5. Definition of a Fourier series
A Fourier series may be defined as an expansion of a function in
a series of sines and cosines such as
The coefficients are related to the periodic function f(x)
Henceforth we assume f satisfies the following (Dirichlet)
conditions:
(1) f(x) is a periodic function;
(2) f(x) has only a finite number of finite discontinuities;
(3) f(x) has only a finite number of extrem values,
maxima and minima in the
interval [0,2p].
1
1
0
sin
cos
2 n
n
n
n nx
b
nx
a
a
x
f
8. A Fourier series is a convenient representation of a periodic
function.
A Fourier series consists of a sum of sines and cosine terms.
Sines and cosines are the most fundamental periodic
functions.
9. Fourier series
p
p ,
p
2
,
0
1
1
0
sin
cos
2 n
n
n
n nx
b
nx
a
a
x
f
10. dx
x
f
a
p
p
p
1
0
,
2
,
1
cos
1
n
dx
nx
x
f
an
p
p
p
,
2
,
1
sin
1
n
dx
nx
x
f
bn
p
p
p
FOURIER COEFFICIENTS FOR (-π,π)
11. FOURIER COEFFICIENTS FOR (0,2π)
dx
x
f
a
p
p
2
0
0
1
,
2
,
1
cos
1 2
0
n
dx
nx
x
f
an
p
p
,
2
,
1
sin
1 2
0
n
dx
nx
x
f
bn
p
p
12. Fourier series
)
,
( l
l
)
2
,
0
( l
1
1
0
sin
cos
2 n
n
n
n
l
x
n
b
l
x
n
a
a
x
f
p
p
14. FOURIER COEFFICIENTS FOR )
2
,
0
( l
dx
x
f
l
a
l
2
0
0
1
l
n dx
l
x
n
x
f
l
a
2
0
cos
)
(
1 p
l
n dx
l
x
n
x
f
l
b
2
0
sin
)
(
1 p
15. Interval Parsevals Identity
)
,
( l
l
1
2
2
2
0
2
2
)
(
1
n
n
n
l
l
b
a
a
dx
x
f
l
1
2
2
2
0
2
2
0
2
)
(
1
n
n
n
l
b
a
a
dx
x
f
l
1
2
2
2
0
2
2
)
(
1
n
n
n b
a
a
dx
x
f
p
p
p
1
2
2
2
0
2
2
)
(
1
n
n
n b
a
a
dx
x
f
p
p
p
p
p ,
p
2
,
0
)
2
,
0
( l
16. Even and Odd Functions
Even Functions
f( The value of the function would
be the same when we walk equal
distances along the X-axis in
opposite directions.
Mathematically speaking -
17. Odd Functions
f(
The value of the function
would change its sign but with
the same magnitude when we
walk equal distances along the
X-axis in opposite directions.
Mathematically speaking -
18. Even functions can solely be represented by
cosine waves because, cosine waves are even
functions. A sum of even functions is another
even function.
19. Odd functions can solely be represented by sine waves
because, sine waves are odd functions. A sum of odd
functions is another odd function.
20. The Fourier series of an even function
x
f
is expressed in terms of a cosine series.
The Fourier series of an odd function
x
f
is expressed in terms of a sine series.
1
sin
n
n nx
b
x
f
1
0
cos
2 n
n nx
a
a
x
f
21. 1. Find the Fourier series expansion of f(x) = x2, 0 < x < 2π.
Hence deduce that
8
....
..........
5
1
3
1
1
1
)
(
12
....
..........
3
1
2
1
1
1
)
(
6
....
..........
3
1
2
1
1
1
)
(
2
2
2
2
2
2
2
2
2
2
2
2
p
p
p
iii
ii
i
22. . Fourier series is
1
0
)
sin
cos
(
2
)
(
n
n
n nx
b
nx
a
a
x
f
p
p
p
p
2
0
2
2
0
0
1
)
(
1
dx
x
dx
x
f
a
p
p
2
0
3
3
1
x
0
3
8
1 3
p
p
3
8 2
p
29. 2. Expand in Fourier series of f(x) = x sinx for 0 < x < 2π
and deduce the result
4
2
..........
7
.
5
1
5
.
3
1
3
.
1
1
p
Sol. Fourier series is
1
0
)
sin
cos
(
2
)
(
n
n
n nx
b
nx
a
a
x
f
p
p
2
0
0 )
(
1
dx
x
f
a
33.
0
0
0
1
)
1
(
2
2
1
0
0
0
1
)
1
(
2
2
1 2
2
2
2
n
n
n
n
p
p
p
p
1
1
1
1
n
n
)
1
)(
1
(
)
1
(
)
1
(
n
n
n
n
an
1
,
1
2
2
n
n
an
34. When n = 1, we have
p
p
2
0
1 cos
)
(
1
dx
x
x
f
a
p
p
2
0
cos
sin
1
dx
x
x
x
p
p
2
0
2
sin
2
1
dx
x
x
p
p
2
0
4
2
sin
)
1
(
2
2
cos
2
1
x
x
x
)
0
0
(
0
2
1
2
2
1
p
p
2
1
37. When n = 1, we have
p
p
p
p
2
0
2
0
1 sin
sin
1
sin
)
(
1
dx
x
x
x
dx
x
x
f
b
p
p
2
0
2
sin
1
dx
x
x
p
p
2
0
2
2
cos
1
1
dx
x
x
p
p
2
0
2
4
2
cos
)
1
(
2
2
sin
2
2
1
x
x
x
x
2
1
0
0
2
1
0
2
2
1 2
p
p
p
40. 3. Find the Fourier series of
p
p
p
2
,
2
0
,
1
)
(
x
x
x
f
Hence evaluate the value of the series
......
