SlideShare a Scribd company logo
1 of 61
Organic reactions and mechanisms
Substrate: In a chemical reaction, the reactant molecule undergoing attack is referred to as the
substrate.
Reagent: general term used to describe the attacking species is the reagent.
The substrate and the reagent interact to yield the products of the reactions.
Substrate + Reagent → Product(s)
The carbon bonds in the substrate molecule are broken (or cleaved) to give fragments which are
very reactive and constitute transitory intermediates. The steps of an organic reactions showing the
breaking and making of new bonds of carbon atoms in the substrate and leading to the formation
of the final products through transitory intermediates, are often referred to as its mechanism.
Organic reactions and mechanisms
Factors which influence a reaction
A reaction may occur or may not occur depending upon density of electrons at the site of reaction
in the substrate.
1. Inductive effect (I effect)
2. Mesomeric/resonance effect (M effect)
Organic reactions and mechanisms
Factors which influence a reaction
Inductive effect (I effect)
It is the polarity produced in a molecule as a result of higher electronegativity of one atom
compared to another.
It involves σ bonds. The σ bond electrons which form a covalent bond are seldom shared equally
between two atoms. This is because different atoms have different electronegativity values (i.e.
different powers of attracting the electrons in the bond).
Electrons are displaced towards the more electronegative atom. This introduces a certain degree of
polarity in the bond. The more electronegative atom acquires a small negative charge (δ-
). The less
electronegative atom acquires a small positive charge (δ+
).
http://www.chem.sc.edu/faculty/shimizu/333/Chem_333/1a.ii.htm
Organic reactions and mechanisms
Factors which influence a reaction
Inductive effect (I effect)
The carbon-hydrogen bond is used as a standard. Zero effect is assumed in this case.
+I effect: Atoms or groups which lose electrons toward a carbon atom (electron-
releasing/donating). Example: CH3, CH2R, CHR2 etc.
-I effect: Atoms or groups which draw electrons away from a carbon atom (electron-withdrawing).
Example: -X, -NH2, -NO2, -CN, -OH, -SH, -C6H5, -CHO etc.
An inductive effect is transmitted along a chain of carbon atoms, although it tends to be
insignificant beyond the second bond.
Organic reactions and mechanisms
Factors which influence a reaction
Mesomeric/resonance effect (M effect)
It is the polarity produced in a molecule as a result of interaction between two π bonds or a π bond
and lone pair of electrons. This effect is transmitted along a chain in a similar way as are inductive
effects.
It involves π electrons of double or triple bonds. The mesomeric effect is of great importance in
conjugated compounds (compounds in which the carbon atoms are linked alternatively by single
and double bonds). In such systems, the π electrons get delocalized as a consequence of mesomeric
effect, giving the number of resonance structure of the molecule.
H3C C
H
C
H
C
H
O H3C C C
H
C
H
O
-+
H
Organic reactions and mechanisms
Factors which influence a reaction
Mesomeric/resonance effect (M effect)
In carbonyl group, the oxygen atom is more electronegative than the carbon atoms. As a result, the
π electrons of the carbon-oxygen double bond get displaced toward the oxygen atom.
C O C O
-+
Organic reactions and mechanisms
Factors which influence a reaction
Mesomeric/resonance effect (M effect)
+M effect: atoms which lose electrons toward a carbon atom. Example: -X, -NH2, -OH, -SH etc.
(Activating groups or ortho/para directors). Exception: halogens are weak ortho-para director and
also ring deactivator.
NH2 NH2 NH2 NH2
+ + +
-
-
-
Organic reactions and mechanisms
Factors which influence a reaction
Mesomeric/resonance effect (M effect)
-M effect: atoms or groups which draw electrons away from a carbon atom. Example: -NO2, -CN,
-CHO, -COOH, -SO3H etc. (Deactivating group or meta directors).
N
O O
N
O O
N
O O
N
O O
- - -
+
+
+
Organic reactions and mechanisms
Bond fission
A covalent bond (σ bond) can undergo fission in two ways:
1. Homolytic fission: In this process each of the atoms acquires one of the bonding electrons.
A A +BA B or B
The products A• and B• are called free radicals. They are-
Electrically neutral
Have one unpaired electron
Extremely reactive (tendency to become paired at the earliest opportunity)
Reactions which proceed via free radical formation, take place very rapidly
Homolytic fission is the most common mode of fission in the vapour phase. They are usually initiated by
heat, light or organic peroxide.
Organic reactions and mechanisms
Bond fission
2. Heterolytic fission: In this process one of the atoms acquires both of the bonding electrons,
when the bond is broken. The products of heterolytic fissions are ions.
A B A + B
+ -
Organic reactions and mechanisms
Reaction intermediates
Heterolytic and homolytic bond fissions result in the formation of short-lived fragments called
reaction intermediates.
i) Carbonium ions (Carbocations)
Organic ions which contain a positively charged carbon atom are called carbonium ions. They are
formed by heterolytic bond fission.
where, Z is more elctronegative than carbon.
C + ZC Z
+ -
Organic reactions and mechanisms
Reaction intermediates
Carbonium ions are named after the parent alkyl groups and adding the word ‘carbonium ion’. The
stability of carbonium ions is influenced by:
a. Resonance effect: allyl and benzyl carbonium ions are much more stable than propyl carbonium
ions. Resonance forms of allyl carbonium ion:
Resonance forms of benzyl carbonium ion:
H2C C
H
CH2
+
H2C C
H
CH2
+
CH2
+
CH2 CH2 CH2
+
+
+
Organic reactions and mechanisms
Reaction intermediates
b. Inductive effect: electron releasing groups (+I groups) stabilize carbonium ions by partial
neutralization of the positive charge on carbon. Thus, a tertiary carbonium ion is more stable than a
secondary.
Organic reactions and mechanisms
Reaction intermediates
ii) Carbanions
Organic ions which contain a negatively charged carbon atom are called carbanions. They are also
formed by heterolytic bond fission.
where, Z is less elctronegative than carbon.
C + ZC Z
+-
Organic reactions and mechanisms
Reaction intermediates
ii) Carbanions
Carbanions are named after the parent alkyl groups and adding the word ‘carbanion’. The stability
of carbanions is also influenced by:
a. Resonance effect: the benzyl carbanion is much more stable than propyl carbanion.
CH2 CH2 CH2 CH2
-
-
-
-
Organic reactions and mechanisms
Reaction intermediates
ii) Carbanions
b. Inductive effect: Electron releasing groups (+I groups) make the carbanions less stable. Thus a
primary carbanion is more stable than a secondary.
Organic reactions and mechanisms
Reaction intermediates
iii) Carbon free radicals
They have no charge. They are formed by homolytic fission.
Here, Z and carbon atom have similar electronegativity.
Free radicals combine with other free radicals or with other molecules to produce larger free
radicals.
C + ZC Z
Organic reactions and mechanisms
Reaction intermediates
iii) Carbon free radicals
Carbon free radicals are named after the parent alkyl groups and adding the word ‘free radical’.
Free radicals are also stabilized by resonance.
Organic reactions and mechanisms
Reaction intermediates
iv) Carbenes
Carbenes are neutral species having a carbon atom with two bonds and two electrons.
Carbenes are highly reactive. They act as strong electrophiles, because they can accept a pair of
electrons to complete their outer shell.
C For example: Methylene (H2C )
Organic reactions and mechanisms
Classification of reagents
Organic reagents fall into two main groups:
a) Electrophiles (E+
): a reagent which can accept an electron pair in a reaction.
Electrophile means ‘electron-loving’, they are electron deficient.
Attacks the regions of high electron density (negative centres) in the
substrate molecule.
They may be -
Positive ions or
Neutral molecule (AlCl3, BF3 etc.)
b) Nucleophiles (Nu-
): a reagent which can donate an electron pair in a reaction.
Nucleophile means ‘nucleus-loving’, hey are electron rich.
Attacks the regions of low electron density (positive centres)
in the substrate molecule.
They may be -
Negative ions or
Neutral molecule (H2O, NH3 etc.)
http://www.chem.ucla.edu/~harding/tutorials/elec_nuc/elec_nuc.html
Energy requirements of organic reactions
Activation energy (Ea): Molecules of the reactants are in a state of rapid motion and possess kinetic
energy. The reaction occurs when the reacting molecules approach in proper alignment and collide. On
such collision, the kinetic energy possessed by the molecules is transformed into potential energy of the
system. Thus to start a reaction, the required energy is supplied by the collisions of the reacting
molecules.
The minimum amount of potential energy that must be provided by collisions of the reacting molecules
for the reaction to occur is known as the activation energy.
Consider the energy change during the course of the reaction.
In the beginning both C and A-B possess certain potential energy. These reacting molecules also possess
kinetic energy which on collisions is transformed into potential energy. This results in the increase of
potential energy and the system moves up along the curve till the cliff is reached. The energy of cliff
state is a sort of temporary phase and leads to products C-A + B, when the potential energy of the
system is again changed into kinetic energy and then heat or any other form of energy.
C + A B C BA +
Energy requirements of organic reactions
Energy requirements of organic reactions
Transition state (activated complex): an extremely transitory specific arrangement of atoms and
groups through which a reaction system must pass on its way to the products.
The transition state is -
•Imaginary molecule and cannot be isolated
•Bonds are being partial
•System possesses maximum energy and is most unstable.
C + A B C A B C A + B
