O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.

Grundlagen der Umfrageforschung (www.questionstar.de): 2. Messung und Skalierung

556 visualizações

Publicada em

Einführungskurs Umfrageforschung in Marketing.
Teil 2

2. Umfrage: Messung und Skalierung
2.1 Einführung
2.2 Komparative Skalen
2.3 Nicht-komparative Skalen
2.4 Latente Konstrukte
2.5 Reliabilität und Validität

Publicada em: Marketing
  • Login to see the comments

Grundlagen der Umfrageforschung (www.questionstar.de): 2. Messung und Skalierung

  1. 1. Paul Marx | Grundlagen der Umfrageforschung Grundlagen der Umfrageforschung Kapitel 2: Messung und Skalierung 1 Einführungskurs
  2. 2. Paul Marx | Grundlagen der Umfrageforschung 2.Umfrage: Messung und Skalierung 2.1 Einführung 2.2 Komparative Skalen 2.3 Nicht-komparative Skalen 2.4 Latente Konstrukte 2.5 Reliabilität und Validität 2
  3. 3. Paul Marx | Grundlagen der Umfrageforschung 2.Umfrage: Messung und Skalierung 2.1 Einführung 2.2 Komparative Skalen 2.3 Nicht-komparative Skalen 2.4 Latente Konstrukte 2.5 Reliabilität und Validität 3
  4. 4. Paul Marx | Grundlagen der Umfrageforschung Messung Messung – Zuweisung von Zahlen oder anderen Symbolen zu Charakteristiken von Objekten nach bestimmter vorgegebener Regel. - Eins-zu-eins-Entsprechung der Zahlen und zu messender Größen - Standardisierte Regeln für die Zuweisung der Zahlen - Regeln dürfen nicht vom Objekt zum Objekt oder in der Zeit variieren 4
  5. 5. Paul Marx | Grundlagen der Umfrageforschung Skalierung Skalierung – beinhaltet ein Kontinuum, auf dem die Messobjekte angeordnet werden. 5 Extrem lecker Extrem übel
  6. 6. Paul Marx | Grundlagen der Umfrageforschung Grundlegende Typen von Skalen 6 •Zahlen dienen lediglich zur Klassifizierung der Objekte •nicht-kontinuierliche SkalaNominal •Zahlen geben die relativen Positionen der Objekte an •aber nicht die Größe der Differenz zwischen ihnenOrdinal •Unterschiede zwischen Objekten können verglichen werden •Nullpunkt willkürlich Intervall quasi-metrisch •Nullpunkt eindeutig festgesetzt •Verhältnisse der Skalenwerte können berechnet werden Metrisch auch Ratio oder 1 2 1 2 1 2 NICHT 3 1 2 1 2 3 Meine Präferenz für Snacks mehrweniger 0 25 50 75 100 Gewicht(Kg)
  7. 7. Paul Marx | Grundlagen der Umfrageforschung Wichtige Skalen in Marketing Skala Beschreibung Gängige Beispiele Beispiele aus Marketing Statistische Kennzahlen Deskriptive Induktive Nominalskala Zuweisung von Zahlen zur Identifikation und/oder Klassifikation von Objekten Reisepass-Nummer, Nummer vom Fußballspieler, Geschlecht Brand, Geschlecht, Beruf, Typ des Lokals Prozentwerte, Mode Chi-Quadrat, Binomialtest Ordinalskala Zahlen beschreiben die Rangordnung der Objekte, jedoch nicht den Ausmaß der Unterschiede zwischen ihnen Schulnoten, Position der Läufer im Marathonlauf Präferenzranking, Marktposition, soziale Klasse Perzentile, Median Rangkorrelations- koeffizient (Spearmans 𝜌), Friedman ANOVA Intervallskala Ermöglicht den Vergleich der Unterschiede zwischen Objekten: Nullpunkt willkürlich Temperatur (Fahrenheit, Celsius) Einstellungen, Meinungen, Kauf- absicht, Kunden- zufriedenheit, Index- Zahlen Range, Durchschnitt, Standard- abweichung Produkt-moment Korrelation (Pearsons r), t-tests, ANOVA, Regressions- und Faktorenanalyse Metrische Skala Nullpunkt ist eindeutig festgelegt; Ermöglicht den Vergleich der Abstände zwischen den Messwerten und deren Verhältnisse Länge, Gewicht, Zeit, Geld Alter, Umsatz, Einkommen, Kosten, Marktanteil, Umsatz Geometrisches Mittel, Harmonisches Mittel Variations- koeffizient 7
  8. 8. Paul Marx | Grundlagen der Umfrageforschung Typologie von Skalierungsverfahren Skalierung Komparative Skalen Paarweise Vergleiche Rangordnungs- verfahren Konstant- summen- verfahren Q-Sortierung und andere Nicht- komparative Skalen Kontinuierliche Ratingskalen Diskrete Ratingskalen Likert-Skala Semantisches Differential Stapel-Skala 8
  9. 9. Paul Marx | Grundlagen der Umfrageforschung Vergleich von Skalierungsverfahren 9 Komparative Skalen • Der Messwert von einem Objekt ergibt sich aus dem direkten Vergleich mit einem anderen Objekt. • Daten können nur als relative Positionen interpretiert werden, • haben nur ordinales Skalenniveau (Rangordnung). Nicht-Komparative Skalen • Jedes Objekt wird isoliert beurteilt (also unabhängig von anderen Objekten). • Messergebnisse werden i.d.R. als Intervallskaliert oder metrisch gesehen. Die Wahl zwischen den Skalierungsverfahren hängt von folgenden Überlegungen ab: - Natur der Forschungsfrage - Variabilität des Messwertes in der Grundgesamtheit - Methoden der Datenanalyse