..........
5
1
3
1
1
1
2
2
2
Sol. Fourier series is
1
0
)
sin
cos
(
2
)
(
n
n
n nx
b
nx
a
a
x
f
45. When we put x = 0, , π, 2π we will not get the given series.
So, using Parseval’s identity for Fourier series we have
p
p
2
0 1
2
2
2
0
2
)
(
2
)]
(
[
1
n
n
n b
a
a
dx
x
f
p p
p p
p
p 0
2
1
2
2
2
2
2
2 1
)
1
(
0
2
)
3
(
)
2
(
1
)
1
(
1
n
n
n
dx
dx
........
..........
0
5
4
0
3
4
0
1
4
1
2
9
4
1
2
2
2
2
2
0
p
p
p
p
p
p
x
x
........
..........
5
1
3
1
1
1
4
2
9
2
4
0
1
2
2
2
2
p
p
p
p
p
p
47. 4.Find the Fourier series expansion for the function
p
p
p 2
2
0
,
)
( period
with
x
in
x
x
f
...
5
1
3
1
1
of
sum
the
deduce
Hence
Solution:
1
0
)
sin
cos
(
2
)
(
n
n
n nx
b
nx
a
a
x
f
p
p
2
0
0 )
(
1
dx
x
f
a
51. Hence
1
sin
2
)
(
n n
nx
x
x
f p
2
...
5
1
3
1
1
p
x
putting
by
obtained
be
can
series
required
The
1
sin
2
2 n n
nx
p
p
...
2
4
sin
4
1
2
3
sin
3
1
2
2
sin
2
1
2
sin
2
2
p
p
p
p
p
...
5
1
3
1
1
2
2
p
4
...
5
1
3
1
1
p
53. 4.Find the Fourier series expansion for the function
6
1
Pr
.
2
2
0
,
2
)
(
2
2
1
2
p
p
p
p
n
that
ove
Hence
period
with
x
in
x
x
f
n
Solution:
1
0
)
sin
cos
(
2
)
(
n
n
n nx
b
nx
a
a
x
f
p
p
2
0
0 )
(
1
dx
x
f
a
54.
p
p
2
0
cos
)
(
1
nxdx
x
f
an
p
p
p
2
0
2
cos
2
1
nxdx
x
p
p
p
p
p
p
2
0
3
2
0
2
2
0
2 sin
1
2
cos
2
sin
4
1
n
nx
n
nx
x
n
nx
x
0
cos
2
0
4
1
2
0
2
p
p
p
nx
x
n
p
p
p
2
4
2
n 2
1
n
55.
p
p
2
0
sin
)
(
1
nxdx
x
f
bn
p
p
p
2
0
2
sin
2
1
nxdx
x
p
p
p
p
p
p
2
0
3
2
0
2
2
0
2 cos
1
2
sin
2
cos
4
1
n
nx
n
nx
x
n
nx
x
1
1
2
0
1
4
1
3
2
2
n
n
p
p
p
=0
66. 6.Find the Fourier series for
p
2
,
0
)
( in
e
x
f ax
Solution:
1
1
0
sin
cos
2
)
(
n
n
n
n nx
b
nx
a
a
x
f
p
p
2
0
0 )
(
1
dx
x
f
a
p
p
2
0
1
dx
eax
p
p
2
0
1
a
eax
1
1 2
p
p
a
e
a
71.
n
ne
n
a
a
p
p
2
2
2
1
1
2
2
2
p
p
a
e
n
a
n
p
p
p
a
n
a
nea
sinh
2
2
2
72. 7.Find the fourier series expansion for the function f(x) = 1 + x + x2 in
(–π, π). Deduce
6
....
..........
3
1
2
1
1
1 2
2
2
2
p
Sol. The given function is neither an even nor an odd function.
1
0
)
sin
cos
(
2
)
(
n
n
n nx
b
nx
a
a
x
f
p
p
p
p p
p
dx
x
x
dx
x
f
a )
1
(
1
)
(
1 2
0
74.
p
p
p
p p
p
dx
nx
x
x
dx
nx
x
f
an cos
)
1
(
1
cos
)
(
1 2
p
p
p
3
2
2 sin
)
2
(
cos
)
2
1
(
sin
)
1
(
1
n
nx
n
nx
x
n
nx
x
x
0
)
1
(
)
2
1
(
0
0
)
1
(
)
2
1
(
0
1
2
2
n
n
n
n
p
p
p
76.
p
p
p
p p
p
dx
nx
x
x
dx
nx
x
f
bn sin
)
1
(
1
sin
)
(
1 2
p
p
p
3
2
2 cos
)
2
(
sin
)
2
1
(
cos
)
1
(
1
n
nx
n
nx
x
n
nx
x
x
3
2
3
2 )
1
(
2
0
)
1
(
)
1
(
)
1
(
2
0
)
1
(
)
1
(
1
n
n
n
n
n
n
n
n
p
p
p
p
p
79. But x = π is the point of discontinuity. So we have
2
2
2
2
1
2
2
2
2
)
1
(
)
1
(
2
)
(
)
(
)
( p
p
p
p
p
p
p
p
p
f
f
f
Hence equation (1) becomes
..
..........
3
1
2
1
1
1
4
3
1
1 2
2
2
2
2 p
p
..
..........
3
1
2
1
1
1
4
3 2
2
2
2
2 p
p
..
..........
3
1
2
1
1
1
4
3
2
2
2
2
2
p
......
..........
3
1
2
1
1
1
6 2
2
2
2
p
80. . 8. Find the Fourier series expansion of (π – x)2 in –π < x < π.
