SlideShare uma empresa Scribd logo

Princípios de Estatística Inferencial - I

1) O documento discute conceitos estatísticos como distribuições de frequências, medidas de tendência central, inferência estatística e testes de hipóteses; 2) É apresentada a distribuição normal e suas propriedades, utilizada para modelar amostras retiradas de populações; 3) É mostrado um exemplo de teste de hipóteses para verificar se a média salarial de uma amostra difere da média populacional.

1 de 69
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Paulo Novis Rocha Nefrologista Professor Adjunto do Depto. Medicina FMB-UFBA Professor Colaborador do PPgCS
Plano de Apresentação ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Curva Normal (Gauss)
Distribuições de Freqüências ,[object Object],[object Object],Neto, AMS. Biestatística Sem Segredos. 2008
Distribuições de Freqüências Neto, AMS. Biestatística Sem Segredos. 2008

Mais conteúdo relacionado

Mais procurados

Teste de hipóteses - paramétricos
Teste de hipóteses - paramétricosTeste de hipóteses - paramétricos
Teste de hipóteses - paramétricosRodrigo Rodrigues
 
Estatística
EstatísticaEstatística
Estatísticaaldaalves
 
Aula 1 introdução e estatística descritiva
Aula 1   introdução e  estatística descritivaAula 1   introdução e  estatística descritiva
Aula 1 introdução e estatística descritivaRodrigo Rodrigues
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoAntonio Mankumbani Chora
 
Testes hipot parametricos_pressupostos
Testes hipot parametricos_pressupostosTestes hipot parametricos_pressupostos
Testes hipot parametricos_pressupostosCélia M. D. Sales
 
Medidas de tendencia central
Medidas de tendencia centralMedidas de tendencia central
Medidas de tendencia centralrosania39
 
Inferência e testes de hipóteses
Inferência e testes de hipótesesInferência e testes de hipóteses
Inferência e testes de hipótesesFelipe Pontes
 

Mais procurados (20)

Aula inferencia
Aula inferenciaAula inferencia
Aula inferencia
 
Teste t student
Teste t studentTeste t student
Teste t student
 
Teste de hipóteses - paramétricos
Teste de hipóteses - paramétricosTeste de hipóteses - paramétricos
Teste de hipóteses - paramétricos
 
Correlação Estatística
Correlação EstatísticaCorrelação Estatística
Correlação Estatística
 
Estatística
EstatísticaEstatística
Estatística
 
Bioestatistica
BioestatisticaBioestatistica
Bioestatistica
 
Tópico 3 testes de hípoteses - 1 amostra
Tópico 3   testes de hípoteses - 1 amostraTópico 3   testes de hípoteses - 1 amostra
Tópico 3 testes de hípoteses - 1 amostra
 
Correlação
CorrelaçãoCorrelação
Correlação
 
Aula 1 introdução e estatística descritiva
Aula 1   introdução e  estatística descritivaAula 1   introdução e  estatística descritiva
Aula 1 introdução e estatística descritiva
 
Estatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formandoEstatistica aplicada exercicios resolvidos manual tecnico formando
Estatistica aplicada exercicios resolvidos manual tecnico formando
 
Conceitos Básicos de Estatística II
Conceitos Básicos de Estatística IIConceitos Básicos de Estatística II
Conceitos Básicos de Estatística II
 
Regressão Linear I
Regressão Linear IRegressão Linear I
Regressão Linear I
 
Testes hipot parametricos_pressupostos
Testes hipot parametricos_pressupostosTestes hipot parametricos_pressupostos
Testes hipot parametricos_pressupostos
 
Análise exploratória de dados no SPSS
Análise exploratória de dados no SPSSAnálise exploratória de dados no SPSS
Análise exploratória de dados no SPSS
 
Qui quadrado
Qui quadradoQui quadrado
Qui quadrado
 
Medidas de tendencia central
Medidas de tendencia centralMedidas de tendencia central
Medidas de tendencia central
 
Regressão Linear Múltipla
Regressão Linear MúltiplaRegressão Linear Múltipla
Regressão Linear Múltipla
 
Inferência e testes de hipóteses
Inferência e testes de hipótesesInferência e testes de hipóteses
Inferência e testes de hipóteses
 
Intervalo de confiança
Intervalo de confiançaIntervalo de confiança
Intervalo de confiança
 
Estatística Descritiva
Estatística DescritivaEstatística Descritiva
Estatística Descritiva
 