  10. 10. Paul Marx | Grundlagen der Umfrageforschung 2.Umfrage: Messung und Skalierung 2.1 Einführung 2.2 Komparative Skalen 2.3 Nicht-komparative Skalen 2.4 Latente Konstrukte 2.5 Reliabilität und Validität 10
  11. 11. Paul Marx | Grundlagen der Umfrageforschung Typologie von Skalierungsverfahren Skalierung Komparative Skalen Paarweise Vergleiche Rangordnungs- verfahren Konstant- summen- verfahren Q-Sortierung und andere Nicht- komparative Skalen Kontinuierliche Ratingskalen Diskrete Ratingskalen Likert-Skala Semantisches Differential Stapel-Skala 11
  12. 12. Paul Marx | Grundlagen der Umfrageforschung Vor- und Nachteile von komparativen Skalen 12 + Geringe unterschiede zwischen Objekten können regestiert werden + Dieselben bekannte Referenzpunkte für alle Probanden + Einfach zu verstehen und zu nutzen + Benötigen weniger theoretischen Annahmen + Reduzieren tendenziell Halo- und Carryover-Effekte Vorteile - Haben lediglich ordinales bzw. Rangordnungs-Skalenniveau ⟶ beschränkte Auswahl an statistischen Methoden zur Datenanalyse - Daten können nur als relative Positionen interpretiert werden - Unmöglich über das Set der bewerteten Objekte hinaus zu generalisieren Nachteile
  13. 13. Paul Marx | Grundlagen der Umfrageforschung Komparative Skalen: Paarweise Vergleiche 13 Probanden wählen aus jeweils zwei Objekten dasjenige aus, das nach ihrer Meinung ein bestimmten Kriterium am besten erfüllt Im Folgenden werden Ihnen zehn Paaren von Biermarken vorgelegt. In jedem Paar, wählen Sie bitte das Bier aus, welches Sie eher kaufen würden. Warsteiner Köstritzer Oerttinger Becks Paulaner Warsteiner Köstritzer Oettinger Becks Paulaner #Male Präferiert 3 2 0 4 1 Paarweise Vergleiche
  14. 14. Paul Marx | Grundlagen der Umfrageforschung Komparative Skalen: Paarweise Vergleiche 14
  15. 15. Paul Marx | Grundlagen der Umfrageforschung Paarweise Vergleiche: Vor- und Nachteile 15 + Direkter Vergleich und eindeutige Auswahl + Gut für Blindtests, Produktvergleiche und MDS + Ermöglicht die Berechnung vom prozentuellen Anteil der Probanden, die ein Objekt dem anderen bevorzugen + Rangordnung von Objekten kann geschätzt werden (unter Annahme der Transitivität) + Mögliche Erweiterungen: Alternative „keine Unterschiede“, abgestufter Vergleich Vorteile - Anzahl von Vergleiche wächst schneller als Anzahl der Objekte (für 𝑛 Objekte 𝑛(𝑛 − 1)/2 Vergleiche) - Reihenfolgeeffekte möglich (Einfluss der Präsentationsreihenfolge auf die Antworten) - Aus Präferenz von A über B folgt es nicht, dass der Proband A mag - Wenig realistisch für die realen Wahlsituationen mit mehreren Alternativen - Verletzung der Transitivitätsannahme möglich Nachteile
  16. 16. Paul Marx | Grundlagen der Umfrageforschung > > Ordinale Daten: Verletzung der Transitivitätsannahme in paarweisen Vergleichen 16
  17. 17. Paul Marx | Grundlagen der Umfrageforschung Ordinale Daten: Verletzung der Transitivitätsannahme bei Aggregation von Präferenzen 17 Proband #1 Proband #2 Proband #3 Stimmenzählung Ergebnis: 2 vs 1 2 vs 1 2 vs 1 Apfel wird gleichzeitig am meisten und am wenigsten präferiert. Gruppenpräferenzen sind inkonsistent! Abstimmung
  18. 18. Paul Marx | Grundlagen der Umfrageforschung Komparative Skalen: Rangordnungsverfahren 18 Probanden bringen mehrere Objekte in eine Reihenfolge (basierend auf einem bestimmten Kriterium) Ordnen Sie bitte die unten aufgeführten Marken von Erfrischungs-getränke entsprechend Ihrer Präferenzen an. Dafür wählen Sie zunächst die Marke aus, die Sie am meisten präferieren und weisen Sie ihr den Rangplatz 1 zu. Anschließend weisen Sie den Rangplatz 2 der zweitbesten Marke. Setzten Sie die Bewertung fort, bis Sie allen Marken einen Rangplatz zugewiesen haben. Die letzte, am wenigsten präferierte Marke, muss den Rangplatz 5 bekommen. Keine zwei Marken dürfen denselben Rangplatz erhalten. Das Kriterium der Präferenz ist ganz Ihnen überlassen. Es gibt keine richtige oder falsche Antworten. Versuchen Sie einfach konsistent zu sein. Rangordnungsverfahren Marke Rangplatz Pepsi-Cola ______________ Coca-Cola ______________ Red Bull ______________ Sprite ______________ 7-Up ______________
  19. 19. Paul Marx | Grundlagen der Umfrageforschung Rangordnungsverfahren: Beispiel 19 ©ExavoGmbH,exavo.de