Sol. Fourier series is
1
0
)
sin
cos
(
2
)
(
n
n
n nx
b
nx
a
a
x
f
p
p
p
p
p
p
p
dx
x
dx
x
f
a 2
0 )
(
1
)
(
1
p
p
p
p
3
)
(
1 3
x
3
8
0
3
1
p
p
3
8 2
p
81.
p
p
p
p
p
p
p
dx
nx
x
dx
nx
x
f
an cos
)
(
1
cos
)
(
1 2
p
p
p
p
p
3
2
2 sin
)
2
(
cos
)]
1
)(
(
2
[
sin
)
(
1
n
nx
n
nx
x
n
nx
x
0
)
1
(
)
4
(
0
0
0
0
1
2
n
n
p
p
2
)
1
(
4
n
n
82.
p
p
p
p
p
p
p
dx
nx
x
dx
nx
x
f
bn sin
)
(
1
sin
)
(
1 2
p
p
p
p
p
3
2
2 cos
)
2
(
sin
)]
1
)(
(
2
[
cos
)
(
1
n
nx
n
nx
x
n
nx
x
3
2
3
)
1
(
2
0
)
1
(
)
4
(
)
1
(
2
0
0
1
n
n
n
n
n
n
p
p
n
n
)
1
(
4
p
1
2
2
1
0
sin
)
1
(
4
cos
)
1
(
4
3
8
2
1
)
sin
cos
(
2
)
(
n
n
n
n
n
n
nx
n
nx
n
nx
b
nx
a
a
x
f
p
p
83. 9.Obtain the fourier series expansion for
8
.......
5
1
3
1
1
0
,
2
1
0
,
2
1
)
(
2
2
2
p
p
p
p
p
that
deduce
hence
and
x
x
x
x
x
f
Solution:
)
0
,
(
)
(
)
,
0
(
2
1
)
(
2
1
)
(
)
,
0
(
)
(
)
0
,
(
2
1
)
(
2
1
)
(
p
p
p
p
p
p
p
p
in
x
f
in
x
x
x
f
and
in
x
f
in
x
x
x
f
88.
p
p 0
cos
cos
1
xdx
a
n
xdx
a
n
p
p 0
sin
sin
1
a
n
x
a
n
a
n
x
a
n
a
n
a
n
a
n
a
n p
p
p
sin
sin
1
a
n
a
n
a
n
a
n
a
n
a
n p
p
p
p
p
p
p
p
p
sin
cos
cos
sin
sin
cos
cos
sin
1
89.
a
n
a
a
n
a n
n
p
p
p
sin
)
1
(
sin
)
1
(
1
a
n
a
a
n
a n
n
p
p
p
sin
)
1
(
sin
)
1
(
1 1
1
eger
an
not
is
a
a
note
int
,
sin
:
p
a
n
a
n
a
n
1
1
sin
)
1
( 1
p
p
2
2
1
sin
2
)
1
(
a
n
a
n
b
n
n
p
p
92.
p
p 0
cos
2
nxdx
x
p
p 0
cos
2
nxdx
x
p
p 0
2
cos
1
sin
2
n
nx
n
nx
x
2
2
1
cos
2
n
n
np
p
1
)
1
(
2
2
n
n
p
odd
is
n
if
n
even
is
n
if
an
,
4
,
0
2
p
96.
p
p 0
cos
)
(
2
nxdx
x
f
an
p
p 0
cos
cos
2
nxdx
x
p
p
p
p
2
2
0
cos
cos
cos
cos
2
nxdx
x
nxdx
x
p
p
p
p
2
2
0
1
cos
1
cos
2
1
1
cos
1
cos
2
1
2
dx
x
n
x
n
dx
x
n
x
n
p
p
p
p
2
2
0 1
1
sin
1
1
sin
1
1
sin
1
1
sin
1
n
x
n
n
x
n
n
x
n
n
x
n
97.
1
2
1
sin
1
2
1
sin
1
2
1
sin
1
2
1
sin
1
n
n
n
n
n
n
n
n
p
p
p
p
p
1
2
1
sin
2
1
2
1
sin
2
1
n
n
n
n
p
p
p
p
p
2
sin
cos
2
sin
:
note
98.
1
2
1
sin
2
1
2
1
sin
2
1
n
n
n
n
p
p
p
1
2
cos
1
2
cos
2
n
n
n
n p
p
p
1
1
1
1
2
cos
2
n
n
n
p
p
100.
p
p 0
1 cos
cos
2
1
xdx
x
a
n
When
p
p
p
p
2
2
0
cos
cos
cos
cos
2
xdx
x
xdx
x
p
p
p
p
2
2
2
0
2
cos
cos
2
dx
xdx
p
p
p
p
2
2
0
2
2
cos
1
2
2
cos
1
2
dx
x
dx
x
102. •11.Expand f(x) = x – x2 as a Fourier series in –l < x < l and using this series
•find the root square mean value of f(x) in the interval.