Semelhante a Princípios de Estatística Inferencial - I

Distribuição Amostral da Média
Distribuição Amostral da MédiaDistribuição Amostral da Média
Distribuição Amostral da MédiaAnderson Pinho
 
Estatística na educação
Estatística na educação Estatística na educação
Estatística na educação UFMA e UEMA
 
Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatísticaJuliano van Melis
 
A distribuição normal
A distribuição normalA distribuição normal
A distribuição normalLiliane Ennes
 
Resumo -estimacao
Resumo  -estimacaoResumo  -estimacao
Resumo -estimacaocarneiro62
 
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdfESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdfssuserac1de6
 
Medidas de Posição e Dispersão
Medidas de Posição e DispersãoMedidas de Posição e Dispersão
Medidas de Posição e DispersãoLucasCoimbra24
 
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptx
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptxMedidas de dispersão AULA 1 EXPERIMENTACAO.pptx
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptxPatriciaFerreiradaSi9
 
Doc estatistica _687118434
Doc estatistica _687118434Doc estatistica _687118434
Doc estatistica _687118434Eliabe Denes
 

Semelhante a Princípios de Estatística Inferencial - I (20)

Distribuição normal
Distribuição normalDistribuição normal
Distribuição normal
 
Bioestatística
 Bioestatística Bioestatística
Bioestatística
 
Aula7
Aula7Aula7
Aula7
 
Distribuição Amostral da Média
Distribuição Amostral da MédiaDistribuição Amostral da Média
Distribuição Amostral da Média
 
Estatística na educação
Estatística na educação Estatística na educação
Estatística na educação
 
Princípios de Estatística Inferencial - II
Princípios de Estatística Inferencial - IIPrincípios de Estatística Inferencial - II
Princípios de Estatística Inferencial - II
 
Estatística básica
Estatística básicaEstatística básica
Estatística básica
 
Bioestatística
BioestatísticaBioestatística
Bioestatística
 
Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatística
 
Estatística distribuição normal (aula 2)
Estatística   distribuição normal (aula 2)Estatística   distribuição normal (aula 2)
Estatística distribuição normal (aula 2)
 
A distribuição normal
A distribuição normalA distribuição normal
A distribuição normal
 
Resumo -estimacao
Resumo  -estimacaoResumo  -estimacao
Resumo -estimacao
 
Estatística intervalo de confiança (aula 4)
Estatística   intervalo de confiança (aula 4)Estatística   intervalo de confiança (aula 4)
Estatística intervalo de confiança (aula 4)
 
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdfESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
ESTATÍSTICA-BÁSICA-SUMÁRIO-1a-PARTE-REVISADO-2013.pdf
 
1. intervalo de confiança parte i
1. intervalo de confiança   parte i1. intervalo de confiança   parte i
1. intervalo de confiança parte i
 
Atps estatistica
Atps estatisticaAtps estatistica
Atps estatistica
 
Medidas de Posição e Dispersão
Medidas de Posição e DispersãoMedidas de Posição e Dispersão
Medidas de Posição e Dispersão
 
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptx
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptxMedidas de dispersão AULA 1 EXPERIMENTACAO.pptx
Medidas de dispersão AULA 1 EXPERIMENTACAO.pptx
 
Doc estatistica _687118434
Doc estatistica _687118434Doc estatistica _687118434
Doc estatistica _687118434
 
Distribuição Normal
Distribuição NormalDistribuição Normal
Distribuição Normal
 

Mais de Federal University of Bahia

Avaliação hemodinâmica no paciente criticamente enfermo
Avaliação hemodinâmica no paciente criticamente enfermoAvaliação hemodinâmica no paciente criticamente enfermo
Avaliação hemodinâmica no paciente criticamente enfermoFederal University of Bahia
 
Suporte Nutricional No Paciente com Lesão Renal Aguda
Suporte Nutricional No Paciente com Lesão Renal AgudaSuporte Nutricional No Paciente com Lesão Renal Aguda
Suporte Nutricional No Paciente com Lesão Renal AgudaFederal University of Bahia
 
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 AnosO Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 AnosFederal University of Bahia
 

Mais de Federal University of Bahia (20)

Análise de Sobrevivência
Análise de SobrevivênciaAnálise de Sobrevivência
Análise de Sobrevivência
 
Regressão Logística
Regressão LogísticaRegressão Logística
Regressão Logística
 
Regressão Linear Simples
Regressão Linear SimplesRegressão Linear Simples
Regressão Linear Simples
 