  20. 20. Paul Marx | Grundlagen der Umfrageforschung Rangordnungsverfahren: Beispiele 20 Quelle: exavo.de ©ExavoGmbH,exavo.de
  21. 21. Paul Marx | Grundlagen der Umfrageforschung Rangordnungsverfahren: Beispiel 21 Quelle: exavo.de ©ExavoGmbH,exavo.de
  22. 22. Paul Marx | Grundlagen der Umfrageforschung Rangordnungsverfahren: Vor- und Nachteile 22 + Direkter Vergleich + Realitätsnäher als paarweise Vergleiche + Anzahl der Vergleiche ist nur (𝑛 − 1) + Einfacher zu verstehen + Nehmen weniger Zeit in Anspruch + Keine nicht-transitive Antworten + Daten können in paarweise Vergleiche konvertiert werden + Gut für Messung von Marken- und Eigenschaftspräferenzen Vorteile - Aus Präferenz von A über B folgt es nicht, dass der Proband A mag - Kein Null-Punkt; Keine Trennung zwischen Mögen und Nicht-Mögen - Lediglich ordinale Daten - Verletzung der Transitivitätsannahme möglich (bei Aggregation) Nachteile
  23. 23. Paul Marx | Grundlagen der Umfrageforschung Komparative Skalen: Konstantsummenverfahren 23 Probanden verteilen einen fixierten Betrag (z.B. Punkte, Euros, Chips, %) vollständig über ein Set von Objekten nach einem bestimmten Kriterium Unterstehend ist eine Liste von fünf Eigenschaften von Autos aufgeführt. Bitte verteilen Sie 100 Punkte über diese Eigenschaften so, dass die Anzahl der Punkte, die Sie einer Eigenschaft zuweisen, die relative Wichtigkeit dieser Eigenschaft für Sie wiederspiegelt. Je mehr Punkte eine Eigenschaft bekommt, desto wichtiger ist diese Eigenschaft für Sie. Wenn eine Eigenschaft für Sie unwichtig ist, weisen Sie ihr 0 Punkte zu. Wenn eine Eigenschaft doppelt so wichtig für Sie ist als eine andere Eigenschaft, weisen Sie ihr doppelt so viel Punkte zu. Konstantsummenverfahren Eigenschaften Punkte Geschwindigkeit 0 Komfort 15 Getriebetyp (manuell/Automatik) 5 Kraftsoff (Benzin/Diesel) 35 Preis 45 Summe 100
  24. 24. Paul Marx | Grundlagen der Umfrageforschung Konstantsummenverfahren: Beispiel der Auswertung 24 Attribute Segment 1 Segment 2 Segment 3 Geschwindigkeit 0 17 53 Komfort 15 23 30 Getriebe (manuell/Automatik) 5 21 10 Kraftstoff (Benzin/Diesel) 35 12 7 Preis 45 27 0 Summe 100 100 100 Durchschnittliche Bewertung in drei Segmenten
  25. 25. Paul Marx | Grundlagen der Umfrageforschung Konstantsummenverfahren: Beispiel 25 ©ExavoGmbH,exavo.de
  26. 26. Paul Marx | Grundlagen der Umfrageforschung Konstantsummenverfahren: Beispiele 26
  27. 27. Paul Marx | Grundlagen der Umfrageforschung Konstantsummenverfahren: Vor- und Nachteile 27 + Kann kleine Unterschiede zwischen den Objekten messen, ohne zu viel Zeit zu beanspruchen + Metrisch skaliert ⟶ flexible Auswahl an Analyseverfahren Vorteile - Ergebnisse sind auf die Liste der beurteilten Objekte beschränkt. D.h. es ist nicht möglich Aussagen über Objekte zu treffen, die nicht auf der Liste waren. - Relativ hohe kognitive Belastung der Probanden, insb. bei langen Listen - Anfällig für Rechenfehler (z.B. Verteilung von 108 oder 94 Punkte) Nachteile
  28. 28. Paul Marx | Grundlagen der Umfrageforschung Komparative Skalen: Q-Sortierung 28 Rangordnungsverfahren, bei dem Objekte (in Hinblick auf ein bestimmtes Merkmal) in Stapeln sortiert werden. Wird genutzt, um eine hohe Anzahl an Objekten (60-140) schnell untereinander zu vergleichen. Die Anzahl von Objekten in einem Stapel ist i.d.R. so begrenzt, dass alle Stapeln zusammen die Form einer Normalverteilung nachbilden. Für die Prävention von Epidemien hat des Gesundheitsministerium 25 Maßnahmen für die Umsetzung in Krankenhäusern entwickelt. Bitte ordnen Sie diese Maßnahmen entsprechend ihrer Wirksamkeit zur Verhinderung der Infektionsausbreitung im unterstehenden Schema ein. Bitte nur eine Maßnahme in eine Box.Q-Sortierung Äußerst wirksam Ganz und gar nicht wirksam
  29. 29. Paul Marx | Grundlagen der Umfrageforschung 2.Umfrage: Messung und Skalierung 2.1 Einführung 2.2 Komparative Skalen 2.3 Nicht-komparative Skalen 2.4 Latente Konstrukte 2.5 Reliabilität und Validität 29
  30. 30. Paul Marx | Grundlagen der Umfrageforschung Typologie von Skalierungsverfahren Skalierung Komparative Skalen Paarweise Vergleiche Rangordnungs- verfahren Konstant- summen- verfahren Q-Sortierung und andere Nicht- komparative Skalen Kontinuierliche Ratingskalen Diskrete Ratingskalen Likert-Skala Semantisches Differential Stapel-Skala 30