Sol. Fourier series is
1
0
sin
cos
2
)
(
n
n
n
l
x
n
b
l
x
n
a
a
x
f
p
p
l
l
l
l
dx
x
x
l
dx
x
f
l
a )
(
1
)
(
1 2
0
l
l
x
x
l
3
2
1 3
2
3
2
3
2
1 3
2
3
2
l
l
l
l
l 3
2
3
2
1 2
3
l
l
l
103.
l
l
l
l
n dx
l
x
n
x
x
l
dx
l
x
n
x
f
l
a
p
p
cos
)
(
1
cos
)
(
1 2
l
l
l
n
l
x
n
l
n
l
x
n
x
l
n
l
x
n
x
x
l
3
3
3
2
2
2
2
sin
)
2
(
cos
)
2
1
(
sin
)
(
1
p
p
p
p
p
p
0
)
1
(
)
2
1
(
0
0
)
1
(
)
2
1
(
0
1
2
2
2
2
2
2
p
p n
l
l
n
l
l
l
n
n
l
l
n
l
l
n
2
1
2
1
)
1
(
2
2
2
p
l
n
l
n
4
)
1
(
2
2
p
2
2
1
2
)
1
(
4
p
n
l n
104.
l
l
l
l
n dx
l
x
n
x
x
l
dx
l
x
n
x
f
l
b
p
p
sin
)
(
1
sin
)
(
1 2
l
l
l
n
l
x
n
l
n
l
x
n
x
l
n
l
x
n
x
x
l
3
3
3
2
2
2
2
cos
)
2
(
sin
)
2
1
(
cos
)
(
1
p
p
p
p
p
p
3
3
3
2
3
3
3
2 )
1
(
2
0
)
1
(
)
(
)
1
(
2
0
)
1
(
)
(
1
p
p
p
p n
l
n
l
l
l
n
l
n
l
l
l
l
n
n
n
n
105.
2
2
)
1
(
l
l
l
l
n
l
l
n
p
l
n
n
2
)
1
( 1
p
p
n
l n 1
)
1
(
2
1
0
sin
cos
2
)
(
n
n
n
l
x
n
b
l
x
n
a
a
x
f
p
p
1
1
2
2
1
2
2
sin
)
1
(
2
cos
)
1
(
4
3
2
2
1
n
n
n
l
x
n
n
l
l
x
n
n
l
l p
p
p
p
106. RMS value of f(x) in (–l, l ) is
1
2
2
2
0
2
)
(
2
1
4 n
n
n b
a
a
y
1
2
2
2
2
2
4
4
2
2
4
2
2
)
1
(
4
)
1
(
16
2
1
3
2
4
1
n
n
n
n
l
n
l
l
p
p
1
2
2
2
4
4
4
4
2 2
8
9
.)
.
(
n n
l
n
l
l
y
e
i
p
p
107. 12.Find the Fourier series expansion of
l
x
l
x
l
l
x
x
x
f
2
,
2
0
,
)
(
Hence deduce the value of
1
4
)
1
2
(
1
n n
Sol. Let
2
2
l
L
l
L
then the given function becomes
L
x
L
x
L
L
x
x
x
f
2
,
2
0
,
)
(
Fourier series is
1
0
sin
cos
2
)
(
n
n
n
L
x
n
b
L
x
n
a
a
x
f
p
p
109.
L
n dx
L
x
n
x
f
L
a
2
0
cos
)
(
1 p
L
L
L
dx
L
x
n
x
L
L
dx
L
x
n
x
L
2
0
cos
)
2
(
1
cos
1 p
p
L
L
L
L
n
L
x
n
L
n
L
x
n
x
L
L
L
n
L
x
n
L
n
L
x
n
x
L
2
2
2
2
0
2
2
2
cos
)
1
(
sin
)
2
(
1
cos
)
1
(
sin
)
(
1
p
p
p
p
p
p
p
p
2
2
2
2
2
2
2
2
2
2
2
2
)
1
(
0
0
1
0
)
1
(
0
1
p
p
p
p n
L
n
L
L
n
L
n
L
L
n
n
1
)
1
(
2
)
1
(
1
1
)
1
(
1
2
2
2
2
2
n
n
n
n
L
n
L
L p
p
110.
L
n dx
L
x
n
x
f
L
b
2
0
sin
)
(
1 p
L
L
L
dx
L
x
n
x
L
L
dx
L
x
n
x
L
2
0
sin
)
2
(
1
sin
1 p
p
L
L
L
L
n
L
x
n
L
n
L
x
n
x
L
L
L
n
L
x
n
L
n
L
x
n
x
L
2
2
2
2
0
2
2
2
sin
)
1
(
cos
)
2
(
1
sin
)
1
(
cos
)
(
1
p
p
p
p
p
p
p
p
0
)
1
(
0
0
1
0
0
0
)
1
(
1 2
2
p
p n
L
L
n
L
L
n
n
0
112. Using Parseval’s identity for Fourier series we have
L
n
n
n b
a
a
dx
x
f
L
2
0 1
2
2
2
0
2
)
(
2
)]
(
[
1
L L
L n
n
n
L
L
dx
x
L
L
dx
x
L 0
2
1
4
4
2
2
2
2
2
0
1
)
1
(
4
2
)
2
(
1
)
(
1
p
........
..........
0
5
4
0
3
4
0
1
4
4
2
3
)
2
(
1
3
1
4
4
4
4
2
2
2
3
0
3
p
L
L
x
L
L
x
L
L
L
L
........
..........
5
1
3
1
1
1
16
2
3
0
1
0
3
1
4
4
4
4
2
2
3
3
p
L
L
L
L
L
L
114. . 13. Find the Fourier series expansion of
l
x
l
l
x
x
l
x
f
2
,
0
0
,
)
(
Hence deduce the value of the series
....
......
7
1
5
1
3
1
1
...
..........
5
1
3
1
1
1
2
2
2
and
Sol. Fourier series is
1
0
sin
cos
2
)
(
n
n
n
l
x
n
b
l
x
n
a
a
x
f
p
p
l
l
l
l
dx
l
dx
x
l
l
dx
x
f
l
a
2
0
2
0
0 )
0
(
1
)
(
1
)
(
1
115. l
x
l
l 0
2
2
)
(
1
2
0
2
1
l
l
2
l
0
cos
)
(
1
cos
)
(
1
0
2
0
l
l
n dx
l
x
n
x
l
l
dx
l
x
n
x
f
l
a
p
p
l
l
n
l
x
n
l
n
l
x
n
x
l
l
0
2
2
2
cos
)
1
(
sin
)
(
1
p
p
p
p
2
2
2
2
2
2
0
)
1
(
0
1
p
p n
l
n
l
l
n
116.