Hiponatremia
HiponatremiaHiponatremia
Hiponatremia
 
Acute Kidney Injury in Nephrotic Syndrome
Acute Kidney Injury in Nephrotic SyndromeAcute Kidney Injury in Nephrotic Syndrome
Acute Kidney Injury in Nephrotic Syndrome
 
Hiponatremia revisão geral em 20 min
Hiponatremia   revisão geral em 20 minHiponatremia   revisão geral em 20 min
Hiponatremia revisão geral em 20 min
 
Distúrbio
DistúrbioDistúrbio
Distúrbio
 
Avaliação hemodinâmica no paciente criticamente enfermo
Avaliação hemodinâmica no paciente criticamente enfermoAvaliação hemodinâmica no paciente criticamente enfermo
Avaliação hemodinâmica no paciente criticamente enfermo
 
Suporte Nutricional No Paciente com Lesão Renal Aguda
Suporte Nutricional No Paciente com Lesão Renal AgudaSuporte Nutricional No Paciente com Lesão Renal Aguda
Suporte Nutricional No Paciente com Lesão Renal Aguda
 
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 AnosO Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
O Que Mudou no Tratamento da Lesão Renal Aguda nos úLtimos 10 Anos
 
Estratificação da Lesão Renal Aguda
Estratificação da Lesão Renal AgudaEstratificação da Lesão Renal Aguda
Estratificação da Lesão Renal Aguda
 
Amostragem
AmostragemAmostragem
Amostragem
 
Amostragem
AmostragemAmostragem
Amostragem
 
Estatística Descritiva
Estatística DescritivaEstatística Descritiva
Estatística Descritiva
 
Uso de Bicarbonato na Acidose Metabólica
Uso de Bicarbonato na Acidose MetabólicaUso de Bicarbonato na Acidose Metabólica
Uso de Bicarbonato na Acidose Metabólica
 
Discurso Paraninfia FMB-UFBA 2008.1
Discurso Paraninfia FMB-UFBA 2008.1Discurso Paraninfia FMB-UFBA 2008.1
Discurso Paraninfia FMB-UFBA 2008.1
 
Ira No Ofidismo
Ira No OfidismoIra No Ofidismo
Ira No Ofidismo
 
Hiponatremia
HiponatremiaHiponatremia
Hiponatremia
 
SIHAD
SIHADSIHAD
SIHAD
 
Hiponatremia
HiponatremiaHiponatremia
Hiponatremia
 

Último

Desenvolva um texto dissertativo sobre como a experiência de Deus pode ser re...
Desenvolva um texto dissertativo sobre como a experiência de Deus pode ser re...Desenvolva um texto dissertativo sobre como a experiência de Deus pode ser re...
Desenvolva um texto dissertativo sobre como a experiência de Deus pode ser re...azulassessoriaacadem3
 
Vários modelos foram propostos para estudar os determinantes sociais e a tram...
Vários modelos foram propostos para estudar os determinantes sociais e a tram...Vários modelos foram propostos para estudar os determinantes sociais e a tram...
Vários modelos foram propostos para estudar os determinantes sociais e a tram...Prime Assessoria
 
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...azulassessoriaacadem3
 
2 – A data de implantação de cada tendência pedagógica no Brasil;
2 – A data de implantação de cada tendência pedagógica no Brasil;2 – A data de implantação de cada tendência pedagógica no Brasil;
2 – A data de implantação de cada tendência pedagógica no Brasil;azulassessoriaacadem3
 
Reprodução nos Animais - 2.º ciclo 5.º ano
Reprodução nos Animais - 2.º ciclo 5.º anoReprodução nos Animais - 2.º ciclo 5.º ano
Reprodução nos Animais - 2.º ciclo 5.º anoMariaJoão Agualuza
 
Letra da música Maria, Maria de Milton Nascimento
Letra da música Maria, Maria de Milton Nascimento Letra da música Maria, Maria de Milton Nascimento
Letra da música Maria, Maria de Milton Nascimento Mary Alvarenga
 
a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...azulassessoriaacadem3
 
01_Apresentacao_25_CIAED_2019_Ambientação_GRAD.pptx
01_Apresentacao_25_CIAED_2019_Ambientação_GRAD.pptx01_Apresentacao_25_CIAED_2019_Ambientação_GRAD.pptx
01_Apresentacao_25_CIAED_2019_Ambientação_GRAD.pptxAndreia Silva
 
