e 3 horas média aritmética adicionada ao quarto número, formamos o da tarde, vamos considerar que: (i) seja y = deslocamento do 5
  • 6. sistema de equações abaixo, que resolvendo por 44(A) Um modo de resolução do problema usando a escalonamento temos: propriedade do ângulo externo de um ∆.Na figura, temos: i) O ∆OBC (é isóscele), pois OB = BC = r (raio) ∴ 1/33a  b  cc  d d 29 a  b  c  3d d 87 ]O = ]C = y. 1/33b  c  dd  a a 23 3a  b  c  d d 69 ii) O ∆OBC (é isóscele), pois AO = OB = r e ] OBA = 7 1/33c  d  aa  b b 21 a  3b  c  d d 63 ] OAB 1/33d  a  bb  c c 17 a  b  3c  d d 51 = 2y pois ] OBA é a  b  c  3d d 87 externo ao a  b  3c  d d 51 ∆OBC. iii) Então a  3b  c  d d 63 ] x = 3a  b  c  d d 69 ]OAC + y Escalonando o sistema, temos: ( ]x é a  b  c  3d d 87 a  b  c  3d d 87 a  b  c  3d d 87 externo ∆OAC ) ∴ 2c c 2d d d36 c c d d d18 b b d d d12 ]x = 2y + y = 3y. 2 6 2b b 2d d d 24 b bdd d 12 c cdd d 18 42b b 2c c 8d d d192 2b b c c 4d d d96 8b b c c 4d d d96 Fazendo L2 L4 e finalmente L3  L4, temos: a  b  c  3d d 87 a  b  c  3d d 87 d d 21 45(A) Sendo a PG (a, aq, aq², . . . ) e a PA ( 0, r, 2r, . . . ) b b d d d12 b b d d d12 cc 3 8 6 Logo B é a opção onde PA + PG (1, 1, 2, . . . ), logo: a + 0 = 1 ∴ a = 1 (i); c cdd d 18 c cd d d 18 bb 9 aq + r = 1 ∴ q + r = 1 (ii); aq² + 2r = 2 ∴ q² + 2r = 2 (iii). 8c c 5d d d108 86d d d126 a a 12 Em (ii), r = 1 – q que substituído em (iii), temos: q² + 2 – 2q = 2 ∴ q(q – 2) = 0 ∴ q = 0 (não satisfaz) e q = 2. e então r = 1 – 2 = 1. 39(B) Logo PG ( 1, 2, 4, ... ) ∴ Sn = a1 (qn – 1) / (q – 1) p² S10 = 1.(210 – 1) / (2 – 1) ∴ S10 ‘= 1 023. y min m mm a 0 0 0 0 0 0 p² ² 4. 1. q q 0 0 q q 4a 4 . . Veja REMEMBER I, problema 41) a PA (0, -1, -2, . . . ) ∴Sn = n (a1 + a n) / 2 =n(a 1+(n –1)r)/2 ∴ S10 = 10( 0 + 9.(-1)) = -45 ∴ S10 “ = - 45. 40(A) Se diferenciado as frações dadas, temos: ax b Assim: S10’ + S10” = 1 023 +(-45) = 978. cx d d b a adx  bd b bcx  bd b x x adabc a 1 b a ad a bc b 0 0 ad a bc b d c 1 1 d c 46(B) Temos que resolver o sistema abaixo, para determinar b b d ; a a c e x x 0. o ponto interseção das quatro retas. A fração terá seu valor alterado somando-se qualquer valor x não 2x  3y y 6 nulo ao seu numerador e ao denominador. Logo (A) é a opção. 41(A) Sendo x a distância do ponto do acidente ao final da 4x x 3y y 6 viagem, e v a velocidade do trem antes do acidente. O tempo x x 2 normal da viagem, em horas, é dado por: 1 x/v + 1 = (x + v) / v . yy 2 Considerando o tempo em cada viagem temos: 1 x x v 4v 2v 5x 4x 4v 8v a) 1  2  4v 5 v  22 4v v 4v v x x 6v vii Pode-se verificar que x = 2 e y = ½ é solução do sistema. 5 80 1 xx80 x v 320 2v 5xx 400 4x 4v Logo (B) é a opção correta. bb 1  v  2  4v 5 v  11 4v v 4v 5 v v80 0 0x  2v v x x 2v  80 (ii). 42(C) 47(C) Para que a + bc = a² + ab + ac + bc → a = a²+ ab + ac ∴ a + b + c = 1. Fazendo (i) ) (ii),temos: 6v v 2v  80 0 v v 20km/h. Devemos considerar nas operações abaixo a, b e c sempre 48(A) Analisado cada opção, verifica-se: números inteiros e positivos. (A) é verdadeira porque FH é paralela a AE. (C) é verdadeira porque, quando se estende HE, que é b b b paralela a CA, esta encontra AB em D. DC e BH são lados Temos: a  c c a c cquad rand oo o a  c c a² b c c correspondentes dos ∆s congruentes ACD e HDB. ac b a²b bba²² 11 (D) é verdadeira c c c c ac a a²b b b b c c a FG = FE + EG = AD + ½ DB = ¾ AB. 43(E) Armando um sistema com as duas equações, temos (E) é verdadeira porque G é o ponto médio de HB. (B) não pode ser provada a partir da informação dada. Um desafio: que informação é necessária para provar (B)? 49(C) Sendo y = (x²- 4) / (x – 2) = (x – 2)(x + 2) / (x – 2) = x + 2 ( para x x 2, ou então y 4; que é a condição de domínio da função) , é uma reta excluindo no ponto (2, 4). A reta y = 2x cruza a reta anterior no ponto que não faz parte do gráfico. Logo (C) é a opção correta. Para melhor entendimento faça os gráficos das funções no mesmo plano. 50(C) : 6