Reactants ProductsTransition state
Reaction intermediate: An intermediate is a stable entity and
can be isolated under appropriate condition. A reaction which
proceeds through an intermediate has to surmount two energy
barriers.
conversion of the reactants to the intermediate (Ea) and
 conversion of the intermediate into products (Ea’).
Types of organic reactions
The reactions of organic compounds can be classified into four main types.
1.Substitution reactions
2.Addition reactions
3.Elimination reactions
4.Rearrangement reactions
Substitution reactions
Substitution reactions are those reactions in which an atom or group of atoms directly attached to a
carbon in the substrate molecule is replaced by another atom or group of atoms. For example, The
chlorination of methane in the presence of ultraviolet light, as follows:
Mechanism of substitution reaction
a) Free radical substitution reactions: These reactions, as above, are initiated by free radicals and take
place in 3 consecutive steps involving -
•Initiation
•Propagation and
•Termination.
CH4 + Cl2
UV light
CH3Cl + HCl
Methane Methyl chloride
Substitution reactions
Mechanism of substitution reaction
a) Free radical substitution reactions: contd.
i) Initiation steps: A chlorine molecule undergoes homolytic fission in the presence of ultraviolet light to
give chlorine free radicals.
ii) Propagation steps: A chlorine free radical attacks the methane molecule to give methyl free radical
and hydrogen chloride. The methyl free radical attacks a chlorine molecule to yield methyl chloride and
chlorine free radical. These propagation steps are repeated again and again.
Cl Cl
UV
2Cl
Cl CH3
CH3
ClCl Cl
Cl H CH3
HCl + CH3
CH3
Cl + CH3Cl
Substitution reactions
Mechanism of substitution reaction
a) Free radical substitution reactions: contd.
iii) Termination steps: These involve the formation of stable molecules by combination of free radicals.
CH3 + Cl H3C Cl
2Cl Cl2
2 CH3
H3C CH3
Substitution reactions
Mechanism of substitution reaction
b) Electrophilic substitution reactions: When a substitution reaction involves the attack by an
electrophile, the reaction is referred to as electrophilic substitution.
e.g. bromination of benzene in the presence of FeBr3.
The mechanism of the above reaction involves the following steps:
Step 1: Formation of the electrophile.
+ Br2
FeBr3
Br
+ HBr
Bromo benzeneBenzene
Br Br + FeBr3 Br+
+ FeBr4
-
Electrophile
Substitution reactions
Mechanism of substitution reaction
b) Electrophilic substitution reactions: contd.
Step 2: The electrophile (Br+
) attacks the π electron system of the benzene ring to form a resonance
stabilized carbonium ion.
Step 3: Elimination of proton to give the substituted product.
Benzene
Br+
+
Resonance hybrid
+
+
+
BrH BrH BrH BrH
+
BrH
FeBr4
-
+ HBr + FeBr3
Br
Substitution reactions
Mechanism of substitution reaction
b) Electrophilic substitution reactions:
Nitration
Step 1: Formation of the electrophile
Step 2: The electrophile (NO2
+
)
attacks the π electron system
Step 3: Elimination of proton to give
the substituted product
Substitution reactions
Mechanism of substitution reaction
b) Electrophilic substitution reactions:
Sulfonation
Step 1: Formation of the electrophile
Step 2: The electrophile (SO3) attacks
the π electron system
Step 3: Elimination of proton to give
the substituted product
Substitution reactions
Mechanism of substitution reaction
b) Electrophilic substitution reactions:
Friedel-Craft Alkylation
Step 1: Formation of the electrophile
Step 2: The electrophile (R+
) attacks
the π electron system
Step 3: Elimination of proton to give
the substituted product
Substitution reactions
Mechanism of substitution reaction
b) Electrophilic substitution reactions:
Friedel-Craft Alkylation
Step 1: Formation of the
electrophile
Step 2: The electrophile [(CH3)3C+
]
attacks the π electron system
Step 3: Elimination of proton to give
the substituted product
Substitution reactions
Mechanism of substitution reaction
b) Electrophilic substitution reactions:
Friedel-Craft Acylation
Step 1: Formation of the electrophile
Step 2: The electrophile (RCO+
)
attacks the π electron system
Step 3: Elimination of proton to give
the substituted product
Substitution reactions
Mechanism of substitution reaction
c) Nucleophilic substitution reactions:
When a substitution reaction involves the attack by a nucleophile, the raction is referred to as SN. The
hydrolysis of alkyl halides by aqueous NaOH is an example of nucleophilic substitution.
The nucleophilic reactions are divided into two classes:
•SN2 mechanism
The terminology SN2 stands for “substitution nucleophilic bimolecular”.
rate of SN2 reaction depends on the concentration of both the substrate and the nucleophile, the
reaction is of second-order
Rate [Substrate] [Nucleophile]∝
two reactants take part in the transition state of the slow or rate-determining step of a reaction and is
therefore bimolecular
The reaction consists of single step
R X + OH-
R OH + X-
Nucleophile Leaving group
Substitution reactions
Mechanism of substitution reaction
c) Nucleophilic substitution reactions:
•SN2 mechanism
For example: hydrolysis of methyl bromide by aqueous NaOH. The reaction and transition state are
represented in the following figure.
The alkyl halide substrate contains a polarized carbon halogen bond. The SN2 mechanism begins when
hydroxide ion approaches the substrate carbon from the opposite side of the bromine ion. This is
because both hydroxide ion and bromine atom are electron rich. In transition state, both OH and Br are
partially bonded to the substrate carbon. Carbon in the resulting complex is trigonal bipyramidal in
shape. With the loss of the leaving group, the carbon atom again assumes a pyramidal shape and its
configuration is inverted.
C
H
H
H
BrHO
- -C
H
HH
BrHO
δ
-
δ
-
CHO
H
H
H
+ Br
Methyl bromide Transition state Methyl alcohol
Substitution reactions
Mechanism of substitution reaction
c) Nucleophilic substitution reactions:
•SN2 mechanism
Walden inversion: The inversion of stereochemical configuration at a chiral center during a chemical
reaction. A molecule can form two enantiomers around a chiral center. Walden inversion converts the
configuration of the molecule from one enantiomeric form to the other.
C Cl
H3C
H3CH2C
HI
- I C
CH3
CH2CH3
H
+ Cl
-
Substitution reactions
Mechanism of substitution reaction
c) Nucleophilic substitution reactions:
•SN2 mechanism
Factors affecting SN2 reactions
1. Steric hindrance: SN2 reactions require a rearward attack on the carbon bonded to the leaving group.
The larger and bulkier the group(s), the greater the steric hindrance and the slower the rate of reaction.
In general, the order of reactivity of alkyl halides in SN2 reactions is: methyl > 1° > 2°. The 3° alkyl halides
are so crowded that they do not generally react by an SN2 mechanism.
C
H
H
H
X
HO
Easy attack
(Primary halide)
- C
H3C
H3C
H3C
X
HO
Difficult attack
(Tertiary halide)
-
Substitution reactions
Mechanism of substitution reaction
c) Nucleophilic substitution reactions:
•SN2 mechanism
Factors affecting SN2 reactions
2. Nucleophilicity: Because the nucleophile is involved in the rate-determining step of SN2 reactions,
stronger nucleophiles react faster.
3. Solvent effects: For protic solvents (solvents capable of forming hydrogen bonds in solution), an
increase in the solvent's polarity results in a decrease in the rate of SN2 reactions. This decrease occurs
because protic solvents solvate the nucleophile, thus lowering its ground state energy. Because the
energy of the activated complex is a fixed value, the energy of activation becomes greater and
therefore, the rate of reaction decreases.
Substitution reactions
Mechanism of substitution reaction
c) Nucleophilic substitution reactions:
•SN1 mechanism
The terminology SN1 stands for “substitution nucleophilic unimolecular”.
rate of SN1 reaction depends only on the concentration of the alkyl halide, the reaction is of first-
order
Rate [Substrate]∝
Activated complex contains only one species, alkyl carbocation and is therefore unimolecular
The reaction consists of two steps
Substitution reactions
Mechanism of substitution reaction
c) Nucleophilic substitution reactions:
•SN1 mechanism
This mechanism proceeds via two steps.
i) The first step (the slow step) involves the breakdown of the alkyl halide into an alkyl carbocation and
a leaving group anion. This is the rate determining step.
ii) The second step (the fast step), the nucleophile can attack the planar carbonium ion from either side
to give the product.
C L
Z
X
Y
Slow
Nu
-
+ L
Nu C
Z
X
Y
C Nu
Z
X
Y
Fast
C
Z
X
Y
+
Substitution reactions
Mechanism of substitution reaction
c) Nucleophilic substitution reactions:
•SN1 mechanism
•SN1 mechanisms proceed via a carbocation intermediate, so a nucleophile attack is equally possible
from either side of the plane. Therefore, a pure, optically active alkyl halide undergoing an SN1
substitution reaction will generate a racemic mixture as a product.
[Racemic mixture: one that has equal amounts of left- and right-handed enantiomers of a chiral
molecule.]
Stability: Primary and methyl carbocations do not proceed through the SN1 pathway.
Addition reactions
Addition reactions are those in which atoms or groups of atoms are simply added to a double or triple
bond without the elimination of any atom or other molecules. In these reactions, at least one π bond is
lost while two new σ bonds are formed. Double bonds become saturated and triple bonds are
converted into double bonds or may become saturated by further addition. For example:
Mechanisms of addition reactions
These reactions may be initiated by electrophiles, nucleophiles or free radicals.
a) Electrophilic addition reactions:
When an addition reaction involves the initial attack by an electrophile, the reaction is referred to as
electrophilic addition. The addition of HBr to ethylene is an example of electrophilic addition.
C CH
H
Ethylene
+ Br2
H
H C CH
H H
H
Br Br
1,2-dibromo methane
H2C CH2 + HBr H2C CH2
H Br
Ethylene Ethyl bromide