4. Descreva como a empresa funciona e de que maneira a teoria da ORT é observ...
4. Descreva como a empresa funciona e de que maneira a teoria da ORT é observ...4. Descreva como a empresa funciona e de que maneira a teoria da ORT é observ...
4. Descreva como a empresa funciona e de que maneira a teoria da ORT é observ...apoioacademicoead
 
Planejamento Anual Matemática para o ENEM - 1º ano 1, 2 e 3 anos-.pdf
Planejamento Anual Matemática para o ENEM -  1º ano 1, 2 e 3  anos-.pdfPlanejamento Anual Matemática para o ENEM -  1º ano 1, 2 e 3  anos-.pdf
Planejamento Anual Matemática para o ENEM - 1º ano 1, 2 e 3 anos-.pdfCludiaFrancklim
 
Depois de refletir sobre essas etapas, o planejamento será registrado por mei...
Depois de refletir sobre essas etapas, o planejamento será registrado por mei...Depois de refletir sobre essas etapas, o planejamento será registrado por mei...
Depois de refletir sobre essas etapas, o planejamento será registrado por mei...excellenceeducaciona
 
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;azulassessoriaacadem3
 
Elementos da Formação Social: sociologia no ensino médio
Elementos da Formação Social: sociologia no ensino médioElementos da Formação Social: sociologia no ensino médio
Elementos da Formação Social: sociologia no ensino médioProfessor Belinaso
 
A Organização Racional do Trabalho (ORT), proposta por Frederick Taylor no in...
A Organização Racional do Trabalho (ORT), proposta por Frederick Taylor no in...A Organização Racional do Trabalho (ORT), proposta por Frederick Taylor no in...
A Organização Racional do Trabalho (ORT), proposta por Frederick Taylor no in...apoioacademicoead
 
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...azulassessoriaacadem3
 
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...azulassessoriaacadem3
 
a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...excellenceeducaciona
 
A) Cite inicialmente as três dimensões do desenvolvimento sustentável e estab...
A) Cite inicialmente as três dimensões do desenvolvimento sustentável e estab...A) Cite inicialmente as três dimensões do desenvolvimento sustentável e estab...
A) Cite inicialmente as três dimensões do desenvolvimento sustentável e estab...excellenceeducaciona
 
Com base no exposto, sua ação nessa atividade consiste em elaborar um texto d...
Com base no exposto, sua ação nessa atividade consiste em elaborar um texto d...Com base no exposto, sua ação nessa atividade consiste em elaborar um texto d...
Com base no exposto, sua ação nessa atividade consiste em elaborar um texto d...azulassessoriaacadem3
 

Último (20)

Desenvolva um texto dissertativo sobre como a experiência de Deus pode ser re...
Desenvolva um texto dissertativo sobre como a experiência de Deus pode ser re...Desenvolva um texto dissertativo sobre como a experiência de Deus pode ser re...
Desenvolva um texto dissertativo sobre como a experiência de Deus pode ser re...
 
Vários modelos foram propostos para estudar os determinantes sociais e a tram...
Vários modelos foram propostos para estudar os determinantes sociais e a tram...Vários modelos foram propostos para estudar os determinantes sociais e a tram...
Vários modelos foram propostos para estudar os determinantes sociais e a tram...
 
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
3. Como você (aluno) relaciona as informações coletadas na entrevista com o c...
 
2 – A data de implantação de cada tendência pedagógica no Brasil;
2 – A data de implantação de cada tendência pedagógica no Brasil;2 – A data de implantação de cada tendência pedagógica no Brasil;
2 – A data de implantação de cada tendência pedagógica no Brasil;
 
Reprodução nos Animais - 2.º ciclo 5.º ano
Reprodução nos Animais - 2.º ciclo 5.º anoReprodução nos Animais - 2.º ciclo 5.º ano
Reprodução nos Animais - 2.º ciclo 5.º ano
 
Letra da música Maria, Maria de Milton Nascimento
Letra da música Maria, Maria de Milton Nascimento Letra da música Maria, Maria de Milton Nascimento
Letra da música Maria, Maria de Milton Nascimento
 
a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...
 