  31. 31. Paul Marx | Grundlagen der Umfrageforschung Nicht-komparative Skalen: Kontinuierliche Ratingskalen 31 Probanden bewerten Objekte, indem sie eine entsprechende Position auf einer Linie markieren, die von einem Extrem zum anderen Extrem eines bestimmten Kriteriums läuft. Wie bewerten Sie „Real“ als Lebensmittelgeschäft? Kontinuierliche Ratingskalen Wahrscheinlich das schlechteste Wahrscheinlich das beste Version 1 х Wahrscheinlich das schlechteste Wahrscheinlich das beste Version 2 х0 10 20 30 40 50 60 70 80 90 100 Wahrscheinlich das schlechteste Wahrscheinlich das beste Version 3 х0 20 40 60 80 100 sehr schlecht sehr gut teils teils Wahrscheinlich das schlechteste Wahrscheinlich das beste Version 4 76 sehr schlecht sehr gut teils teils
  32. 32. Paul Marx | Grundlagen der Umfrageforschung Kontinuierliche Ratingskalen: Perception Analyzer 32
  33. 33. Paul Marx | Grundlagen der Umfrageforschung Diskrete Ratingskalen: Likert-Skala 33 Probanden geben an, inwieweit sie den aufgeführten Aussagen zustimmen – anhand von einer 5- oder 7-Punkte-Skala, die von einem Extrem zum andere reicht.. Im Folgenden sind unterschiedliche Aussagen über Real aufgelistet. Bitte geben Sie an, wie stark Sie diesen Aussagen zustimmen: Likert-Skala Stimme gar nicht zu Stimme nicht zu Neutral Stimme zu Stimme voll und ganz zu Real verkauft hochwertige Waren [1] [x] [3] [4] [5] Real hat schlechten Service [1] [x] [3] [4] [5] Einkaufen bei Real macht mir Spaß [1] [2] [x] [4] [5] Real bietet eine Mischung aus verschiedenen Marken [1] [2] [3] [x] [5] Die Kreditpolitik in Real ist schrecklich [1] [2] [3] [x] [5] Ich mag die Werbung von Real nicht [1] [2] [3] [x] [5] Die Preise bei Real sind fair [1] [x] [3] [4] [5] WICHTIG: Beachten Sie die umgekehrte Richtung von Fragen 2, 5 und 6. Kehren Sie die entsprechenden Skalen vor der Datenanalyse um – d.h. höhere Zahl soll bessere Einstellung bedeuten.
  34. 34. Paul Marx | Grundlagen der Umfrageforschung Likert-Skala: Beispiele 34
  35. 35. Paul Marx | Grundlagen der Umfrageforschung Populäre Likert-Skalen in Marketing 35 Konstrukt Skalenpunkte Einstellung Sehr schlecht Schlecht Weder gut, noch schlecht Gut Sehr gut Wichtigkeit Überhaupt nicht wichtig Unwichtig Neutral Wichtig Sehr wichtig Zufriedenheit Sehr unzufrieden Unzufrieden Weder zufrieden, noch unzufrieden Zufrieden Sehr zufrieden Kaufwahrscheinlichkeit (Kaufabsicht) Definitiv nicht Wahrscheinlich nicht Unentschieden Wahrscheinlich ja Auf jeden Fall ja Kaufhäufigkeit Nie Selten Manchmal Oft Sehr oft Zustimmung Trifft überhaupt nicht zu Trifft eher nicht zu Teils teils Trifft eher zu Trifft voll und ganz zu
  36. 36. Paul Marx | Grundlagen der Umfrageforschung Diskrete Ratingskalen: Semantisches Differential 36 Zweipolige Rating-Skala, deren Extreme mit jeweils gegensätzlichen Adjektiven beschrieben werden. Erlaubt Messung mehrdimensionaler Einstellungen und deren Profildarstellung. Wie schätzen Sie das Erscheinungsbild von Kaufhof ein? Im folgenden Kasten finden Sie jeweils gegensätzliche Begriffspaare. Bitte kreuzen Sie an, inwieweit Sie in Ihrer Einschätzung jeweils mehr zu der einen oder der anderen Ausprägung tendieren. Semantisches Differential Stark [ ] [ ] [ ] [ ] [X] [ ] [ ] Schwach Unzuverlässig [ ] [ ] [ ] [ ] [ ] [X] [ ] Zuverlässig Modern [ ] [ ] [ ] [ ] [ ] [ ] [X] Altmodisch Kalt [ ] [ ] [ ] [ ] [ ] [X] [ ] Warm Sorgfältig [ ] [X] [ ] [ ] [ ] [ ] [ ] Leichtsinnig HINWEIS: Die negativen Adjektive erscheinen in der Skala manchmal links und manchmal rechts. Dies ermöglicht die Tendenz einiger Probanden nachträglich zu kontrollieren, alles links oder rechts anzukreuzen, ohne die Adjektive gelesen zu haben. Kaufhof ist:
  37. 37. Paul Marx | Grundlagen der Umfrageforschung Semantisches Differential: Beispiel 37 Hoch [ ] [ ] [ ] [ ] [ ] [ ] [ ] Tief Stark [ ] [ ] [ ] [ ] [ ] [ ] [ ] Schwach Zuverlässig [ ] [ ] [ ] [ ] [ ] [ ] [ ] Unzuverlässig Kalt [ ] [ ] [ ] [ ] [ ] [ ] [ ] Heiß Modern [ ] [ ] [ ] [ ] [ ] [ ] [ ] Langsam Gut [ ] [ ] [ ] [ ] [ ] [ ] [ ] Schlecht Freundlich [ ] [ ] [ ] [ ] [ ] [ ] [ ] Feindlich Hässlich [ ] [ ] [ ] [ ] [ ] [ ] [ ] Schön Aktiv [ ] [ ] [ ] [ ] [ ] [ ] [ ] Passiv Jung [ ] [ ] [ ] [ ] [ ] [ ] [ ] Alt Vorsichtig [ ] [ ] [ ] [ ] [ ] [ ] [ ] Sorglos Klein [ ] [ ] [ ] [ ] [ ] [ ] [ ] Groß Sanft [ ] [ ] [ ] [ ] [ ] [ ] [ ] Abstoßend Robust [ ] [ ] [ ] [ ] [ ] [ ] [ ] Empfindlich Bescheiden [ ] [ ] [ ] [ ] [ ] [ ] [ ] Angeberisch Messung von Selbsteinschätzung, Einstellung ggü. Personen bzw. Produkten Bewertungsprofile von verschiedenen Objekten / Befragten / Segmente. Jeder Punkt entspricht dem Mittelwert oder Median der jeweiligen Skala.