Addition reactions
Mechanisms of addition reactions
a) Electrophilic addition reactions: contd.
The mechanism of the above reaction involves the following steps:
Step 1: Hydrogen bromide gives a proton and bromide ion.
Step 2: The electrophile attacks the π bond of ethylene to give a carbonium ion.
Step 3: The nucleophile attacks the carbonium ion to give the addition product.
H2C CH2 + HBr H2C CH2
H Br
Ethylene Ethyl bromide
H Br H Br
Electrophile Nucleophile
++ -
H2C CH2H +
+
H3C CH2
+
Carbonium ion
H3C CH2
+
Carbonium ion
+ Br
-
H3C
H2
C
Ethyl bromide
Br
Addition reactions
When an alkene is symmetrical about the double bond, the produce formed in addition reaction is the
same no matter which way the reagent becomes attached to the alkene.
Markovnikov's rule
When an unsymmetrical reagent adds to an unsymmetrical double bond, the positive part of the
reagent becomes attached to the double bonded carbon atom which bears the greatest number of
hydrogen atoms.
H2C CH2 HBr H3C
H2
C Br+
H2C CH2 HBr
H2
C CH3+ Br
Identical
C
H
CH2 HBr
H3C C
H
CH3
+H3C
A
B
A
B
Br
Isopropyl bromide (major)
H3C
H2
C
H2
C
n-propyl bromide (minor)
Br
Addition reactions
Markovnikov's rule
The mechanism of this reaction involves the following steps:
Step 1: Hydrogen bromide gives a proton and bromide ion.
Step 2: The electrophile attacks the π bond of propene to give a more stable carbonium ion.
Step 3: The nucleophile combines with the more stable 2° carbonium ion to give the major product.
C
H
CH2 HBr
H3C C
H
CH3
+H3C
A
B
A
B
Br
Isopropyl bromide (major)
H3C
H2
C
H2
C
n-propyl bromide (minor)
Br
H Br H Br
Electrophile Nucleophile
++ -
C
H
CH2 H
+ 2 Carbonium ion
(more stable)H3C +
H
C CH3H3C
+
°
1 Carbonium ion
(less stable)
H2
C CH2H3C
°
+
H3C
H
C
2 Carbonium ion
+ Br
-
H3C C
H
Isopropyl bromide
CH3CH3
+
°
Br
Addition reactions
b) Free-radical addition (Anti-Markovnikov Addition)
In the presence of a peroxide initiator, hydrogen halide adds to alkene via free-radical mechanism. Such
reactions are said to be anti-Markovnikov, since the positive part adds to the less substituted carbon,
exactly the opposite of Markovnikov reaction. This process was first explained by Kharasch.
i) Chain initiation: The chain is initiated by free radicals produced by an oxygen-oxygen bond in the
organic peroxide breaking. These free radicals extract a hydrogen atom from a hydrogen bromide
molecule to produce bromine radicals.
ii) Chain propagation: When the bromine radical joins to the propene, a secondary radical is formed.
This is more stable than the primary radical which would be formed if it attached to the other carbon
atom.
C
H
CH2 HBr+H3C H3C
H2
C
H2
C Br
Peroxide
RO OR
Heat 2RO
HBr
ROH + Br
H3C C
H
CH2 + Br
2 free radical
(more stable)
H
C
H2
CH3C
°
1 free radical
(less stable)
H
C CH2H3C
°
Br
Br
Addition reactions
b) Free-radical addition (Anti-Markovnikov Addition)
The more stable secondary radical reacts with another HBr molecule to produce 1-bromopropane and
another bromine radical to continue the process.
iii) Chain termination: In termination step, two free radicals hit each other and produce a neutral
molecule.
Why don't the other hydrogen halides behave in the same way?
Hydrogen fluoride: The hydrogen-fluorine bond is so strong that fluorine radicals aren't formed in the
initiation step.
Hydrogen chloride: With hydrogen chloride, the second half of the propagation stage is very slow
(endothermic reaction). This is due to the relatively high hydrogen-chlorine bond strength.
HBr Br
H
C
H2
CH3C Br + H3C
H2
C
H2
C Br +
Br Br+ Br2
Addition reactions
Why don't the other hydrogen halides behave in the same way? Contd.
Hydrogen iodide: In the first step of the propagation stage turns out to be endothermic and this
slows the reaction down. Not enough energy is released when the weak carbon-iodine bond is formed.
Hydrogen bromide: In the case of hydrogen bromide, both steps of the propagation stage are
exothermic.
Addition reactions
c) Nucleophilic addition reactions
When an addition reaction involves the initial attack by a nucleophile, the reaction is referred to as
nucleophilic addition. Aldehydes and ketones which contain carbon-oxygen double bonds undergo such
reactions.
The carbonyl group is highly polar in character. This is because of higher electronegativity of oxygen as
compared to carbon. The carbonyl group may be represented as shown below:
The addition of HCN to acetone is an example of nucleophilic addition.
C O C O C O
+ - δ δ+ -
C O + HCN H3C C
CH3
CN
OH
Addition reactions
c) Nucleophilic addition reactions
The mechanism of the above reaction involves the following steps:
Step 1: Hydrogen cyanide gives a proton and a cyanide ion.
Step 2: The nucleophile attacks the positively charged carbonyl carbon to give the corresponding anion.
Step 3: The electrophile combines with the anion to form the addition product.
C O + HCN H3C C
CH3
CN
OH
H CN H CN
Electrophile Nucleophile
++ -
CN
H3C C
CH3
CN
OC O
δ δ+ -
-
-
H3C C
CH3
CN
O
-
H
+ H3C C
CH3
CN
OH
Addition reactions
c) Nucleophilic addition reactions
All aldehydes and unsymmetrical ketones will form a racemic mixture by this reaction.
They are planar molecule, and attack by a cyanide ion will either be from above the plane of the
molecule, or from below. There is an equal chance of either happening.
Attack from one side will lead to one of the two isomers, and attack from the other side will lead to the
other.
H3C C
H
O
CN
-
CN
-
Attack can be from here
or from here
Elimination reactions
Elimination reactions are those which involve the removal of atoms or groups of atoms from two
adjacent atoms in the substrate molecule to form a multiple bond.
Elimination reactions may be regarded as reverse of addition reactions.
In these reactions, two σ bonds are lost and a new π bond is formed. Saturated compound become
unsaturated.
For example:
C CH
H
Ethylene
+ Zn
H
HC CH
H H
H
Br Br
1,2-dibromo methane
∆
+ ZnBr2
Elimination reactions
Mechanisms of elimination reactions
These reactions are also divided into two classes:
a) E2 Reaction
E2 stands for elimination bimolecular. The reaction rate, influenced by both the alkyl halide and the
base and of second order.
 E2 typically uses a strong base, it needs a chemical strong enough to pull off a weakly acidic hydrogen.
 A good leaving group is required because it is involved in the rate determining step.
E2 is the one step process with a transition state.
Typically undergone by primary substituted alkyl halides, but is possible with some secondary alkyl
halides.
Because E2 mechanism results in formation of a pi bond, the two leaving groups (often a hydrogen
and a halogen) need to be anti-periplanar (or 180o
). That’s why eliminations often favor the trans-
product over the cis-product (stereoselectivity).
Elimination reactions
Mechanisms of elimination reactions
a) E2 Reaction contd.
In the E2 mechanism, a base abstracts a proton from the β-carbon and the expulsion of the halide ion
from the α-carbon occurs simultaneously. A double bond is formed between α and β carbon.
C2H5 C
H
H
C
H
CH3
Br
αβ
HO
-
C2H5
H CH3
H
Elimination reactions
Mechanisms of elimination reactions
b) E1 Reaction
E1 stands for elimination unimolecular. The reaction rate is influenced only by the concentration of
the alkyl halide and is of first-order.
 A strong base not required, since it is not involved in the rate-determining step.
 A good leaving group is required, since it is involved in the rate-determining step.
E1 typically takes place with tertiary alkyl halides, but is possible with some secondary alkyl halides.
Elimination reactions
Mechanisms of elimination reactions
b) E1 Reaction contd.
E1 reactions are two step processes.
Step 1: The alkyl halide ionizes to give the carbonium ion.
Step 2: A proton is abstracted by the base from the adjacent β-carbon atom to give the alkene.
C
H3C
H3C
H3C
Br
Tert-butyl bromide
C
Carbonium ion
CH3
CH3H3C +
+ Br
-
C
Carbonium ion
CH3
H2
CH3C + H
HO
-
C
2-methyl propene
CH3
CH2H3C + H2O
Unlike E2, which requires the
proton to be anti to the leaving
group, E1 reactions simply require
a neighboring hydrogen. This is due
to the fact that the leaving group
has already left the molecule.
Elimination reactions
Zaitsev's or Saytzeff's rule
It states that although more than one product can be formed during alkene synthesis, the more
substituted alkene is the major product. This infers that the hydrogen on the most substituted carbon is
the most probable to be deprotonated, thus allowing for the most substituted alkene to be formed.
H3C
H
C
H2
C CH3
Br
2-bromo butane
Br-
HC C C CH3
+
H
H
H H
H
HO
-
OH
-
H2C C
H
H2
C CH3
1-butene (20%)
H3C C
H
C
H
CH3H2O
2-butene (80%)
Rearrangement reactions
Rearrangement reactions involve the migration of an atom or group of atoms from one site to another
within the same molecule. The product is always the structural isomer of the original compound.
For example:
Fries Rearrangement
The reaction of an aryl ester with a Lewis acid (AlCl3) catalyst followed by an aqueous acid to give
phenols is known as Fries rearrangement.
C C
H
H H
OH
Vinyl alcohol (ethenol)
C C
H
O
Acetaldehyde (ethanal)
H
H
H
O CH3
O
Catalyst AlCl3
Aqueous HCl
OH
CH3
O
OH
H3C O
+
Rearrangement reactions
Fries Rearrangement contd.
Mechanism: The mechanism begins with coordination of the ester to the Lewis acid, followed by a
rearrangement which generates an electrophilic acylium ion.
O CH3
O
AlCl3
O CH3
O
-
O C CH3
+
O
-
Cl3Al
+
Acylium ion
Cl3Al
+
O CH3
O
Catalyst AlCl3
Aqueous HCl
OH
CH3
O
OH
H3C O
+
Rearrangement reactions
Fries Rearrangement contd.
Mechanism:
Free acylium ion which reacts in a classical electrophilic aromatic substitution with the aromatic ring.
Deprotonation to regenerate aromaticity and Bronsted acid work-up to regenerate the Lewis acid
catalyst provide the product. A low reaction temperature favors para substitution and with high
temperatures the ortho product prevails.
Or,
O C CH3
+
O
-
Cl3Al
+
O
H
CH3
O
H
+
OH
CH3
O
O C CH3
+
O
-
Cl3Al
+
O
H
+
OH
H C
OH
H3C O