01_Apresentacao_25_CIAED_2019_Ambientação_GRAD.pptx
01_Apresentacao_25_CIAED_2019_Ambientação_GRAD.pptx01_Apresentacao_25_CIAED_2019_Ambientação_GRAD.pptx
01_Apresentacao_25_CIAED_2019_Ambientação_GRAD.pptx
 
4. Descreva como a empresa funciona e de que maneira a teoria da ORT é observ...
4. Descreva como a empresa funciona e de que maneira a teoria da ORT é observ...4. Descreva como a empresa funciona e de que maneira a teoria da ORT é observ...
4. Descreva como a empresa funciona e de que maneira a teoria da ORT é observ...
 
Planejamento Anual Matemática para o ENEM - 1º ano 1, 2 e 3 anos-.pdf
Planejamento Anual Matemática para o ENEM -  1º ano 1, 2 e 3  anos-.pdfPlanejamento Anual Matemática para o ENEM -  1º ano 1, 2 e 3  anos-.pdf
Planejamento Anual Matemática para o ENEM - 1º ano 1, 2 e 3 anos-.pdf
 
Depois de refletir sobre essas etapas, o planejamento será registrado por mei...
Depois de refletir sobre essas etapas, o planejamento será registrado por mei...Depois de refletir sobre essas etapas, o planejamento será registrado por mei...
Depois de refletir sobre essas etapas, o planejamento será registrado por mei...
 
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
1 – O nome de cada uma das tendências pedagógicas, em ordem cronológica;
 
Elementos da Formação Social: sociologia no ensino médio
Elementos da Formação Social: sociologia no ensino médioElementos da Formação Social: sociologia no ensino médio
Elementos da Formação Social: sociologia no ensino médio
 
A Organização Racional do Trabalho (ORT), proposta por Frederick Taylor no in...
A Organização Racional do Trabalho (ORT), proposta por Frederick Taylor no in...A Organização Racional do Trabalho (ORT), proposta por Frederick Taylor no in...
A Organização Racional do Trabalho (ORT), proposta por Frederick Taylor no in...
 
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
 
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
2. É possível a denúncia do Estado agressor junto ao Tribunal Penal Internaci...
 
Namorar não és ser don .
Namorar não és ser don                  .Namorar não és ser don                  .
Namorar não és ser don .
 
a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...a. Cite e explique os três princípios básicos da progressão do treinamento de...
a. Cite e explique os três princípios básicos da progressão do treinamento de...
 
A) Cite inicialmente as três dimensões do desenvolvimento sustentável e estab...
A) Cite inicialmente as três dimensões do desenvolvimento sustentável e estab...A) Cite inicialmente as três dimensões do desenvolvimento sustentável e estab...
A) Cite inicialmente as três dimensões do desenvolvimento sustentável e estab...
 
Com base no exposto, sua ação nessa atividade consiste em elaborar um texto d...
Com base no exposto, sua ação nessa atividade consiste em elaborar um texto d...Com base no exposto, sua ação nessa atividade consiste em elaborar um texto d...
Com base no exposto, sua ação nessa atividade consiste em elaborar um texto d...
 