  38. 38. Paul Marx | Grundlagen der Umfrageforschung Semantisches Differential: Beispiel 38 Quelle: http://www.provisor.com.ua/archive/2000/N16/gromovik.php Billig [ ] [ ] [ ] [ ] [ ] [ ] [ ] Teuer Hat natürliche Inhaltsstoffe [ ] [ ] [ ] [ ] [ ] [ ] [ ] Hat keine natürliche Inhaltsstoffe Attraktiv [ ] [ ] [ ] [ ] [ ] [ ] [ ] Unattraktiv Überall verfügbar [ ] [ ] [ ] [ ] [ ] [ ] [ ] Schwer zu bekommen Riecht gut [ ] [ ] [ ] [ ] [ ] [ ] [ ] Riecht schlecht Hat Conditioner [ ] [ ] [ ] [ ] [ ] [ ] [ ] Hat kein Conditioner Bekannte Marke [ ] [ ] [ ] [ ] [ ] [ ] [ ] Unbekannte Marke Geeignet für häufige Nutzung [ ] [ ] [ ] [ ] [ ] [ ] [ ] Ungeeignet für häufige Nutzung Magischer Effekt von Glanz und Sauberkeit [ ] [ ] [ ] [ ] [ ] [ ] [ ] Kein Effekt von Sauberkeit Einfache Nutzung [ ] [ ] [ ] [ ] [ ] [ ] [ ] Komplizierte Nutzung Ideales Shampoo Elseve Herbal Magic Semantische Profile von Shampoo-Marken „Herbal Magic” und „Elseve” im Vergleich zum idealen Shampoo aus der Sicht von Konsumenten
  39. 39. Paul Marx | Grundlagen der Umfrageforschung Semantisches Differential: Beispiel 39
  40. 40. Paul Marx | Grundlagen der Umfrageforschung Diskrete Ratingskalen: Stapel-Skala 40 Eine unipolare Ratingskala mit 10 Kategorien von -5 bis +5 ohne Neutralpunkt (0). Wird oft als Alternative zum semantischen Differential verwendet, insb. wenn es schwierig erscheint, ein sinnvolles Paar von entgegengesetzten Adjektiven zu finden. Bitte geben Sie an, wie zutreffend folgende Wörter und Phrasen die Geschäfte beschreiben. Wählen Sie eine Plus-Zahl für Phrasen, die das Geschäft zutreffend beschreiben. Je genauer Ihrer Meinung nach trifft die Beschreibung auf das Geschäft zu, desto höhere Plus- Zahl sollten Sie wählen. Wählen Sie eine Minus-Zahl für Phrasen, die Ihrer Meinung nach auf das Geschäft nicht zutreffen. Je weniger die Phrase auf das Geschäft zutrifft, desto höhere Minus-Zahl sollten Sie wählen. Sie können jede Zahl zwischen +5 (für zutreffende) und -5 (für unzutreffende) Beschreibungen wählen. Stapel-Skala „Real“: +5 +4 +3 +2 +1 -1 -2 -3 -4 -5 Hohe Qualität +5 +4 +3 +2 +1 -1 -2 -3 -4 -5 Schlechter Service х х
  41. 41. Paul Marx | Grundlagen der Umfrageforschung Wichtigste nicht-komparative Skalen Skala Beschreibung Beispiele Vorteile Nachteile Kontinuierliche Ratingskalen Markierung auf einer kontinuierlichen Linie Reaktion auf TV- Werbespots Einfach zu bilden Nicht PC-gestützte manuelle Auswertung kann sehr mühsam sein Diskrete Ratingskalen Likert-Skala Grad der Zustimmung auf der Skala von 1 (stimme ganz und gar nicht zu) bis 5 (stimme vollkommen zu) Messung von Einstellungen Einfach zu verstehen, zu verwenden und zu bilden Zeitaufwendiger Semantisches Differential Zweipolige siebenstufige Ratingskala mit entgegengesetzten Adjektiven auf den Polen. Marken-, Produkt- und Firmenimage Vielseitig Keine Eignung darüber, ob die Daten intervallskaliert sind Stapel-Skala Unipolare zehn Punkte Skala von -5 bis +5 ohne Neutralpunkt (0) Messung von Einstellungen und Image Einfach zu konstruieren und zu verwenden in Telefon- Umfragen Manchmal verwirrend und schwierig anzuwenden 41
  42. 42. Paul Marx | Grundlagen der Umfrageforschung Konstruktion von diskreten Ratingskalen 42 Anzahl von Antwortkategorien Zwar gibt es keine eindeutige einzig optimale Anzahl von Antwortkategorien, traditionell werden Skalen mit fünf bis neuen Antwortkategorien verwendet. Balanciert vs. nicht-balanciert Generell sollte die Skala balanciert sein, um objektive Ergebnisse erzielen zu können. Gerade vs. ungerade Anzahl von Antwortkategorien Wenn eine neutrale bzw. indifferente Antwort zumindest für einige Probanden in Frage kommt, sollte man eine Skala mit ungerader Anzahl von Antwortkategorien verwenden. Obligatorische vs. nicht- obligatorische Antwort Wenn einige Probanden keine Meinung haben können, durch nicht-obligatorische Fragen kann die Genauigkeit der Ergebnisse verbessert werden. Verbale Beschreibung Es gibt gute Argumente dafür, die meisten (wenn nicht alle) Antwortkategorien zu beschriften. Die Beschriftung sollte möglichst nah an Antwortkategorien sein.
