230/1
âæ×æ‹Ø çÙÎðüàæ Ñ
(i) âÖè ÂýàÙ ¥çÙßæØü ãñ´Ð
(ii) §â ÂýàÙ-˜æ ×ð´ 31 ÂýàÙ ãñ´ Áæð ¿æÚU ¹‡ÇUæð´ - ¥, Õ, â ¥æñÚU Î ×ð´ çßÖæçÁÌ ãñ´Ð
(iii) ¹‡ÇU ¥ ×ð´ °·¤-°·¤ ¥´·¤ ßæÜð 4 ÂýàÙ ãñ´Ð ¹‡ÇU Õ ×ð´ 6 ÂýàÙ ãñ´ çÁâ×ð´ âð ÂýˆØð·¤ 2 ¥´·¤ ·¤æ
ãñÐ ¹‡ÇU â ×ð´ 10 ÂýàÙ ÌèÙ-ÌèÙ ¥´·¤æð´ ·ð¤ ãñ´Ð ¹‡ÇU Î ×ð´ 11 ÂýàÙ ãñ´ çÁÙ×ð´ âð ÂýˆØð·¤ 4 ¥´·¤
·¤æ ãñÐ
(iv) ·ñ¤Ü·é¤ÜðÅUÚU ·¤æ ÂýØæð» ßçÁüÌ ãñÐ
General Instructions :
(i) All questions are compulsory.
(ii) The question paper consists of 31 questions divided into four sections – A, B, C
and D.
(iii) Section A contains 4 questions of 1 mark each. Section B contains 6 questions of
2 marks each, Section C contains 10 questions of 3 marks each and Section D
contains 11 questions of 4 marks each.
(iv) Use of calculators is not permitted.
330/1 P.T.O.
¹‡ÇU - ¥
SECTION - A
ÂýàÙ â´Øæ 1 âð 4 Ì·¤ ÂýˆØð·¤ ÂýàÙ 1 ¥´·¤ ·¤æ ãñÐ
Question numbers 1 to 4 carry 1 mark each.
1. ¥æ·ë¤çÌ 1 ×ð´ O ·ð¤‹Îý ßæÜð ßëžæ ·ð¤ çÕ´Îé C ÂÚU PQ °·¤ SÂàæü ÚðU¹æ ãñÐ ØçÎ AB °·¤ ÃØæâ
ãñ ÌÍæ ÐCAB5308 ãñ, Ìæð ÐPCA ™ææÌ ·¤èçÁ°Ð
¥æ·ë¤çÌ 1
In fig.1, PQ is a tangent at a point C to a circle with centre O. If AB is a
diameter and ÐCAB5308, find ÐPCA.
Figure 1
2. k ·ð¤ ç·¤â ×æÙ ·ð¤ çܰ k19, 2k21 ÌÍæ 2k17 °·¤ â׿´ÌÚU ŸæðÉ¸è ·ð¤ ·ý¤×æ»Ì ÂÎ ãñ´?
For what value of k will k19, 2k21 and 2k17 are the consecutive terms of
an A.P. ?
3. °·¤ ÎèßæÚU ·ð¤ âæÍ Ü»è âèɸè ÿæñçÌÁ ·ð¤ âæÍ 608 ·¤æ ·¤æð‡æ ÕÙæÌè ãñÐ ØçÎ âèÉ¸è ·¤æ ÂæÎ
ÎèßæÚU âð 2.5 ×è. ·¤è ÎêÚUè ÂÚU ãñ, Ìæð âèÉ¸è ·¤è ÜÕæ§ü ™ææÌ ·¤èçÁ°Ð
A ladder, leaning against a wall, makes an angle of 608 with the horizontal.
If the foot of the ladder is 2.5 m away from the wall, find the length of the
ladder.
430/1
4. 52 žææð´ ·¤è ¥‘ÀUè Âý·¤æÚU Èð´¤ÅUè »§ü Ìæàæ ·¤è »aè ×ð´ âð ØæÎë‘ÀUØæ °·¤ Âžææ çÙ·¤æÜæ »ØæÐ
ÂýæçØ·¤Ìæ ™ææÌ ·¤èçÁ° ç·¤ çÙ·¤æÜæ »Øæ Âžææ Ù Ìæð ÜæÜ Ú´U» ·¤æ ãñ ¥æñÚU Ù ãè °·¤ Õð$»× ãñÐ
A card is drawn at random from a well shuffled pack of 52 playing cards. Find
the probability of getting neither a red card nor a queen.
¹‡ÇU - Õ
SECTION - B
ÂýàÙ â´Øæ 5 âð 10 Ì·¤ ÂýˆØð·¤ ÂýàÙ 2 ¥´·¤ ·¤æ ãñÐ
Question numbers 5 to 10 carry 2 marks each.
5. ØçÎ çmƒææÌè â×è·¤ÚU‡æ 2x21px21550 ·¤æ °·¤ ×êÜ 25 ãñ ÌÍæ çmƒææÌè â×è·¤ÚU‡æ
p(x21x)1k50 ·ð¤ ×êÜ â×æÙ ãñ´, Ìæð k ·¤æ ×æÙ ™ææÌ ·¤èçÁ°Ð
If 25 is a root of the quadratic equation 2x21px21550 and the quadratic
equation p(x21x)1k50 has equal roots, find the value of k.