Princípios de Estatística Inferencial - I

  • 1.
  • 2. Paulo Novis Rocha Nefrologista Professor Adjunto do Depto. Medicina FMB-UFBA Professor Colaborador do PPgCS
  • 3.
  • 5.
  • 6. Distribuições de Freqüências Neto, AMS. Biestatística Sem Segredos. 2008
  • 7. Distribuições de freqüências: Variáveis contínuas Como idade é uma variável contínua, à medida que o número de observações tende a infinito, podemos abolir os intervalos de classe, sendo cada valor de idade representado na abscissa. Neto, AMS. Biestatística Sem Segredos. 2008
  • 8.
  • 9. Distribuições de freqüências: Variáveis discretas Neto, AMS. Biestatística Sem Segredos. 2008
  • 10.
  • 11. Distribuições reais: Variáveis contínuas Neto, AMS. Biestatística Sem Segredos. 2008
  • 12. Distribuição Normal / Gaussiana Curva teórica para população infinita Abraham de Moivre / Carl Friederich Gauss
  • 13. Os estatísticos utilizam distribuições probabilísticas como modelo gráfico e matemático para as distribuições de freqüências A finalidade é lançar mão das propriedades teóricas das primeiras como ferramentas para inferir os resultados obtidos em uma amostra para a população mais ampla de onde esta amostra foi retirada
  • 14.
  • 15. Distribuições de freqüências Distribuições probabilísticas A área sob a curva representa uma probabilidade. Se X = idade, x 1 = 35 e x 2 = 45, por exemplo, a área sombreada corresponde à probabilidade de obtermos indivíduos com idade entre 35 e 45 anos. Neto, AMS. Biestatística Sem Segredos. 2008
  • 16. Cálculo de área: Figuras geométricas perfeitas Área do círculo =  . r 2
  • 17. Distribuições de freqüências Distribuições probabilísticas Neto, AMS. Biestatística Sem Segredos. 2008
  • 19. Probabilidade = 95% -1,96 DP +1,96 DP Exemplo: n = 311 agentes penitenciários Média idades ± DP = 40,27 ± 7,60 anos 40,27 – [1,96x(7,60)] = 40,27 – 14,896 = 25,374 40,27 + [1,96x(7,60)] = 40,27 + 14,896 = 55,166 Probabilidade dos agentes apresentarem idade entre 25 e 55 anos = 95%
  • 20.
  • 21.
  • 22.
  • 23.
  • 24. Exemplo: qual a área sob a curva correspondente a valores de Z menores do que 2,00? Neto, AMS. Biestatística Sem Segredos. 2008
  • 25.  
  • 26. Exemplo: qual a área sob a curva correspondente a valores de Z menores do que 2,00? Neto, AMS. Biestatística Sem Segredos. 2008 A área sob a curva entre - ∞ e z = 2,00 é 0,9772. Podemos então afirmar que há uma probabilidade de 97,72% de um valor qualquer de Z selecionado aleatoriamente estar entre - ∞ e 2,00.
  • 27. Exemplo: n = 311 agentes penitenciários Média idade 40,27 anos com desvio padrão 7,60 anos. Qual a probabilidade de um agente penitenciário ter idade > 47 anos? - 1º passo: transformar 47 anos em um valor de Z.
  • 28.  
  • 29. Exemplo: n = 311 agentes penitenciários Média idade 40,27 anos com desvio padrão 7,60 anos. Qual a probabilidade de um agente penitenciário ter idade > 47 anos? - 1º passo: transformar 47 anos em um valor de Z. - 47 anos equivale a 0,88 DP acima da média - 2º passo: encontrar a área entre - ∞ e z = 0,88 na tabela - área = 0,8106 - como queremos área z > 0,88, fazemos 1-0,8106 = 0,1894 Resposta: a probabilidade de um agente penitenciário selecionado aleatoriamente dessa amostra ter idade > 47 anos = 18,94%
  • 31. POPULAÇÃO ( N = 1.000) AMOSTRA ( n = 50) RESULTADO: Tempo médio de serviço = 13,73 ± 5,23 anos Neto, AMS. Biestatística Sem Segredos. 2008
  • 32.
  • 33. POPULAÇÃO ( N = 1.000) AMOSTRA 1 ( n = 50) RESULTADO: Tempo médio de serviço = 13,73 anos AMOSTRA 2 ( n = 50) RESULTADO: Tempo médio de serviço = 13,90 anos AMOSTRA 3 ( n = 50) RESULTADO: Tempo médio de serviço = 12,60 anos AMOSTRA 4 ( n = 50) RESULTADO: Tempo médio de serviço = 19,27 anos AMOSTRA 5 ( n = 50) RESULTADO: Tempo médio de serviço = 15,80 anos
  • 34. ƒ( x ) Tempo médio de serviço
  • 35.  
  • 36. Distribuição das médias amostrais Neto, AMS. Biestatística Sem Segredos. 2008
  • 37.
  • 38.
  • 39.
  • 40.  
  • 41. POPULAÇÃO ( N = 1.000) AMOSTRA ( n = 50) RESULTADO: Tempo médio de serviço = 13,73 ± 5,23 anos Tempo médio de serviço 16,5 ± 5,53 anos
  • 42.
  • 43. ƒ( x ) Tempo médio de serviço P 2,5 P 97,5 Níveis de significância estatística 95,0% Todos os valores localizados entre estes limites de significância estatística seriam considerados como estatísticamente iguais à verdadeira média populacional Valores esperados por variação amostral Valores não esperados por variação amostral Valores não esperados por variação amostral
  • 44.
  • 45.
  • 46.
  • 47. ƒ( x ) Tempo médio de serviço P 2,5 P 97,5 µ 0 95,0% H A : µ < 16,5 será testado nesta cauda H A : µ > 16,5 será testado nesta cauda 16,5
  • 48.
  • 49. Distribuição NORMAL Padrão Média = ZERO DP = EP = 1 µ = 0 - ∞ + ∞ σ = 1 Z
  • 50.
  • 52.
  • 53.  
  • 54.
  • 55.
  • 56.
  • 57.
  • 59.
  • 60. CONCLUSÃO DO TESTE REALIDADE SOBRE H 0 É VERDADEIRA É FALSA Aceitação de H 0 (“não-significante”) Conclusão correta Erro tipo II β (0,20) Falso negativo Rejeição de H 0 (“significante”) Erro tipo I α (0,05) Falso positivo Conclusão correta (poder)
  • 61.
  • 63.
  • 65. Intervalo de Confiança de uma Média
  • 66.
  • 67.