1
)
1
(
1 1
2
2
2
n
n
l
l p
1
)
1
( 1
2
2
n
n
l
p
0
sin
)
(
1
sin
)
(
1
0
2
0
l
l
n dx
l
x
n
x
l
l
dx
l
x
n
x
f
l
b
p
p
l
l
n
l
x
n
l
n
l
x
n
x
l
l
0
2
2
2
sin
)
1
(
cos
)
(
1
p
p
p
p
0
}
0
0
{
1 2
p
n
l
l p
n
l
119. Put x = l in equation (1) we get
......
..........
5
1
3
1
1
1
2
4
)
( 2
2
2
2
p
l
l
l
f
But x = l is the point of discontinuity. So we have
f(x) = l – x
f(l–) = l – l =0
f(x) = 0
f(l) = 0
0
2
)
0
(
)
0
(
2
)
(
)
(
)
(
l
f
l
f
l
f
..
..........
5
1
3
1
1
1
2
4
0 2
2
2
2
p
l
l
..
..........
5
1
3
1
1
1
2
4 2
2
2
2
p
l
l
......
..........
5
1
3
1
1
1
8 2
2
2
2
p
120. 14.Find the Fourier series for the function
2
0
,
1
0
2
,
1
)
(
x
x
x
x
x
f
Deduce that
8
)
1
2
(
1 2
1
2
p
n n
Solution:
f(– x) = 1 – x in (–2, 0)
= f(x) in (0, 2)
and f(– x) = 1 + x in (0, 2)
= f(x) in (–2, 0)
Hence f(x) is an even function.
1
0
2
cos
2
)
(
n
n
x
n
a
a
x
f
p
124. But x = 0 is the point of discontinuity. So we have
1
2
2
2
)
1
(
)
1
(
2
)
0
(
)
0
(
)
0
(
f
f
f
Hence equation (1) becomes
..
..........
5
1
3
1
1
1
8
1 2
2
2
2
p
......
..........
5
1
3
1
1
1
8 2
2
2
2
p
1
2
2
)
1
2
(
1
8
.)
.
(
n n
e
i
p
125. •15.Find the Fourier series of periodicity 3 for f(x) = 2x – x2 in 0 < x < 3.
Sol. Fourier series is
1
0
3
2
sin
3
2
cos
2
)
(
n
n
n
x
n
b
x
n
a
a
x
f
p
p
3
0
2
3
0
0 )
2
(
3
2
)
(
)
2
/
3
(
1
dx
x
x
dx
x
f
a
3
0
3
2
3
2
2
3
2
x
x
)
0
0
(
3
27
9
3
2
0
129. HALF RANGE FOURIER SERIES
COSINE SERIES
1
0
cos
2 n
n nx
a
a
x
f
p
p 0
0 )
(
2
dx
x
f
a
p
p 0
cos
)
(
2
nxdx
x
f
an
FOR THE INTERVAL
p
,
0
SINE SERIES
1
sin
n
n nx
b
x
f
p
p 0
sin
)
(
2
nxdx
x
f
bn
130. HALF RANGE FOURIER SERIES
FOR THE INTERVAL
l
,
0
COSINE SERIES SINE SERIES
1
0
cos
2 n
n
l
x
n
a
a
x
f
p
l
dx
x
f
l
a
0
0 )
(
2
l
n dx
l
x
n
x
f
l
a
0
cos
)
(
2 p
1
sin
n
n
l
x
n
b
x
f
p
l
n dx
l
x
n
x
f
l
b
0
sin
)
(
2 p
131. •16. Find the half range sine series for f(x) = 2 in 0 < x < p.
Solution:
p
p
p
p 0
0
sin
2
2
sin
)
(
2
dx
nx
dx
nx
x
f
bn
p
p 0
cos
4
n
nx
1
)
1
(
4
n
np
odd
is
n
when
n
even
is
n
when
bn
,
8
,
0
p
Half range sine series is
1
1
sin
8
sin
)
(
n
n
n nx
n
nx
b
x
f
p
132. . 17. Expand f(x) = cos x, 0 < x < π in a Fourier sine series.
Sol. Fourier sine series is
1
sin
)
(
n
n nx
b
x
f
p
p
p
p 0
0
sin
cos
2
sin
)
(
2
dx
nx
x
dx
nx
x
f
bn
p
p 0
cos
sin
2
1
dx
x
nx
2SinACosB = Sin(A+B) + Sin(A–B)
133. 1
,
]
)
1
sin(
)
1
[sin(
1
0
n
dx
x
n
x
n
p
p
p
p 0
1
)
1
cos(
1
)
1
cos(
1
n
x
n
n
x
n
1
1
)
1
(
)
1
cos(
)
1
(
)
1
cos(
n
n
n
n
p
p
1
1
1
1
1
)
1
(
1
)
1
(
1 1
1
n
n
n
n
n
n
p
135. When n = 1, we have
p
p
p
p 0
0
1 sin
cos
2
sin
)
(
2
dx
x
x
dx
x
x
f
b
p
p 0
2
sin
1
dx
x
p
p 0
2
2
cos
1
x
0
)
1
1
(
2
1
p
2
1
1
sin
sin
sin
)
(
n
n
n
n nx
b
x
b
nx
b
x
f
2
2
sin
)
1
(
]
1
)
1
(
[
2
n
n
nx
n
n
p
136. 18.Find the half range cosine series for the function f(x) = x (π – x) in 0 < x < π.