More Related Content

What's hot

Catalysis
CatalysisCatalysis
Catalysis
N K
 

What's hot (20)

Metal alkene complexes.ppt
Metal alkene complexes.pptMetal alkene complexes.ppt
Metal alkene complexes.ppt
 
Dynamic Stereochemistry-Role of Conformation and Reactivity
Dynamic Stereochemistry-Role of Conformation and ReactivityDynamic Stereochemistry-Role of Conformation and Reactivity
Dynamic Stereochemistry-Role of Conformation and Reactivity
 
Reaction intermediates
Reaction intermediatesReaction intermediates
Reaction intermediates
 
Reaction Intermediate
Reaction IntermediateReaction Intermediate
Reaction Intermediate
 
Aromatic electrophilic substitution
Aromatic electrophilic substitutionAromatic electrophilic substitution
Aromatic electrophilic substitution
 
Carbocation ppt
Carbocation pptCarbocation ppt
Carbocation ppt
 
Photochemistry of Carbonyl Compound, Norrish type I and Type II Reaction
Photochemistry of Carbonyl Compound, Norrish type I and Type II ReactionPhotochemistry of Carbonyl Compound, Norrish type I and Type II Reaction
Photochemistry of Carbonyl Compound, Norrish type I and Type II Reaction
 
Topicity
TopicityTopicity
Topicity
 
Imortance of DIBAL-H
Imortance of DIBAL-HImortance of DIBAL-H
Imortance of DIBAL-H
 
Sigmatropic rearrangement reactions (pericyclic reaction)
Sigmatropic rearrangement reactions (pericyclic reaction)Sigmatropic rearrangement reactions (pericyclic reaction)
Sigmatropic rearrangement reactions (pericyclic reaction)
 
Rearrangement Reactions vikram choudhary
Rearrangement Reactions   vikram choudharyRearrangement Reactions   vikram choudhary
Rearrangement Reactions vikram choudhary
 
Phase transfer catalysis
Phase transfer catalysisPhase transfer catalysis
Phase transfer catalysis
 
Catalysis
CatalysisCatalysis
Catalysis
 
Reduction reactions
Reduction reactionsReduction reactions
Reduction reactions
 
Substitution reactions
Substitution reactionsSubstitution reactions
Substitution reactions
 
Nucleophilic substitutions reactions
Nucleophilic substitutions reactionsNucleophilic substitutions reactions
Nucleophilic substitutions reactions
 
Linear free energy relationships
Linear free energy relationshipsLinear free energy relationships
Linear free energy relationships
 
Hammonds postulates
Hammonds postulatesHammonds postulates
Hammonds postulates
 
Crown ethers
Crown ethersCrown ethers
Crown ethers
 
Favorskii rearrangement----Sir Khalid (Organic)
Favorskii rearrangement----Sir Khalid (Organic)Favorskii rearrangement----Sir Khalid (Organic)
Favorskii rearrangement----Sir Khalid (Organic)
 

Viewers also liked (10)

Organic Chemistry II Ch 21 Klein
Organic Chemistry II Ch 21 KleinOrganic Chemistry II Ch 21 Klein
Organic Chemistry II Ch 21 Klein
 
Reaction mechanisms
Reaction mechanismsReaction mechanisms
Reaction mechanisms
 
Organic reaction mechanism full
Organic reaction mechanism fullOrganic reaction mechanism full
Organic reaction mechanism full
 
Organic reaction mechanism
Organic reaction mechanismOrganic reaction mechanism
Organic reaction mechanism
 
Rearrangement
RearrangementRearrangement
Rearrangement
 
ORGANIC Reaction mechanism ncert class 11
ORGANIC Reaction mechanism ncert class 11ORGANIC Reaction mechanism ncert class 11
ORGANIC Reaction mechanism ncert class 11
 
Reactions intermediate
Reactions intermediateReactions intermediate
Reactions intermediate
 
Reaction intermediates
Reaction intermediatesReaction intermediates
Reaction intermediates
 
rearrangement reaction
 rearrangement reaction rearrangement reaction
rearrangement reaction
 
Organic reactions and mechanisms
Organic reactions and mechanismsOrganic reactions and mechanisms
Organic reactions and mechanisms
 

Similar to Reaction mechanisms

Basic rxns in org chem
Basic rxns in org chemBasic rxns in org chem
Basic rxns in org chem
Janine Samelo
 