  43. 43. Paul Marx | Grundlagen der Umfrageforschung Anzahl von Antwortkategorien Zwar gibt es keine eindeutige einzig optimale Anzahl von Antwortkategorien, traditionell werden Skalen mit fünf bis neuen Antwortkategorien verwendet. Anzahl von Antwortkategorien 43 + Je hoher die Anzahl von Antwortkategorien, desto feinere Unterschiede in der Bewertung können von der Skala registriert werden. - Die meisten Probanden können nur mir einigen wenigen Antwortkategorien umgehen. Involvement und Wissen • Mehr Antwortkategorien wenn Probanden an der Bewertungsaufgabe interessiert sind oder über tiefes Wissen über das Objekt oder Sachverhalt verfügen. Natur von Objekten • Sind feine Unterschiede für die Objekte charakteristisch? Modus der Datenerhebung • Weniger Antwortkategorien für Telefoninterviews. Datenanalyse • Weniger Antwortkategorien für Aggregation, Verallgemeinerungen, oder Gruppenvergleiche. • Mehr Kategorien für anspruchsvolle statistische Analysen, insb. Korrelationsbasierte u.ä.
  44. 44. Paul Marx | Grundlagen der Umfrageforschung Balanciert vs. nicht-balanciert Generell sollte die Skala balanciert sein, um objektive Ergebnisse erzielen zu können. Balancierte oder nicht-balancierte Skalen 44 Sehr gut Gut Weder gut noch schlecht Schlecht Sehr schlecht Balancierte Skala Extrem gut Sehr gut Gut Angemessen Schlecht Sehr schlecht Nicht-balancierte Skala
  45. 45. Paul Marx | Grundlagen der Umfrageforschung Gerade vs. ungerade Anzahl von Antwortkategorien Wenn eine neutrale bzw. indifferente Antwort zumindest für einige Probanden in Frage kommt, sollte man eine Skala mit ungerader Anzahl von Antwortkategorien verwenden. Gerade oder ungerade Anzahl von Antwortkategorien 45 - Die mittlere Option einer Einstellungsskala zieht viele Probanden an, die unsicher sind oder ihre Meinung nur ungern offenbaren würden. - Das kann die Maßen der zentralen Tendenz und Varianz verzerren. - Wollen/brauchen wir „Kontrast“ in kontroversen Einstellungen?
  46. 46. Paul Marx | Grundlagen der Umfrageforschung Obligatorische vs. nicht- obligatorische Antwort Wenn einige Probanden keine Meinung haben können, durch nicht-obligatorische Fragen kann die Genauigkeit der Ergebnisse verbessert werden. Obligatorische oder nicht-obligatorische Antwort? 46 - Fragen ohne Alternative „weiß nicht“ erzeugen tendenziell höhere Menge an genauen Daten. - Wollen die Probanden nicht Antworten oder haben sie keine Meinung? - Nutzen Sie „weiß nicht“ oder besser „nicht zutreffend“ bei sachlichen Fragen und Wissensabfragen, aber nicht für Messung von Einstellungen und Meinungen. - Nutzen Sie Filterführung, um sicherzustellen, dass Probanden ihre Fragen beantworten können
  47. 47. Paul Marx | Grundlagen der Umfrageforschung Verbale Beschreibung Es gibt gute Argumente dafür, die meisten (wenn nicht alle) Antwortkategorien zu beschriften. Die Beschriftung sollte möglichst nah an Antwortkategorien sein. Verbale Beschreibung 47 - Die verbale Beschreibung für jede Antwortkategorie verbessert die Genauigkeit und Reliabilität nicht immer. Wichtig ist es, die Ambivalenz der Beschriftung zu vermeiden. - Spitze vs. Flache Antwortverteilung stimme ganz und gar nicht zu stimme voll und ganz zu stimme nicht zu stimme zu
  48. 48. Paul Marx | Grundlagen der Umfrageforschung 2.Umfrage: Messung und Skalierung 2.1 Einführung 2.2 Komparative Skalen 2.3 Nicht-komparative Skalen 2.4 Latente Konstrukte 2.5 Reliabilität und Validität 48
  49. 49. Paul Marx | Grundlagen der Umfrageforschung Latente Konstrukte und Multi-Item-Skalen 49 Bitte geben Sie an, wie zufrieden Sie mit dem Kauf von ______ sind. Kreuzen Sie dafür das Kästchen an, das Ihrer Einschätzung am besten entspricht. zufrieden [ ] [ ] [ ] [ ] [ ] [ ] [ ] unzufrieden erfreut [ ] [ ] [ ] [ ] [ ] [ ] [ ] verärgert vorteilhaft [ ] [ ] [ ] [ ] [ ] [ ] [ ] nachteilig angenehm [ ] [ ] [ ] [ ] [ ] [ ] [ ] unangenehm Ich mochte es sehr [ ] [ ] [ ] [ ] [ ] [ ] [ ] Ich mochte es überhaupt nicht befriedigt [ ] [ ] [ ] [ ] [ ] [ ] [ ] frustriert hinreißend [ ] [ ] [ ] [ ] [ ] [ ] [ ] schrecklich α=0,84 Latentes Konstrukt ist ein Sachverhalt (z.B. Kundenzufriedenheit), der nicht direkt beobachtbar bzw. messbar ist. Das bedeutet nicht, dass der betreffende Sachverhalt nicht “existiert”, sondern nur, dass er aus anderen, messbaren Sachverhalten (Indikatoren) erschlossen werden kann.