Deduce that
90
..
..........
3
1
2
1
1
1 4
4
4
4
p
Sol. Half range fourier cosine series is
1
0
cos
2
)
(
n
n nx
a
a
x
f
p
p
p
p
p 0
0
0 )
(
2
)
(
2
dx
x
x
dx
x
f
a
p
p
p 0
3
2
3
2
2
x
x
142. 20.Find the half range sine series of f(x) = x cos x in (0, π).
Sol. Fourier sine series is
1
sin
)
(
n
n nx
b
x
f
p
p
p
p 0
0
sin
cos
2
sin
)
(
2
dx
nx
x
x
dx
nx
x
f
bn
p
p 0
)
cos
sin
2
(
1
dx
x
nx
x
1
,
]
)
1
sin(
)
1
[sin(
1
0
n
dx
x
n
x
n
x
p
p
143. 1
,
)
1
sin(
1
)
1
sin(
1
0
0
n
dx
x
n
x
dx
x
n
x
p
p
p
p
p
p
p
p 0
2
0
2
)
1
(
)
1
sin(
)
1
(
1
)
1
cos(
1
)
1
(
)
1
sin(
)
1
(
1
)
1
cos(
1
n
x
n
n
x
n
x
n
x
n
n
x
n
x
bn
0
0
0
1
)
1
(
1
0
0
0
1
)
1
(
1 1
1
n
n
n
n
p
p
p
p
1
)
1
(
1
)
1
( 2
n
n
n
n
1
1
1
1
)
1
(
n
n
n
146. 21.Obtain the sine series for
l
x
l
in
x
l
l
x
in
x
x
f
2
2
0
)
(
Sol. Fourier sine series is
1
sin
)
(
n
n
l
x
n
b
x
f
p
l
n dx
l
x
n
x
f
l
b
0
sin
)
(
2 p
l
l
l
dx
l
x
n
x
l
l
dx
l
x
n
x
l 2
/
2
/
0
sin
)
(
2
sin
2 p
p
148. 22.Find the half range cosine series for the function f(x) = x in 0 < x < l.
Hence deduce the value of the series
1
4
)
1
2
(
1
n n
Sol. Half range Fourier cosine series is
1
0
cos
2
)
(
n
n
l
x
n
a
a
x
f
p
l
dx
x
f
l
a
0
0 )
(
2
l
l
x
l
dx
x
l 0
2
0
2
2
2
l
l
l
0
2
2 2
149.
l
l
n dx
l
x
n
x
l
dx
l
x
n
x
f
l
a
0
0
cos
2
cos
)
(
2 p
p
l
l
n
l
x
n
l
n
l
x
n
x
l
0
2
2
2
cos
)
1
(
sin
)
(
2
p
p
p
p
2
2
2
2
2
2
0
)
1
(
0
2
p
p n
l
n
l
l
n
151. Using Parseval’s identity for half range Fourier cosine series we have
l
n
n
a
a
dx
x
f
l 0 1
2
2
0
2
2
)]
(
[
2
l
n n
l
l
dx
x
l 0 1
4
4
2
2
2 16
2
)
(
2
p
........
..........
5
1
3
1
1
1
16
2
3
2
4
4
4
4
2
2
0
3
p
l
l
x
l
l
........
..........
5
1
3
1
1
1
16
2
3
2
4
4
4
4
2
2
2
p
l
l
l
155. 24.Obtain the half range cosine series for f(x) = (x – 2)2 in the interval 0 < x < 2.
Sol. Half range cosine series is
1
0
2
cos
2
)
(
n
n
x
n
a
a
x
f
p
2
0
2
2
0
0 )
2
(
)
(
2
2
dx
x
dx
x
f
a
2
0
3
3
)
2
(
x
3
8
3
8
0
157. COMPLEX OR EXPONENTIAL FORM OF FOURIER SERIES
dx
e
x
f
c
e
c
x
f
x
In
dx
e
x
f
c
e
c
x
f
x
In
inx
n
n
inx
n
inx
n
n
inx
n
p
p
p
p
p
p
p
p
2
0
)
(
2
1
,
)
(
2
0
)
(
2
1
,
)
(
159. 25.Find the complex form of the Fourier series of x
e
x
f
)
(
in –1 < x < 1
Sol. The complex form of Fourier series of f(x) is given by
n
x
n
i
n e
C
x
f p
)
( 2l = 2
l = 1
dx
e
x
f
C x
n
i
n
1
1
)
(
)
1
(
2
1 p
dx
e
e x
n
i
x
1
1
2
1 p
161.
)
sin
(cos
)
sin
(cos
)
1
(
2
)
1
( 1
1
2
2
p
p
p
p
p
p
n
i
n
e
n
i
n
e
n
n
i
n
n
n e
e
n
n
i
C )
1
(
)
1
(
)
1
(
2
)
1
( 1
1
2
2
p
p
1
1
2
2
)
1
(
2
)
1
(
)
1
(
e
e
n
n
i n
p
p
1
sinh
2
)
1
(
2
)
1
(
)
1
(
2
2
p
p
n
n
i n
2
2
1
)
1
(
1
sinh
)
1
(
p
p
n
n
i
C
n
n
n
x
n
i
n
e
n
n
i
x
f p
p
p
2
2
1
)
1
(
1
sinh
)
1
(
)
(
162. 26.Find the complex form of the Fourier series of
p
p
x
in
ax
x
f cos
)
(
Solution:
n
x
n
i
n e
C
x
f p
)
(
dx
e
x
f
c inx
n
p
p
p
)
(
2
1
dx
e
ax inx
p
p
p
cos
2
1
163.