PHOTOCHEMISTRY BASIC PRINCIPLE AND JABLONSKI DIAGRAM
PHOTOCHEMISTRY BASIC PRINCIPLE AND JABLONSKI DIAGRAMPHOTOCHEMISTRY BASIC PRINCIPLE AND JABLONSKI DIAGRAM
PHOTOCHEMISTRY BASIC PRINCIPLE AND JABLONSKI DIAGRAM
KAOHSIUNG MEDICAL UNIVERSITY, TAIWAN
 
Inductive & mesomeric effect s k katoch
Inductive & mesomeric effect s k katochInductive & mesomeric effect s k katoch
Inductive & mesomeric effect s k katoch
Sanjeev Katoch
 

Similar to Reaction mechanisms (20)

Therotical Organic Chemistry.pptx
Therotical Organic Chemistry.pptxTherotical Organic Chemistry.pptx
Therotical Organic Chemistry.pptx
 
An overview of organic reaction mechanisms
An overview of organic reaction mechanismsAn overview of organic reaction mechanisms
An overview of organic reaction mechanisms
 
organic chemistry leacture 01 uol.pptx
organic chemistry leacture 01   uol.pptxorganic chemistry leacture 01   uol.pptx
organic chemistry leacture 01 uol.pptx
 
Reaction.pptx
Reaction.pptxReaction.pptx
Reaction.pptx
 
ORGANIC REACTIONS AND THEIR MECHANISMS
ORGANIC REACTIONS AND THEIR MECHANISMSORGANIC REACTIONS AND THEIR MECHANISMS
ORGANIC REACTIONS AND THEIR MECHANISMS
 
B.tech. ii engineering chemistry unit 4 B organic chemistry
B.tech. ii engineering chemistry unit 4 B organic chemistryB.tech. ii engineering chemistry unit 4 B organic chemistry
B.tech. ii engineering chemistry unit 4 B organic chemistry
 
e3_ppt.pptx
e3_ppt.pptxe3_ppt.pptx
e3_ppt.pptx
 
Basic rxns in org chem
Basic rxns in org chemBasic rxns in org chem
Basic rxns in org chem
 
(25) session 25 introduction to organic reactions
(25) session 25   introduction to organic reactions(25) session 25   introduction to organic reactions
(25) session 25 introduction to organic reactions
 
Types of Organic Reactions
Types of Organic ReactionsTypes of Organic Reactions
Types of Organic Reactions
 
Chapter 05 an overview of organic reactions.
Chapter 05 an overview of organic reactions.Chapter 05 an overview of organic reactions.
Chapter 05 an overview of organic reactions.
 
Lect. 5 quantum yield and photosensitize reaction
Lect. 5 quantum yield and photosensitize reactionLect. 5 quantum yield and photosensitize reaction
Lect. 5 quantum yield and photosensitize reaction
 
Sem I A) Electronic displacements by Dr Pramod R Padole
Sem I A) Electronic displacements by Dr Pramod R PadoleSem I A) Electronic displacements by Dr Pramod R Padole
Sem I A) Electronic displacements by Dr Pramod R Padole
 
Basic effects in Organic chemistry
Basic effects in Organic chemistryBasic effects in Organic chemistry
Basic effects in Organic chemistry
 
Electron Displacement Effect
Electron Displacement EffectElectron Displacement Effect
Electron Displacement Effect
 
PHOTOCHEMISTRY BASIC PRINCIPLE AND JABLONSKI DIAGRAM
PHOTOCHEMISTRY BASIC PRINCIPLE AND JABLONSKI DIAGRAMPHOTOCHEMISTRY BASIC PRINCIPLE AND JABLONSKI DIAGRAM
PHOTOCHEMISTRY BASIC PRINCIPLE AND JABLONSKI DIAGRAM
 
6 f chem intro
6 f chem intro6 f chem intro
6 f chem intro
 
Electronic displacement
Electronic displacementElectronic displacement
Electronic displacement
 
Inductive & mesomeric effect s k katoch
Inductive & mesomeric effect s k katochInductive & mesomeric effect s k katoch
Inductive & mesomeric effect s k katoch
 
ch1_Basic_concepts_Organic_sem1.ppt
ch1_Basic_concepts_Organic_sem1.pptch1_Basic_concepts_Organic_sem1.ppt
ch1_Basic_concepts_Organic_sem1.ppt
 

More from Md.Rakibul Islam (12)

Affinity chromatography
Affinity chromatographyAffinity chromatography
Affinity chromatography
 
Vincristine
VincristineVincristine
Vincristine
 
Soft gelatin capsule
Soft gelatin capsuleSoft gelatin capsule
Soft gelatin capsule
 
Methods to determine area under curve
Methods to determine area under curveMethods to determine area under curve
Methods to determine area under curve
 
Congestive heart failure
Congestive heart failureCongestive heart failure
Congestive heart failure
 
Soft gelatin capsule
Soft gelatin capsuleSoft gelatin capsule
Soft gelatin capsule
 
Reaction mechanisms
Reaction mechanismsReaction mechanisms
Reaction mechanisms
 
General anesthetic
General anestheticGeneral anesthetic
General anesthetic
 
Lactobacillus
LactobacillusLactobacillus
Lactobacillus
 
Rheology
RheologyRheology
Rheology
 
Process validation
Process validationProcess validation
Process validation
 
Passive smoking
Passive smokingPassive smoking
Passive smoking
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 

Recently uploaded (20)

Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 

Reaction mechanisms

  • 1. Organic reactions and mechanisms Substrate: In a chemical reaction, the reactant molecule undergoing attack is referred to as the substrate. Reagent: general term used to describe the attacking species is the reagent. The substrate and the reagent interact to yield the products of the reactions. Substrate + Reagent → Product(s) The carbon bonds in the substrate molecule are broken (or cleaved) to give fragments which are very reactive and constitute transitory intermediates. The steps of an organic reactions showing the breaking and making of new bonds of carbon atoms in the substrate and leading to the formation of the final products through transitory intermediates, are often referred to as its mechanism.
  • 2. Organic reactions and mechanisms Factors which influence a reaction A reaction may occur or may not occur depending upon density of electrons at the site of reaction in the substrate. 1. Inductive effect (I effect) 2. Mesomeric/resonance effect (M effect)
  • 3. Organic reactions and mechanisms Factors which influence a reaction Inductive effect (I effect) It is the polarity produced in a molecule as a result of higher electronegativity of one atom compared to another. It involves σ bonds. The σ bond electrons which form a covalent bond are seldom shared equally between two atoms. This is because different atoms have different electronegativity values (i.e. different powers of attracting the electrons in the bond). Electrons are displaced towards the more electronegative atom. This introduces a certain degree of polarity in the bond. The more electronegative atom acquires a small negative charge (δ- ). The less electronegative atom acquires a small positive charge (δ+ ). http://www.chem.sc.edu/faculty/shimizu/333/Chem_333/1a.ii.htm
  • 4. Organic reactions and mechanisms Factors which influence a reaction Inductive effect (I effect) The carbon-hydrogen bond is used as a standard. Zero effect is assumed in this case. +I effect: Atoms or groups which lose electrons toward a carbon atom (electron- releasing/donating). Example: CH3, CH2R, CHR2 etc. -I effect: Atoms or groups which draw electrons away from a carbon atom (electron-withdrawing). Example: -X, -NH2, -NO2, -CN, -OH, -SH, -C6H5, -CHO etc. An inductive effect is transmitted along a chain of carbon atoms, although it tends to be insignificant beyond the second bond.
  • 5. Organic reactions and mechanisms Factors which influence a reaction Mesomeric/resonance effect (M effect) It is the polarity produced in a molecule as a result of interaction between two π bonds or a π bond and lone pair of electrons. This effect is transmitted along a chain in a similar way as are inductive effects. It involves π electrons of double or triple bonds. The mesomeric effect is of great importance in conjugated compounds (compounds in which the carbon atoms are linked alternatively by single and double bonds). In such systems, the π electrons get delocalized as a consequence of mesomeric effect, giving the number of resonance structure of the molecule. H3C C H C H C H O H3C C C H C H O -+ H
  • 6. Organic reactions and mechanisms Factors which influence a reaction Mesomeric/resonance effect (M effect) In carbonyl group, the oxygen atom is more electronegative than the carbon atoms. As a result, the π electrons of the carbon-oxygen double bond get displaced toward the oxygen atom. C O C O -+
  • 7. Organic reactions and mechanisms Factors which influence a reaction Mesomeric/resonance effect (M effect) +M effect: atoms which lose electrons toward a carbon atom. Example: -X, -NH2, -OH, -SH etc. (Activating groups or ortho/para directors). Exception: halogens are weak ortho-para director and also ring deactivator. NH2 NH2 NH2 NH2 + + + - - -
  • 8. Organic reactions and mechanisms Factors which influence a reaction Mesomeric/resonance effect (M effect) -M effect: atoms or groups which draw electrons away from a carbon atom. Example: -NO2, -CN, -CHO, -COOH, -SO3H etc. (Deactivating group or meta directors). N O O N O O N O O N O O - - - + + +
  • 9. Organic reactions and mechanisms Bond fission A covalent bond (σ bond) can undergo fission in two ways: 1. Homolytic fission: In this process each of the atoms acquires one of the bonding electrons. A A +BA B or B The products A• and B• are called free radicals. They are- Electrically neutral Have one unpaired electron Extremely reactive (tendency to become paired at the earliest opportunity) Reactions which proceed via free radical formation, take place very rapidly Homolytic fission is the most common mode of fission in the vapour phase. They are usually initiated by heat, light or organic peroxide.
  • 10. Organic reactions and mechanisms Bond fission 2. Heterolytic fission: In this process one of the atoms acquires both of the bonding electrons, when the bond is broken. The products of heterolytic fissions are ions. A B A + B + -
  • 11. Organic reactions and mechanisms Reaction intermediates Heterolytic and homolytic bond fissions result in the formation of short-lived fragments called reaction intermediates. i) Carbonium ions (Carbocations) Organic ions which contain a positively charged carbon atom are called carbonium ions. They are formed by heterolytic bond fission. where, Z is more elctronegative than carbon. C + ZC Z + -
  • 12. Organic reactions and mechanisms Reaction intermediates Carbonium ions are named after the parent alkyl groups and adding the word ‘carbonium ion’. The stability of carbonium ions is influenced by: a. Resonance effect: allyl and benzyl carbonium ions are much more stable than propyl carbonium ions. Resonance forms of allyl carbonium ion: Resonance forms of benzyl carbonium ion: H2C C H CH2 + H2C C H CH2 + CH2 + CH2 CH2 CH2 + + +
  • 13. Organic reactions and mechanisms Reaction intermediates b. Inductive effect: electron releasing groups (+I groups) stabilize carbonium ions by partial neutralization of the positive charge on carbon. Thus, a tertiary carbonium ion is more stable than a secondary.
  • 14. Organic reactions and mechanisms Reaction intermediates ii) Carbanions Organic ions which contain a negatively charged carbon atom are called carbanions. They are also formed by heterolytic bond fission. where, Z is less elctronegative than carbon. C + ZC Z +-
  • 15. Organic reactions and mechanisms Reaction intermediates ii) Carbanions Carbanions are named after the parent alkyl groups and adding the word ‘carbanion’. The stability of carbanions is also influenced by: a. Resonance effect: the benzyl carbanion is much more stable than propyl carbanion. CH2 CH2 CH2 CH2 - - - -
  • 16. Organic reactions and mechanisms Reaction intermediates ii) Carbanions b. Inductive effect: Electron releasing groups (+I groups) make the carbanions less stable. Thus a primary carbanion is more stable than a secondary.
  • 17. Organic reactions and mechanisms Reaction intermediates iii) Carbon free radicals They have no charge. They are formed by homolytic fission. Here, Z and carbon atom have similar electronegativity. Free radicals combine with other free radicals or with other molecules to produce larger free radicals. C + ZC Z
  • 18. Organic reactions and mechanisms Reaction intermediates iii) Carbon free radicals Carbon free radicals are named after the parent alkyl groups and adding the word ‘free radical’. Free radicals are also stabilized by resonance.
  • 19. Organic reactions and mechanisms Reaction intermediates iv) Carbenes Carbenes are neutral species having a carbon atom with two bonds and two electrons. Carbenes are highly reactive. They act as strong electrophiles, because they can accept a pair of electrons to complete their outer shell. C For example: Methylene (H2C )
  • 20. Organic reactions and mechanisms Classification of reagents Organic reagents fall into two main groups: a) Electrophiles (E+ ): a reagent which can accept an electron pair in a reaction. Electrophile means ‘electron-loving’, they are electron deficient. Attacks the regions of high electron density (negative centres) in the substrate molecule. They may be - Positive ions or Neutral molecule (AlCl3, BF3 etc.) b) Nucleophiles (Nu- ): a reagent which can donate an electron pair in a reaction. Nucleophile means ‘nucleus-loving’, hey are electron rich. Attacks the regions of low electron density (positive centres) in the substrate molecule. They may be - Negative ions or Neutral molecule (H2O, NH3 etc.) http://www.chem.ucla.edu/~harding/tutorials/elec_nuc/elec_nuc.html
  • 21. Energy requirements of organic reactions Activation energy (Ea): Molecules of the reactants are in a state of rapid motion and possess kinetic energy. The reaction occurs when the reacting molecules approach in proper alignment and collide. On such collision, the kinetic energy possessed by the molecules is transformed into potential energy of the system. Thus to start a reaction, the required energy is supplied by the collisions of the reacting molecules. The minimum amount of potential energy that must be provided by collisions of the reacting molecules for the reaction to occur is known as the activation energy. Consider the energy change during the course of the reaction. In the beginning both C and A-B possess certain potential energy. These reacting molecules also possess kinetic energy which on collisions is transformed into potential energy. This results in the increase of potential energy and the system moves up along the curve till the cliff is reached. The energy of cliff state is a sort of temporary phase and leads to products C-A + B, when the potential energy of the system is again changed into kinetic energy and then heat or any other form of energy. C + A B C BA +
  • 22. Energy requirements of organic reactions
  • 23. Energy requirements of organic reactions Transition state (activated complex): an extremely transitory specific arrangement of atoms and groups through which a reaction system must pass on its way to the products. The transition state is - •Imaginary molecule and cannot be isolated •Bonds are being partial •System possesses maximum energy and is most unstable. C + A B C A B C A + B Reactants ProductsTransition state Reaction intermediate: An intermediate is a stable entity and can be isolated under appropriate condition. A reaction which proceeds through an intermediate has to surmount two energy barriers. conversion of the reactants to the intermediate (Ea) and  conversion of the intermediate into products (Ea’).