6. ×æÙæ P ÌÍæ Q, A(2, 22) ÌÍæ B(27, 4) ·¤æð ç×ÜæÙð ßæÜð ÚðU¹æ¹´ÇU ·¤æð §â Âý·¤æÚU â×ç˜æÖæçÁÌ
·¤ÚUÌð ãñ´ ç·¤ P, çÕ´Îé A ·ð¤ Âæâ ãñÐ P ÌÍæ Q ·ð¤ çÙÎðüàææ´·¤ ™ææÌ ·¤èçÁ°Ð
Let P and Q be the points of trisection of the line segment joining the points
A(2, 22) and B(27, 4) such that P is nearer to A. Find the coordinates of
P and Q.
7. ¥æ·ë¤çÌ 2 ×ð´ °·¤ ¿ÌéÖüéÁ ABCD, O ·ð´¤Îý ßæÜð ßëžæ ·ð¤ ÂçÚU»Ì §â Âý·¤æÚU ÕÙæ§ü »§ü ãñ ç·¤
ÖéÁæ°¡ AB, BC, CD ÌÍæ DA ßëžæ ·¤æð ·ý¤×àæÑ çÕ´Î饿ð´ P, Q, R ÌÍæ S ÂÚU SÂàæü ·¤ÚUÌè ãñ´Ð
çâh ·¤èçÁ° ç·¤ AB1CD5BC1DA Ð
¥æ·ë¤çÌ 2
630/1
In Fig. 3, from an external point P, two tangents PT and PS are drawn to a
circle with centre O and radius r. If OP52r, show that ÐOTS5ÐOST5308.
Figure 3
¹‡ÇU - â
SECTION - C
ÂýàÙ â´Øæ 11 âð 20 Ì·¤ ÂýˆØð·¤ ÂýàÙ ·ð¤ 3 ¥´·¤ ãñ´Ð
Question numbers 11 to 20 carry 3 marks each.
11. ¥æ·ë¤çÌ 4 ×ð´ O ·ð¤‹Îý ßæÜð ßëžæ ·¤æ ÃØæâ AB513 âð×è ãñ ÌÍæ AC512 âð×è ãñÐ BC ·¤æð
ç×ÜæØæ »Øæ ãñÐ ÀUæØæ´ç·¤Ì ÿæð˜æ ·¤æ ÿæð˜æÈ¤Ü ™ææÌ ·¤èçÁ°Ð ( p53.14 ÜèçÁ° )
¥æ·ë¤çÌ 4
In fig.4, O is the centre of a circle such that diameter AB513 cm and
AC512 cm. BC is joined. Find the area of the shaded region. (Take p53.14)
Figure 4
1430/1
29. â´Øæ¥æð´ 1, 2, 3 ÌÍæ 4 ×ð´ âð ·¤æð§ü â´Øæ x ØæÎë‘ÀUØæ ¿éÙè »§ü ÌÍæ â´Øæ¥æð´ 1, 4, 9 ÌÍæ 16
×ð´ âð ·¤æð§ü â´Øæ y ØæÎë‘ÀUØæ ¿éÙè »§ü ÂýæçØ·¤Ìæ ™ææÌ ·¤èçÁ° x ÌÍæ y ·¤æ »é‡æÙÈ¤Ü 16 âð ·¤×
ãñÐ
A number x is selected at random from the numbers 1, 2, 3 and 4. Another
number y is selected at random from the numbers 1, 4, 9 and 16. Find the
probability that product of x and y is less than 16.
30. ¥æ·ë¤çÌ 9 ×ð´, O ·ð´¤Îý ßæÜð ßëžæ ·¤æ °·¤ ç˜æ’ع´ÇU OAP ÎàææüØæ »Øæ ãñ çÁâ·¤æ ·ð¤‹Îý ÂÚU
¥Ì´çÚUÌ ·¤æð‡æ u ãñÐ AB ßëžæ ·¤è ç˜æ’Øæ OA ÂÚU Ü´Õ ãñ Áæð OP ·ð¤ ÕɸæÙð ÂÚU çÕ´Îé B ÂÚU
·¤æÅUÌæ ãñÐ çâh ·¤èçÁ° ç·¤ ÚðU¹æ´ç·¤Ì Öæ» ·¤æ ÂçÚU×æÂ r
pu
u 1 u 1 2tan sec 1
180
ãñÐ
¥æ·ë¤çÌ 9
In Fig. 9, is shown a sector OAP of a circle with centre O, containing ∠ u. AB
is perpendicular to the radius OA and meets OP produced at B. Prove that
the perimeter of shaded region is r
pu
u 1 u 1 2tan sec 1
180
Figure 9
1530/1 P.T.O.
31. °·¤ ׿ðÅÚU ÕæðÅU, çÁâ·¤è çSÍÚU ÁÜ ×ð´ ¿æÜ 24 ç·¤×è/ƒæ´ÅUæ ãñ, ÏæÚUæ ·ð¤ ÂýçÌ·ê¤Ü 32 ç·¤×è ÁæÙð
×ð´, ßãè ÎêÚUè ÏæÚUæ ·ð¤ ¥Ùé·ê¤Ü ÁæÙð ·¤è ¥Âðÿææ 1 ƒæ´ÅUæ ¥çÏ·¤ âר ÜðÌè ãñÐ ÏæÚUæ ·¤è ¿æÜ
™ææÌ ·¤èçÁ°Ð
A motor boat whose speed is 24 km/h in still water takes 1 hour more to go
32 km upstream than to return downstream to the same spot. Find the speed
of the stream.