  50. 50. Paul Marx | Grundlagen der Umfrageforschung Latente Konstrukte und Multi-Item-Skalen Konstrukt Dimensionen Faktoren Items Skala Kunden- zufriedenheit Produkt- zufriedenheit Service- zufriedenheit Freund- lichkeit Fach- kompetenz Verbind- lichkeit Der Verkäufer war mir sympathisch Der Verkäufer lächelte nett Der Verkäufer war zuvorkommend trifft voll zu trifft weitgehend zu trifft nur teilweise zu trifft überhaupt nicht zu
  51. 51. Paul Marx | Grundlagen der Umfrageforschung Vorteile + Möglichkeit zur Beurteilung abstrakter Konzepte + Verschiedene Facetten des Konstruktes können erfasst werden + Reduktion der Datendimensionalität durch Aggregation einer Vielzahl von beobachtbaren Sachverhalte zu einem Modell + ... Latente Konstrukte und Multi-Item-Skalen 51
  52. 52. Paul Marx | Grundlagen der Umfrageforschung Multi-Item-Skalen: baue oder klaue Generierung vom anfänglichen Pool von Items: Theorie, Sekundärdaten und qualitative Analyse Wahl des reduzierten Set von Items auf Grundlage qualitativer Urteile Datenerhebung mit einer großen Stichprobe Statistische Analyse Entwicklung einer bereinigten Skala Datenerhebung mit einer anderen Stichprobe Beurteilung von Reliabilität, Validität und Generalisierbarkeit der Skala Ableitung der finalen Skala Theorieentwicklung Brunner, Gordon C. II (2012), “Marketing Scales Handbook: A Compilation of Multi-Item Measures for Consumer Behavior & Advertising Research”, Vol. 6, verfügbar als as PDF unter www.marketingscales.com/research Journal of the Academy of Marketing Science (JAMS) Journal of Advertising (JA) Journal of Consumer Research (JCR) Journal of Marketing (JM) Journal of Marketing Research (JMR) Journal of Retailing (JR) Wo findet man fertige Skalen?
  53. 53. Paul Marx | Grundlagen der Umfrageforschung Secure Customer Index™ Bewertung von Kundenloyalität und Kundenbindung 53 Secure Customer Sehr zufrieden Werde definitiv weiterempfehlen Werde definitiv wieder nutzen Quelle: D. Randall Brandt (1996), “Secure Customer Index”, Maritz Research Zufriedenheit im Allgemeinen 5 = sehr zufrieden 4 = eher zufrieden 3 = weder zufrieden noch unzufrieden 2 = eher unzufrieden 1 = sehr unzufrieden Bereitschaft zur Weiterempfehlung 5 = werde ganz sicher weiterempfehlen 4 = werde wahrscheinlich weiterempfehlen 3 = unentschieden 2= werde wahrscheinlich nicht weiterempfehlen 1= werde ganz sicher nicht weiterempfehlen Wahrscheinlichkeit der Wiederverwendung 5 = werde ganz sicher weiterverwenden 4 = werde wahrscheinlich wiederverwenden 3= unentschieden 2= werde wahrscheinlich nicht wiederverwenden 1 = werde ganz sicher nicht wiederverwenden Secure Customers (Sichere Konsumenten) % sehr zufrieden/werde ganz sicher wiederverwenden/werde ganz sicher weiterempfehlen Konsumenten mit einer günstigen Einstellung % zumindest zweitbeste Alternative auf allen drei Dimensionen der Zufriedenheit und Loyalität Verletzte Konsumenten % eher zufrieden/unentschieden/unentschieden Gefährdete Konsumenten % eher zufrieden oder nicht zufrieden/werde wahrscheinlich oder ganz sicher nicht wiederverwenden/werde wahrscheinlich oder ganz sicher nicht weiterempfehlen
  54. 54. Paul Marx | Grundlagen der Umfrageforschung Erweiterter Secure Customer Index™ von Burke Inc. 54 Zufriedenheit im Allgemeinen Wie zufrieden sind Sie mit (MARKE/UNT.) im Allgemeinen? Bereitschaft zur Weiterempfehlung Wenn man Sie bitten würde, ein Unternehmen aus (BRANCHE) zu empfehlen, wie wahrscheinlich ist es, dass Sie (MARKE/UNT.) empfehlen werden? Wahrscheinlichkeit des Wiederverkaufs Wie wahrscheinlich ist es, dass Sie (MARKE/UNT.) weiterverwenden werden? Verdiente Loyalität (MARKE/UNT.) hat meine Loyalität verdient. Bevorzugtes Unternehmen Ich ziehe (MARKE/UNT.) allen anderen Anbieter vor. Quelle: Burke Inc. http://www.burke.com/library/whitepapers/sci_white_paper_low_res_pages.pdf Loyalitäts- index Share of Wallet (0% - 100%) Periode 1 Periode 2
  55. 55. Paul Marx | Grundlagen der Umfrageforschung 2.Umfrage: Messung und Skalierung 2.1 Einführung 2.2 Komparative Skalen 2.3 Nicht-komparative Skalen 2.4 Latente Konstrukte 2.5 Reliabilität und Validität 55
  56. 56. Paul Marx | Grundlagen der Umfrageforschung Gütekriterien der Messung 56 Das True-Score-Modell ХO = ХT + ХS + ХR wobei ХO = beobachteter Wert einer Charakteristik ХT = der wahre Wert der Charakteristik ХS = systematischer Fehler ХR = Zufallsfehler
  57. 57. Paul Marx | Grundlagen der Umfrageforschung Reliabilität und Validität 57 Reliabilität (Zuverlässigkeit) • Gibt an, wie zuverlässig ein Messinstrument misst – d.h. wie konsistent die Ergebnisse bei wiederholten Messungen sind. • Kein Zufallsfehler (ХR ⟶ 0 |⇒ ХO ⟶ ХT + ХS) • Die Maßzahl von Reliabilität ist Cronbachs Alpha (0 ≥ α ≥ 1) • Werte von α ≥ 0,7 gelten als akzeptabel ХO = ХT + ХS + ХR Validität (Gültigkeit) • Gibt an, inwieweit ein Messinstrument auch tatsächlich den Sachverhalt misst, den es zu messen galt – d.h. inwiefern gemessene Unterschiede tatsächlichen unterschieden zwischen den Objekten entsprechen (Güte der Messung). • Kein Messfehler (ХS ⟶ 0, ХR ⟶ 0 |⇒ ХO ⟶ ХT) Reliabel Nicht valide Geringe Reliabilität Geringe Validität Nicht reliabel Nicht valide Reliabel und valide * Negative Werte von α sind möglich, lassen sich aber nicht interpretieren.