  • 24. Types of organic reactions The reactions of organic compounds can be classified into four main types. 1.Substitution reactions 2.Addition reactions 3.Elimination reactions 4.Rearrangement reactions
  • 25. Substitution reactions Substitution reactions are those reactions in which an atom or group of atoms directly attached to a carbon in the substrate molecule is replaced by another atom or group of atoms. For example, The chlorination of methane in the presence of ultraviolet light, as follows: Mechanism of substitution reaction a) Free radical substitution reactions: These reactions, as above, are initiated by free radicals and take place in 3 consecutive steps involving - •Initiation •Propagation and •Termination. CH4 + Cl2 UV light CH3Cl + HCl Methane Methyl chloride
  • 26. Substitution reactions Mechanism of substitution reaction a) Free radical substitution reactions: contd. i) Initiation steps: A chlorine molecule undergoes homolytic fission in the presence of ultraviolet light to give chlorine free radicals. ii) Propagation steps: A chlorine free radical attacks the methane molecule to give methyl free radical and hydrogen chloride. The methyl free radical attacks a chlorine molecule to yield methyl chloride and chlorine free radical. These propagation steps are repeated again and again. Cl Cl UV 2Cl Cl CH3 CH3 ClCl Cl Cl H CH3 HCl + CH3 CH3 Cl + CH3Cl
  • 27. Substitution reactions Mechanism of substitution reaction a) Free radical substitution reactions: contd. iii) Termination steps: These involve the formation of stable molecules by combination of free radicals. CH3 + Cl H3C Cl 2Cl Cl2 2 CH3 H3C CH3
  • 28. Substitution reactions Mechanism of substitution reaction b) Electrophilic substitution reactions: When a substitution reaction involves the attack by an electrophile, the reaction is referred to as electrophilic substitution. e.g. bromination of benzene in the presence of FeBr3. The mechanism of the above reaction involves the following steps: Step 1: Formation of the electrophile. + Br2 FeBr3 Br + HBr Bromo benzeneBenzene Br Br + FeBr3 Br+ + FeBr4 - Electrophile
  • 29. Substitution reactions Mechanism of substitution reaction b) Electrophilic substitution reactions: contd. Step 2: The electrophile (Br+ ) attacks the π electron system of the benzene ring to form a resonance stabilized carbonium ion. Step 3: Elimination of proton to give the substituted product. Benzene Br+ + Resonance hybrid + + + BrH BrH BrH BrH + BrH FeBr4 - + HBr + FeBr3 Br
  • 30. Substitution reactions Mechanism of substitution reaction b) Electrophilic substitution reactions: Nitration Step 1: Formation of the electrophile Step 2: The electrophile (NO2 + ) attacks the π electron system Step 3: Elimination of proton to give the substituted product
  • 31. Substitution reactions Mechanism of substitution reaction b) Electrophilic substitution reactions: Sulfonation Step 1: Formation of the electrophile Step 2: The electrophile (SO3) attacks the π electron system Step 3: Elimination of proton to give the substituted product
  • 32. Substitution reactions Mechanism of substitution reaction b) Electrophilic substitution reactions: Friedel-Craft Alkylation Step 1: Formation of the electrophile Step 2: The electrophile (R+ ) attacks the π electron system Step 3: Elimination of proton to give the substituted product
  • 33. Substitution reactions Mechanism of substitution reaction b) Electrophilic substitution reactions: Friedel-Craft Alkylation Step 1: Formation of the electrophile Step 2: The electrophile [(CH3)3C+ ] attacks the π electron system Step 3: Elimination of proton to give the substituted product
  • 34. Substitution reactions Mechanism of substitution reaction b) Electrophilic substitution reactions: Friedel-Craft Acylation Step 1: Formation of the electrophile Step 2: The electrophile (RCO+ ) attacks the π electron system Step 3: Elimination of proton to give the substituted product
  • 35. Substitution reactions Mechanism of substitution reaction c) Nucleophilic substitution reactions: When a substitution reaction involves the attack by a nucleophile, the raction is referred to as SN. The hydrolysis of alkyl halides by aqueous NaOH is an example of nucleophilic substitution. The nucleophilic reactions are divided into two classes: •SN2 mechanism The terminology SN2 stands for “substitution nucleophilic bimolecular”. rate of SN2 reaction depends on the concentration of both the substrate and the nucleophile, the reaction is of second-order Rate [Substrate] [Nucleophile]∝ two reactants take part in the transition state of the slow or rate-determining step of a reaction and is therefore bimolecular The reaction consists of single step R X + OH- R OH + X- Nucleophile Leaving group
  • 36. Substitution reactions Mechanism of substitution reaction c) Nucleophilic substitution reactions: •SN2 mechanism For example: hydrolysis of methyl bromide by aqueous NaOH. The reaction and transition state are represented in the following figure. The alkyl halide substrate contains a polarized carbon halogen bond. The SN2 mechanism begins when hydroxide ion approaches the substrate carbon from the opposite side of the bromine ion. This is because both hydroxide ion and bromine atom are electron rich. In transition state, both OH and Br are partially bonded to the substrate carbon. Carbon in the resulting complex is trigonal bipyramidal in shape. With the loss of the leaving group, the carbon atom again assumes a pyramidal shape and its configuration is inverted. C H H H BrHO - -C H HH BrHO δ - δ - CHO H H H + Br Methyl bromide Transition state Methyl alcohol
  • 37. Substitution reactions Mechanism of substitution reaction c) Nucleophilic substitution reactions: •SN2 mechanism Walden inversion: The inversion of stereochemical configuration at a chiral center during a chemical reaction. A molecule can form two enantiomers around a chiral center. Walden inversion converts the configuration of the molecule from one enantiomeric form to the other. C Cl H3C H3CH2C HI - I C CH3 CH2CH3 H + Cl -
  • 38. Substitution reactions Mechanism of substitution reaction c) Nucleophilic substitution reactions: •SN2 mechanism Factors affecting SN2 reactions 1. Steric hindrance: SN2 reactions require a rearward attack on the carbon bonded to the leaving group. The larger and bulkier the group(s), the greater the steric hindrance and the slower the rate of reaction. In general, the order of reactivity of alkyl halides in SN2 reactions is: methyl > 1° > 2°. The 3° alkyl halides are so crowded that they do not generally react by an SN2 mechanism. C H H H X HO Easy attack (Primary halide) - C H3C H3C H3C X HO Difficult attack (Tertiary halide) -
  • 39. Substitution reactions Mechanism of substitution reaction c) Nucleophilic substitution reactions: •SN2 mechanism Factors affecting SN2 reactions 2. Nucleophilicity: Because the nucleophile is involved in the rate-determining step of SN2 reactions, stronger nucleophiles react faster. 3. Solvent effects: For protic solvents (solvents capable of forming hydrogen bonds in solution), an increase in the solvent's polarity results in a decrease in the rate of SN2 reactions. This decrease occurs because protic solvents solvate the nucleophile, thus lowering its ground state energy. Because the energy of the activated complex is a fixed value, the energy of activation becomes greater and therefore, the rate of reaction decreases.
  • 40. Substitution reactions Mechanism of substitution reaction c) Nucleophilic substitution reactions: •SN1 mechanism The terminology SN1 stands for “substitution nucleophilic unimolecular”. rate of SN1 reaction depends only on the concentration of the alkyl halide, the reaction is of first- order Rate [Substrate]∝ Activated complex contains only one species, alkyl carbocation and is therefore unimolecular The reaction consists of two steps
  • 41. Substitution reactions Mechanism of substitution reaction c) Nucleophilic substitution reactions: •SN1 mechanism This mechanism proceeds via two steps. i) The first step (the slow step) involves the breakdown of the alkyl halide into an alkyl carbocation and a leaving group anion. This is the rate determining step. ii) The second step (the fast step), the nucleophile can attack the planar carbonium ion from either side to give the product. C L Z X Y Slow Nu - + L Nu C Z X Y C Nu Z X Y Fast C Z X Y +
  • 42. Substitution reactions Mechanism of substitution reaction c) Nucleophilic substitution reactions: •SN1 mechanism •SN1 mechanisms proceed via a carbocation intermediate, so a nucleophile attack is equally possible from either side of the plane. Therefore, a pure, optically active alkyl halide undergoing an SN1 substitution reaction will generate a racemic mixture as a product. [Racemic mixture: one that has equal amounts of left- and right-handed enantiomers of a chiral molecule.] Stability: Primary and methyl carbocations do not proceed through the SN1 pathway.
  • 43. Addition reactions Addition reactions are those in which atoms or groups of atoms are simply added to a double or triple bond without the elimination of any atom or other molecules. In these reactions, at least one π bond is lost while two new σ bonds are formed. Double bonds become saturated and triple bonds are converted into double bonds or may become saturated by further addition. For example: Mechanisms of addition reactions These reactions may be initiated by electrophiles, nucleophiles or free radicals. a) Electrophilic addition reactions: When an addition reaction involves the initial attack by an electrophile, the reaction is referred to as electrophilic addition. The addition of HBr to ethylene is an example of electrophilic addition. C CH H Ethylene + Br2 H H C CH H H H Br Br 1,2-dibromo methane H2C CH2 + HBr H2C CH2 H Br Ethylene Ethyl bromide
  • 44. Addition reactions Mechanisms of addition reactions a) Electrophilic addition reactions: contd. The mechanism of the above reaction involves the following steps: Step 1: Hydrogen bromide gives a proton and bromide ion. Step 2: The electrophile attacks the π bond of ethylene to give a carbonium ion. Step 3: The nucleophile attacks the carbonium ion to give the addition product. H2C CH2 + HBr H2C CH2 H Br Ethylene Ethyl bromide H Br H Br Electrophile Nucleophile ++ - H2C CH2H + + H3C CH2 + Carbonium ion H3C CH2 + Carbonium ion + Br - H3C H2 C Ethyl bromide Br