Notas do Editor

  1. Preciso exemplificar melhor o exemplo do teste Z e procurar uma forma de fazer isto no computador para mostrar
  2. Fórmula matemática de uma distribuição normal
  3. A primeira propriedade é comum à todas as distribuições probabilísticas PROPRIEDADES DA DISTRIBUIÇÃO DE GAUSS: W é simétrica em torno da média, tem a forma de um sino - cada lado é uma imagem no espelho do outro lado m - média ocupa o centro da distribuição. Média = mediana = moda. Ç - área total sob a curva é igual a 1, estando 50% à direita e 50% à esquerda s - cerca de dois terços da população está a 1 desvio padrão da média, para mais e para menos (68,27%), 95% dos valores estão compreendidos dentro de 1,96 (aproximadamente 2) desvios padrão da média para mais e para menos e 99,7% dos valores estão a 3 desvios padrão da média. É assintótica, ou seja, as extremidades se aproximam, mas não tocam a linha das abscissas. DEFINIÇÃO DOS LIMITES DE NORMALIDADE ATRAVÉS DA APROXIMAÇÃO DE GAUSS: Normal = x ± 1,96 . s (utilizando-se 1,96 se está considerando 5% como anormal - definição estatística de normal) Assim, sabendo-se que a média da temperatura sérica em adultos hígidos é de 36,8 ° C e o desvio padrão é de 0,27 ° C, o intervalo da normalidade para a temperatura de adultos será: Limite inferior da normalidade= 36,8 – 1,96 X 0,27 = 36,8 – 0,5292 = 36,2708 Limite superior da normalidade= 36,8 – 1,96 X 0,27 = 36,8 + 0,5292 = 37,3292 Por esta fórmula consideramos febre quando a temperatura corporal estiver acima do limite superior e hipotermia quando a temperatura estiver abaixo do limite inferior. Esta fórmula é utilizada para determinar a maioria dos valores normais usados na área da saúde. Quando a variável tiver uma distribuição assimétrica ou não normal, o cálculo do intervalo de normalidade não poderá ser feito desta forma. Neste caso são usados geralmente os percentis. Tudo o que estiver abaixo do percentil 3 ou acima do percentil 97 será considerado anormal.
  4. W é simétrica em torno da média, tem a forma de um sino - cada lado é uma imagem no espelho do outro lado. m - média ocupa o centro da distribuição. Média = mediana = moda. Ç - área total sob a curva é igual a 1, estando 50% à direita e 50% à esquerda s - cerca de dois terços da população está a 1 desvio padrão da média, para mais e para menos (68,27%), 95% dos valores estão compreendidos dentro de 1,96 (aproximadamente 2) desvios padrão da média para mais e para menos e 99,7% dos valores estão a 3 desvios padrão da média. É assintótica, ou seja, as extremidades se aproximam, mas não tocam a linha das abscissas.
  5. Sabendo-se que a glicemia em jejum em pessoas sadias tem distribuição normal, com média igual a 90 mg/100ml e desvio padrão de 5 mg/100ml, qual a probabilidade de se encontrar ao acaso um indivíduo pertencente a esta população com glicemia acima de 100 mg/100ml? Para se fazer este cálculo é necessário primeiro trabalhar com a curva normal padrão, ou seja, converter a média de qualquer variável para uma distribuição normal padronizada com média igual a zero e desvio padrão igual a 1. Esta distribuição, chamada normal reduzida ou normal padrão tem média zero e desvio padrão um. Ela é chamada também distribuição “z”, onde z é quantidade de desvios padrão do qual o valor encontra-se afastado da média. Z mede o afastamento dos valores de x em relação à média em unidades de desvio padrão. Para se obter as probabilidades precisamos primeiro transformar o nosso valor x em z e depois consultar a tabela da distribuição normal padrão, usando-se a fórmula abaixo: z =(x - µ)/ σ No nosso exemplo: z= ( 100-90 ) /5 = 2 Isso significa que o valor 100 está a 2 desvios padrão da média. Vamos agora consultar a curva normal padrão. Desejamos saber qual a área correspondente a valores de z acima de 2, pois queremos saber qual a probabilidade de um indivíduo tomado ao acaso ter glicemia acima de 100 mg/100ml. 1) A curva toda tem área igual a 1, portanto a área à direita de zero é 0,5 2) Na tabela da curva normal, verifica-se que a área entre z=0 e z=2,00 é 0,4772 3) A área à direita de z=2 é, portanto, 0,5-0,4772 = 0,0228 4) A probabilidade de um indivíduo tomado ao acaso da população ter glicemia acima de 100 mg/100ml é 0,0228 x 100= 2,3%.