p
p
p
ax
a
ax
in
a
n
i
e inx
sin
cos
2
1
2
2
2
bx
b
bx
a
b
a
e
bx
e
note
ax
ax
sin
cos
cos
:
2
2
p
p
p
p
p
p
p
a
a
a
in
n
a
e
a
a
a
in
n
a
e in
in
sin
cos
sin
cos
2
1
2
2
2
2
p
p
p
p
p
p
p
in
in
in
in
e
e
a
a
e
e
a
in
n
a
sin
cos
2
1
2
2
165. HARMONIC ANALYSIS
The process of finding the Fourier series for a function given by
numerical value is known as harmonic analysis. In harmonic
analysis the Fourier coefficients a0, an and bn of the function
y = f(x) in (0, 2π) are given by
a0 = 2 [mean value of y in (0, 2π)]
an = 2 [mean value of y cosnx in (0, 2π)]
bn = 2 [mean value of y sinnx in (0, 2π)]
166. 27. Find the Fourier series expansion up to third harmonic from the following
data:
x : 0 1 2 3 4 5
f(x) : 9 18 24 28 26 20
Sol. Here the length of the interval is 6
(i.e.) 2l = 6 l = 3
1
0
3
sin
3
cos
2
)
(
n
n
n
x
n
b
x
n
a
a
x
f
p
p
3
3
sin
2
sin
sin
3
cos
2
cos
cos
2
)
(
.)
.
(
3
3
sin
3
2
sin
3
sin
3
3
cos
3
2
cos
3
cos
2
)
(
3
2
1
3
2
1
0
3
2
1
3
2
1
0
x
where
b
b
b
a
a
a
a
x
f
e
i
x
b
x
b
x
b
x
a
x
a
x
a
a
x
f
p
p
p
p
p
p
p
Fourier series is
170. 28.Find the Fourier series expansion up to second harmonic from the
following data:
10
11
17
20
15
12
10
:
)
(
2
3
5
3
4
3
2
3
0
:
x
f
x p
p
p
p
p
p
Sol. Since the last value of y is a repetition of the first, only the first six values
will be used.
Fourier series is
1
0
)
sin
cos
(
2
)
(
n
n
n x
n
b
x
n
a
a
x
f
x
b
x
b
x
a
x
a
a
x
f
e
i 2
sin
sin
2
cos
cos
2
)
(
.)
.
( 2
1
2
1
0
172. Here n = 6
333
.
28
6
85
2
2
]
[
2
0
n
y
y
of
value
mean
a
833
.
4
6
5
.
14
2
cos
2
]
cos
[
2
1
n
x
y
x
y
of
value
mean
a
833
.
0
6
5
.
2
2
2
cos
2
]
2
cos
[
2
2
n
x
y
x
y
of
value
mean
a
174. 29.Find the Fourier series expansion up to first harmonic from the
following data:
7
.
15
4
.
12
9
4
.
6
3
.
5
6
3
.
8
6
.
11
15
6
.
17
7
.
18
18
:
)
(
11
10
9
8
7
6
5
4
3
2
1
0
:
x
f
x
Sol. Here the length of the interval is 12
(i.e.) 2l = 12 l = 6
Fourier series is
1
0
6
sin
6
cos
2
)
(
n
n
n
x
n
b
x
n
a
a
x
f
p
p
6
sin
cos
2
)
(
.)
.
(
6
sin
6
cos
2
)
(
1
1
0
1
1
0
x
where
b
a
a
x
f
e
i
x
b
x
a
a
x
f
p
p
p
177. 1. Write down the form of the Fourier series of an odd function in (– l, l)
and the associated Euler’s formula for the Fourier coefficients.
l
x
n
b
x
f
n
n
p
sin
)
(
1
dx
l
x
n
x
f
l
b
l
n
p
sin
)
(
2
0
Sol.
178. 2. If f(x) = 3x – 4x3 defined in the interval (– 2, 2) then find the value
of a1 in the Fourier series expansion.
Sol. Since f(x) is an odd function, an = 0.
0
1
a
1
0
cos
2
)
(
n
n nx
a
a
x
f
3
2
0
3
2
3
2
2
)
(
2
2
3
0
3
0
2
0
0
p
p
p
p
p
p
p
p
p
x
dx
x
dx
x
f
a
3
2
2
0 p
a
3. Obtain the first term of the Fourier series for the function
f(x) = x2, – π < x < π
Sol. f(x) = x2 is an even function.
Fourier series is
Hence the first term of the Fourier series is
180. 5. Define root mean square value of a function
Sol. The root mean square value of f(x) over the interval (a, b) is defined as
b
a
b
a
dx
x
f
a
b
y
a
b
dx
x
f
y
S
M
R 2
2
2
)]
(
[
1
)]
(
[
l
dx
x
f
l
y
S
M
R
0
2
2
)]
(
[
1
5
0
5
1
5
1
1
]
[
1 4
5
0
5
0
4
0
2
2 l
l
l
x
l
dx
x
l
dx
x
l
l
l
l
5
2
l
y
6.Find the root mean square value of f(x) = x2 in (0, l)
Sol.
181. 7.Find the root mean square value of a function f(x) in (0, 2π)
Sol. The root mean square value of f(x) over the interval (0, 2π) is defined as
p
p
p
p
2
0
2
2
2
0
2
)]
(
[
2
1
)]
(
[
2
1
dx
x
f
y
dx
x
f
y
S
M
R
1
0
2
2
)]
(
[
1
1
dx
x
f
y
S
M
R
3
1
3
1
0
3
)
1
(
)
1
(
1
0
3
1
0
2
x
dx
x
3
1
y
8.Find the root mean square value of f(x) = 1 – x in 0 < x < 1
Sol.