  • 45. Addition reactions When an alkene is symmetrical about the double bond, the produce formed in addition reaction is the same no matter which way the reagent becomes attached to the alkene. Markovnikov's rule When an unsymmetrical reagent adds to an unsymmetrical double bond, the positive part of the reagent becomes attached to the double bonded carbon atom which bears the greatest number of hydrogen atoms. H2C CH2 HBr H3C H2 C Br+ H2C CH2 HBr H2 C CH3+ Br Identical C H CH2 HBr H3C C H CH3 +H3C A B A B Br Isopropyl bromide (major) H3C H2 C H2 C n-propyl bromide (minor) Br
  • 46. Addition reactions Markovnikov's rule The mechanism of this reaction involves the following steps: Step 1: Hydrogen bromide gives a proton and bromide ion. Step 2: The electrophile attacks the π bond of propene to give a more stable carbonium ion. Step 3: The nucleophile combines with the more stable 2° carbonium ion to give the major product. C H CH2 HBr H3C C H CH3 +H3C A B A B Br Isopropyl bromide (major) H3C H2 C H2 C n-propyl bromide (minor) Br H Br H Br Electrophile Nucleophile ++ - C H CH2 H + 2 Carbonium ion (more stable)H3C + H C CH3H3C + ° 1 Carbonium ion (less stable) H2 C CH2H3C ° + H3C H C 2 Carbonium ion + Br - H3C C H Isopropyl bromide CH3CH3 + ° Br
  • 47. Addition reactions b) Free-radical addition (Anti-Markovnikov Addition) In the presence of a peroxide initiator, hydrogen halide adds to alkene via free-radical mechanism. Such reactions are said to be anti-Markovnikov, since the positive part adds to the less substituted carbon, exactly the opposite of Markovnikov reaction. This process was first explained by Kharasch. i) Chain initiation: The chain is initiated by free radicals produced by an oxygen-oxygen bond in the organic peroxide breaking. These free radicals extract a hydrogen atom from a hydrogen bromide molecule to produce bromine radicals. ii) Chain propagation: When the bromine radical joins to the propene, a secondary radical is formed. This is more stable than the primary radical which would be formed if it attached to the other carbon atom. C H CH2 HBr+H3C H3C H2 C H2 C Br Peroxide RO OR Heat 2RO HBr ROH + Br H3C C H CH2 + Br 2 free radical (more stable) H C H2 CH3C ° 1 free radical (less stable) H C CH2H3C ° Br Br
  • 48. Addition reactions b) Free-radical addition (Anti-Markovnikov Addition) The more stable secondary radical reacts with another HBr molecule to produce 1-bromopropane and another bromine radical to continue the process. iii) Chain termination: In termination step, two free radicals hit each other and produce a neutral molecule. Why don't the other hydrogen halides behave in the same way? Hydrogen fluoride: The hydrogen-fluorine bond is so strong that fluorine radicals aren't formed in the initiation step. Hydrogen chloride: With hydrogen chloride, the second half of the propagation stage is very slow (endothermic reaction). This is due to the relatively high hydrogen-chlorine bond strength. HBr Br H C H2 CH3C Br + H3C H2 C H2 C Br + Br Br+ Br2
  • 49. Addition reactions Why don't the other hydrogen halides behave in the same way? Contd. Hydrogen iodide: In the first step of the propagation stage turns out to be endothermic and this slows the reaction down. Not enough energy is released when the weak carbon-iodine bond is formed. Hydrogen bromide: In the case of hydrogen bromide, both steps of the propagation stage are exothermic.
  • 50. Addition reactions c) Nucleophilic addition reactions When an addition reaction involves the initial attack by a nucleophile, the reaction is referred to as nucleophilic addition. Aldehydes and ketones which contain carbon-oxygen double bonds undergo such reactions. The carbonyl group is highly polar in character. This is because of higher electronegativity of oxygen as compared to carbon. The carbonyl group may be represented as shown below: The addition of HCN to acetone is an example of nucleophilic addition. C O C O C O + - δ δ+ - C O + HCN H3C C CH3 CN OH
  • 51. Addition reactions c) Nucleophilic addition reactions The mechanism of the above reaction involves the following steps: Step 1: Hydrogen cyanide gives a proton and a cyanide ion. Step 2: The nucleophile attacks the positively charged carbonyl carbon to give the corresponding anion. Step 3: The electrophile combines with the anion to form the addition product. C O + HCN H3C C CH3 CN OH H CN H CN Electrophile Nucleophile ++ - CN H3C C CH3 CN OC O δ δ+ - - - H3C C CH3 CN O - H + H3C C CH3 CN OH
  • 52. Addition reactions c) Nucleophilic addition reactions All aldehydes and unsymmetrical ketones will form a racemic mixture by this reaction. They are planar molecule, and attack by a cyanide ion will either be from above the plane of the molecule, or from below. There is an equal chance of either happening. Attack from one side will lead to one of the two isomers, and attack from the other side will lead to the other. H3C C H O CN - CN - Attack can be from here or from here
  • 53. Elimination reactions Elimination reactions are those which involve the removal of atoms or groups of atoms from two adjacent atoms in the substrate molecule to form a multiple bond. Elimination reactions may be regarded as reverse of addition reactions. In these reactions, two σ bonds are lost and a new π bond is formed. Saturated compound become unsaturated. For example: C CH H Ethylene + Zn H HC CH H H H Br Br 1,2-dibromo methane ∆ + ZnBr2
  • 54. Elimination reactions Mechanisms of elimination reactions These reactions are also divided into two classes: a) E2 Reaction E2 stands for elimination bimolecular. The reaction rate, influenced by both the alkyl halide and the base and of second order.  E2 typically uses a strong base, it needs a chemical strong enough to pull off a weakly acidic hydrogen.  A good leaving group is required because it is involved in the rate determining step. E2 is the one step process with a transition state. Typically undergone by primary substituted alkyl halides, but is possible with some secondary alkyl halides. Because E2 mechanism results in formation of a pi bond, the two leaving groups (often a hydrogen and a halogen) need to be anti-periplanar (or 180o ). That’s why eliminations often favor the trans- product over the cis-product (stereoselectivity).
  • 55. Elimination reactions Mechanisms of elimination reactions a) E2 Reaction contd. In the E2 mechanism, a base abstracts a proton from the β-carbon and the expulsion of the halide ion from the α-carbon occurs simultaneously. A double bond is formed between α and β carbon. C2H5 C H H C H CH3 Br αβ HO - C2H5 H CH3 H
  • 56. Elimination reactions Mechanisms of elimination reactions b) E1 Reaction E1 stands for elimination unimolecular. The reaction rate is influenced only by the concentration of the alkyl halide and is of first-order.  A strong base not required, since it is not involved in the rate-determining step.  A good leaving group is required, since it is involved in the rate-determining step. E1 typically takes place with tertiary alkyl halides, but is possible with some secondary alkyl halides.
  • 57. Elimination reactions Mechanisms of elimination reactions b) E1 Reaction contd. E1 reactions are two step processes. Step 1: The alkyl halide ionizes to give the carbonium ion. Step 2: A proton is abstracted by the base from the adjacent β-carbon atom to give the alkene. C H3C H3C H3C Br Tert-butyl bromide C Carbonium ion CH3 CH3H3C + + Br - C Carbonium ion CH3 H2 CH3C + H HO - C 2-methyl propene CH3 CH2H3C + H2O Unlike E2, which requires the proton to be anti to the leaving group, E1 reactions simply require a neighboring hydrogen. This is due to the fact that the leaving group has already left the molecule.
  • 58. Elimination reactions Zaitsev's or Saytzeff's rule It states that although more than one product can be formed during alkene synthesis, the more substituted alkene is the major product. This infers that the hydrogen on the most substituted carbon is the most probable to be deprotonated, thus allowing for the most substituted alkene to be formed. H3C H C H2 C CH3 Br 2-bromo butane Br- HC C C CH3 + H H H H H HO - OH - H2C C H H2 C CH3 1-butene (20%) H3C C H C H CH3H2O 2-butene (80%)
  • 59. Rearrangement reactions Rearrangement reactions involve the migration of an atom or group of atoms from one site to another within the same molecule. The product is always the structural isomer of the original compound. For example: Fries Rearrangement The reaction of an aryl ester with a Lewis acid (AlCl3) catalyst followed by an aqueous acid to give phenols is known as Fries rearrangement. C C H H H OH Vinyl alcohol (ethenol) C C H O Acetaldehyde (ethanal) H H H O CH3 O Catalyst AlCl3 Aqueous HCl OH CH3 O OH H3C O +
  • 60. Rearrangement reactions Fries Rearrangement contd. Mechanism: The mechanism begins with coordination of the ester to the Lewis acid, followed by a rearrangement which generates an electrophilic acylium ion. O CH3 O AlCl3 O CH3 O - O C CH3 + O - Cl3Al + Acylium ion Cl3Al + O CH3 O Catalyst AlCl3 Aqueous HCl OH CH3 O OH H3C O +
  • 61. Rearrangement reactions Fries Rearrangement contd. Mechanism: Free acylium ion which reacts in a classical electrophilic aromatic substitution with the aromatic ring. Deprotonation to regenerate aromaticity and Bronsted acid work-up to regenerate the Lewis acid catalyst provide the product. A low reaction temperature favors para substitution and with high temperatures the ortho product prevails. Or, O C CH3 + O - Cl3Al + O H CH3 O H + OH CH3 O O C CH3 + O - Cl3Al + O H + OH H C OH H3C O

Editor's Notes

  1. Enantiomers are stereoisomers that are non-superimposable mirror images. A molecule with 1 chiral carbon atom exists as 2 stereoisomers termed enantiomers (see the example below). Enantiomers differ in their configuration (R or S) at the stereogenic center.
  2. In chemistry, a protic solvent is a solvent that has a hydrogen atom bound to an oxygen (as in a hydroxyl group) or a nitrogen (as in an amine group). In general terms, any solvent that contains labile H+ is called a protic solvent. The molecules of such solvents readily donate protons (H+) to reagents. Examples include water, most alcohols, formic acid, hydrogen fluoride, and ammonia. Polar protic solvents are favorable for SN1 reactions, while polar aprotic solvents are favorable for SN2 reactions.