  6. Distribuição normal padrão: média ZERO, DP 1. Valores de Z (unidades de desvio-padrão). Todas as áreas sob a curva normal padrão já foram calculadas e colocadas sob forma de tabela (TABELA Z).
  7. Em estatística muitas vezes desejamos estimar a proporção com que determinado evento ocorre. Queremos saber, por exemplo, qual a prevalência de fumo entre os estudantes de Medicina da UFMA. Se desejarmos saber esta prevalência sem erro aleatório teremos que estudar toda a população dos estudantes. A teoria estatística nos ensina que, se tomarmos uma amostra aleatória da população de estudantes, podemos estimar com uma probabilidade de erro conhecida, a verdadeira prevalência de fumo na população de estudantes. Estimação é o processo pelo qual, usando-se um valor amostral (estatística) inferimos o valor populacional (parâmetro). Há duas formas de estimação.
  8. O DP pode ser da população ou da amostra estudada
  9. É com base nele que utilizaremos a distribuição normal como modelo para fazermos inferência estatística sobre médias, já que podemos assumir que, seja qual for o tipo de distribuição de frequências de uma variável em uma população, a distribuição de frequências dos resultados obtidos para as médias dessa variável em numerosas amostras retiradas dessa população será normal (se o tamanho da amostra for suficientemente grande).
  10. Amostra suficientemente grande (n  30)
  11. P = porcentil Situações de escolha de alfa &gt; 0,05: regressão logística, quando se está estudando interação entre variáveis (embora as associações não sejam muito fortes, elas podem interagir de forma importante). Alfas de 0,15 a 1,25 são recomendáveis na fase inicial de análise.
  12. Amostra suficientemente grande (n  30)
  13. No teste bi-caudado, o valor de p encontrado na tabela z é multiplicado por 2 (2 caudas); os valores críticos de z são ± 1,96 No teste uni-caudado, o valor de p encontrado na tabela z não é multiplicado por 2 (1 cauda); os valores críticos de z são ± 1,65
  14. P = porcentil Situações de escolha de alfa &gt; 0,05: regressão logística, quando se está estudando interação entre variáveis (embora as associações não sejam muito fortes, elas podem interagir de forma importante). Alfas de 0,15 a 1,25 são recomendáveis na fase inicial de análise.
  15. Amostra suficientemente grande (n  30) P é uma probabilidade sob uma distribuição probabilística (ex: distribuição normal)
  16. DP: variabilidade em 1 amostra ou 1 população EP: variabilidade em diversas amostras
  17. Amostra suficientemente grande (n  30) P é uma probabilidade sob uma distribuição probabilística (ex: distribuição normal)
  18. Amostra suficientemente grande (n  30) P é uma probabilidade sob uma distribuição probabilística (ex: distribuição normal)
  19. Erro tipo I – probabilidade mais freqüentemente admitida é 5% (alfa) – MAIS GRAVE Erro tipo II – probabilidade mais freqüentemente admitida é 20% (beta) – MENOS GRAVE Probabilidade de erro do tipo I - geralmente fixado em 0.05 Probabilidade de erro do tipo II - geralmente fixado em 0.20 Poder do teste- (1-b) – geralmente fixado em 0,80 Quando se diminui a probabilidade de erro do tipo I se aumenta a probabilidade de erro do tipo II e vice-versa. Para se diminuir ambos os erros ao mesmo tempo é necessário aumentar o tamanho da amostra.
  20. Intervalo que contenha mi com 95% de probabilidade
  21. Preciso exemplificar melhor o exemplo do teste Z e procurar uma forma de fazer isto no computador para mostrar