  58. 58. Paul Marx | Grundlagen der Umfrageforschung Reliabel Nicht valide Geringe Reliabilität Geringe Validität Nicht reliabel Nicht valide Reliabel und valide Zusammenhang zwischen Reliabilität und Validität 58 ХO = ХT + ХS + ХR • Validität impliziert Reliabilität (ХO = ХT |⇒ ХS = 0, ХR = 0) • Nicht-Reliabilität impliziert Nicht-Validität (ХR ≠ 0 |⇒ ХO = ХT + ХR ≠ ХT) • Aus Reliabilität kann Validität nicht gefolgert werden (ХR = 0, ХS ≠ 0 |⇒ ХO = ХT + ХS ≠ ХT) • Reliabilität ist eine notwendige, aber nicht hinreichende Bedingung der Validität
  59. 59. Paul Marx | Grundlagen der Umfrageforschung 59 „Der Zweck einer Skala ist es uns zu ermöglichen, die Probanden mit der höchsten Genauigkeit und Reliabilität abzubilden. Wir können nicht das Eine ohne das Andere haben und dabei unseren Daten vertrauen.” Bart Gamble vice president client services, Burke, Inc. 2000-2003
  60. 60. Paul Marx | Grundlagen der Umfrageforschung Net Promoter Score® Unternehmenswachstum? 60 0 1 2 3 4 5 6 7 8 9 10 Quelle:Reichheld,Fred(2003)"OneNumberYouNeedtoGrow",HarvardBusinessReview Kritiker Passiven Promoters Net Promoter Score % Promoters % Kritiker= – Wie wahrscheinlich ist es, dass Sie Unternehmen/Marke/Produkt X einem Freund, Verwandten oder Kollegen weiterempfehlen werden?? Ist die Skala reliabel? Ist die Skala valide? NPS (-100% – +100%) 5-10% Durchschnittliche Unternehmen 45% Perspektive Unternehmen mit offenem Wachstumspotential 50-80% Markführer mit hohem Wachstumspotential
  61. 61. Paul Marx | Grundlagen der Umfrageforschung Net Promoter Score®: Warnung 61 „Obwohl die „Weiterempfehlungs-“ Frage bei weitem die beste Einzelfrage für die Vorhersage vom Konsumentenverhalten für eine Reihe von Branchen ist, sie ist nicht die beste Frage für alle Branchen… Deshalb müssen Unternehmen ihre Hausaufgaben machen und die Verbindung zwischen der Antwort auf diese Frage und dem darauffolgenden Konsumentenverhalten für ihren Geschäftsfeld empirisch überprüfen.” Fred Reichheld, 2011 Quelle: Reichheld, Fred, and Rob Markey (2011). The Ultimate Question 2.0. Boston: Harvard Business Review Press; pp.50-51. ?
  62. 62. Paul Marx | Grundlagen der Umfrageforschung 62 Referenzen: Backhaus, Klaus, Bernd Erichson, Wulff Plinke, Rolf Weiber (2015), „Multivariate Analysemethoden: Eine anwendungsorientierte Einführung“, Springer Gabler, 14. Auflage. Malhotra, Naresh K. (2009), „Marketing Research: An Applied Orientation“, Prentice Hall, 6th edition. Myers, James H. (1996), „Segmentation & Positioning for Strategic Marketing Decisions“, South Western Educ Pub . Sulivan III, Michael (2010), „Statistics: Informed Decisions Using Data“, Pearson, 3rd edition. Course “Statistics I” of Elgin Community College. Haftungsausschluss: Diese Präsentation enthält das Bildmaterial, welches nur für die Verbreitung innerhalb dieser Präsentation und ihrer Teile in unveränderter Form lizensiert ist. Die Autoren von abgeleiteten Werken sind angehalten, die für die Verbreitung ihrer Werke notwendige Lizenzen selbst zu beschaffen. Der Autor sowie die mit ihm affilierten Personen und/oder Organisationen können für die Verletzung jeglicher Lizenzbedingungen in keiner Form verantwortlich gemacht werden, sofern diese Verletzungen nicht durch ihr aktives Tun verursacht worden sind – also insbesondere nicht in Fällen der durch sie unkontrollierten Verbreitung dieser Präsentation, ihrer Teile und/oder von dieser Präsentation abgeleiteter Werke. Markennamen und geschützte Warenzeichen sind Eigentum ihrer jeweiligen Inhaber. Die Nennung von Markennamen und geschützter Warenzeichen hat lediglich beschreibenden Charakter. Irrtümer vorbehalten. Diese Präsentation unterliegt der CreativeCommons-Attribution-NonCommercial-ShareAlike-Lizenz1, soweit Anderes nicht explizit angegeben ist. Jede Nutzung oder Verbreitung dieser Präsentation, ihrer Teile und/oder abgeleiteter Werke erfordert einen Verweis auf diese Präsentation und explizite Nennung von Paul Marx und questionStar™. ©2016 Paul Marx, questionStar™. All rights reserved. 1https://creativecommons.org/licenses/by-nc-sa/3.0/deed.de. Die Lizenz gilt nicht für das Bildmaterial.

×