183. 10.Write the sufficient conditions for a function f(x) to satisfy for the existence
of a Fourier series.
Sol. i) f(x) is defined and single valued except possibly at a finite number of points
in (–π, π)
ii) f(x) is periodic with period 2π
iii) f(x) and
)
(x
f are piecewise continuous in (–π, π)
Then the Fourier series of f(x) converges to f(x)
a) if x is a point of continuity
2
)
0
(
)
0
(
)
x
f
x
f
b if x is a point of discontinuity.
184. 11.Find the sum of the Fourier series for
2
1
,
2
1
0
,
)
(
x
x
x
x
f
at x = 1
Sol. Here x = 1 is a point of discontinuity
2
3
2
2
1
2
)
0
1
(
)
0
1
(
)
1
(
f
f
f
12.State the Parseval’s identity for Fourier series.
Sol. The Parseval’s identity for Fourier series in the interval (c, c + 2l) is
)
(
2
)]
(
[
1 2
1
2
2
0
2
2
n
n
n
l
c
c
b
a
a
dx
x
f
l
The Parseval’s identity for Fourier series in the interval (c, c + 2π) is
)
(
2
)]
(
[
1 2
1
2
2
0
2
2
n
n
n
c
c
b
a
a
dx
x
f
p
p
185. 12.Write the formula for finding Fourier coefficients.
Sol.
l
c
c
dx
x
f
l
a
2
0 )
(
1
l
c
c
n dx
l
x
n
x
f
l
a
2
cos
)
(
1 p
l
c
c
n dx
l
x
n
x
f
l
b
2
sin
)
(
1 p
13.Define RMS value of a function.
Sol. The RMS value of a function f(x) in (a,b) is defined by
b
a
b
a
dx
x
f
a
b
y
dx
x
f
a
b
y
2
2
2
)]
(
[
1
)]
(
[
1
186. 14.State the Parseval’s identity for Fourier series.
Sol. The Parseval’s identity for Fourier series in the interval (c, c + 2l) is
)
(
2
)]
(
[
1 2
1
2
2
0
2
2
n
n
n
l
c
c
b
a
a
dx
x
f
l
The Parseval’s identity for Fourier series in the interval (c, c + 2π) is
)
(
2
)]
(
[
1 2
1
2
2
0
2
2
n
n
n
c
c
b
a
a
dx
x
f
p
p
15.Find the mean square value of the function f(x) = x in the interval (0, l).
Sol. Mean square value is
3
0
3
1
3
1
1
)]
(
[
1
2
3
0
3
0
2
0
2
2
l
l
l
x
l
dx
x
l
dx
x
f
l
y
l
l
l
187. 16.Find the value of an in the cosine series expansion of f(x) = 10 in
the interval (0,10).
Sol.
0
0
sin
20
10
10
sin
2
10
cos
)
10
(
10
2
10
cos
)
(
10
2
10
0
10
0
10
0
p
p
p
p
p
p
n
n
n
x
n
dx
x
n
dx
x
n
x
f
an
. 17. What is the constant term a0 and the coefficient an in the Fourier series
expansion of
f(x) = x – x3 in (–p,p).
Sol. Since the interval is (–p,p), let us verify whether the function is odd or even
f(– x) = (– x) – (–x)3
= – x + x3 = – (x – x3) = – f(x)
The given function is an odd function.
Hence a0 = 0 and an = 0.
188. . 18. Find the constant term in the Fourier series corresponding to f(x) = cos2 x
expanded in the interval (–p,p).
Sol. Since the interval is (–p,p), let us verify whether the function is odd or even.
f(–x) = cos2 (–x)= cos2x = f(x). Hence the function is even.
1
)
0
(
)
0
(
1
2
2
sin
1
2
2
cos
1
2
cos
2
)
(
2
0
0
0
2
0
0
p
p
p
p
p
p
p
p
p
p
x
x
dx
x
dx
x
dx
x
f
a
Hence the constant term in the Fourier expansion is
2
1
2
0
a
189. 19. Find the constant term in the Fourier expansion of f(x) = x2 – 2 in
–2 < x < 2
Sol. f(–x) = (–x)2 – 2 = x2 – 2 = f(x), which is an even function
3
4
)
0
(
4
3
8
2
3
)
2
(
)
(
2
2
2
0
3
2
0
2
2
0
0
x
x
dx
x
dx
x
f
a
Hence the constant term in the Fourier expansion is
3
2
2
3
/
4
2
0
a
190.
1
2
2
sin
2
cos
4
)
1
(
3 n
n
nx
n
nx
n
p
...
..........
3
1
2
1
1
1
2
2
2
20. If the Fourier series of the function f(x) = x + x2, in the interval (–p,p) is
, then find the value of the infinite series
Sol. Given
1
2
2
sin
2
cos
4
)
1
(
3
)
(
n
n
nx
n
nx
n
x
f
p
Put x = π in the above series we get
1
2
2
0
)
1
(
4
)
1
(
3
)
(
n
n
n
n
f
p
p
--------------- (1)
But x = π is the point of discontinuity. So we have
192. 21. Does f(x) = tan x posses a Fourier series? Justify your answer.
Sol. For a function f(x) to have Fourier series expansion it must satisfy all the
three criteria in Dirichlet’s conditions. But f(x) = tan x has value ∞ at
2
x
p
and so it is a discontinuous point and moreover it is an infinite discontinuity. So
it does not have a Fourier series expansion.