O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Funcion cuadratica
Funcion cuadratica
Carregando em…3
×

Confira estes a seguir

1 de 28 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a 12947290 (20)

Anúncio

Mais recentes (20)

12947290

  1. 1. C FUNCIÓNCUADRÁTICA LICEO VILLA MACUL ACADEMIA “Compromiso-Innovación-Excelencia” 3° MEDIO – Matemática Común
  2. 2. OBJETIVOS: • Conocer y aplicar los conceptos matemáticos asociados al estudio de la función cuadrática. • Graficar una función cuadrática, determinando vértice, eje de simetría y concavidad. • Indicar las características gráficas de una parábola a través del análisis del discriminante. • Determinar las intersecciones de la parábola con los ejes cartesianos.
  3. 3. Contenidos Función cuadrática 3 Intersección con el eje Y 4 Concavidad 5 Eje de simetría y vértice 6 Discriminante 1 Parábola 2 Intersección con el eje X 7 Dominio y Recorrido
  4. 4. Función Cuadrática Es de la forma: f(x) = ax2 + bx + c Ejemplos: y su gráfica es una parábola. a) Si f(x) = 2x2 + 3x + 1 b) Si f(x) = 4x2 - 5x - 2 a = 2, b = 3 y c = 1 a = 4, b = -5 y c = -2 con a =0; a,b,c  IR
  5. 5. PARÁBOLAS EN LA VIDA COTIDIANA
  6. 6. La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. 1. Parábola
  7. 7. 2. Intersección con eje X Todos los puntos sobre el eje X son de la forma (x,0); esto implica que para que se cumpla la condición, la coordenada “y” debe ser igual a 0. Si la función cuadrática es y = f(x) = ax2 + bx + c , podemos reemplazar y=0. Entonces ax2 + bx + c =0 . Es decir, debemos resolver esta ecuación para encontrar los valores de x. Tu ya sabes resolver ecuaciones cuadráticas (las raíces o soluciones x1 y x2 son las intersecciones con el eje x) x1 x2
  8. 8. Ejemplo Dada la función cuadrática encontremos la intersección de esta parábola con el eje x. Resolvemos la ecuación cuadrática haciendo f(x) = 0 Los puntos de intersección son x1 = -2 y X2 = 0 Puntos coordenados (-2,0) y (0,0)
  9. 9. 3. Intersección con eje Y En la función cuadrática, f(x) = ax2 + bx + c , el coeficiente c indica la ordenada del punto donde la parábola intersecta al eje Y. x y x y c (0,C)
  10. 10. 4. Concavidad En la función cuadrática, f(x) = ax2 + bx + c , el coeficiente a indica si la parábola es cóncava hacia arriba o hacia abajo. Si a > 0, es cóncava hacia arriba Si a < 0, es cóncava hacia abajo
  11. 11. El valor de “b” en la ecuación permite saber el movimiento horizontal de la parábola y “a” su concavidad. Sea la función cuadrática f(x)=ax² +bx + c Entonces: Si a>0 y b<0 la parábola abre hacia arriba y está orientada hacia la derecha. Si a>0 y b>0 la parábola abre hacia arriba y está orientada hacia la izquierda. Si a<0 y b>0 la parábola abre hacia abajo y esta orientada hacia la derecha. Si a<0 y b<0 la parábola abre hacia abajo y esta orientada hacia la izquierda. La importancia del valor de “a” y de “b” Ej. f(x)=2x² - 3x +2 Ej. f(x)=x² + 3x - 2 Ej. f(x)=-3x + 4x – 1 Ej. f(x)=-x² - 4x + 1
  12. 12. Luego, la parábola intersecta al eje Y en el punto (0,- 4), es cóncava hacia arriba y está orientada hacia la derecha respecto al eje Y. x y Ejemplo: En la función f(x) = x2 - 3x - 4 , a =1 ; b=-3 y c = -4. (0,-4)
  13. 13. 5. Eje de simetría y vértice El eje de simetría es la recta que pasa por el vértice de la parábola, y es paralela al eje Y. x y Eje de simetría Vértice El vértice de una parábola es el punto más alto o más bajo de la curva, según sea su concavidad.
  14. 14. Si f(x) = ax2 + bx + c , entonces: b) Su vértice es: a) Su eje de simetría es: 2a 2a V = -b , f -b 4a -b , 4ac – b2 2a V = -b 2a x =
  15. 15. Ejemplo: 2·1 -2 x = En la función f(x) = x2 + 2x - 8, a = 1, b = 2 y c = - 8, entonces: V = ( -1, f(-1) ) a) Su eje de simetría es: x = -1 b) Su vértice es: V = ( -1, -9 ) 2a -b x = -b , f -b 2a 2a V =    
  16. 16. f(x) V = ( -1, -9 ) x = -1 Eje de simetría: Vértice:
  17. 17. i) y =a(x-h)² Significa que la función se movió a la izquierda o derecha, h unidades y abre hacia arriba o hacia abajo. Ej. 1) y=2(x-3)² (↑→) 2) y=-3(x-4)² (↓→) Si y=ax² una función cuadrática cualquiera, entonces: Comportamiento de la función de acuerdo a “a”, “h” y “k” x y x y
  18. 18. ii) y =a(x+h)² Significa que la función se movió a la izquierda o derecha, h unidades y abre hacia arriba o abajo. Ej. 1) y= 4(x+2)² (↑←) 2) y=-(x+1)² (↓←) x y
  19. 19. iii) y=a(x-h)² ± k significa que la función se movió a la derecha o izquierda y k unidades hacia arriba o hacia abajo. 1) y=5(x-1)² - 4 (↑→↑) 2) y=-3(x-7)² + 6 (↓→↓)
  20. 20. iv) y=a(x + h)² ± k Significa que la función se movió a la derecha o izquierda y k unidades hacia arriba o hacia abajo. 1) y=(x+6)² - 5 (↑←↑) 2) y=-5(x+3)² + 3 (↓←↓) Obs. V(h,k) es el vértice de la parábola. x y
  21. 21. Si la parábola es abierta hacia arriba, el vértice es un mínimo y si la parábola es abierta hacia abajo, el vértice es un máximo.
  22. 22. Por ejemplo: ¿Cuál es el gráfico de la función: a) f(x)= (x – 1)2 – 6 b) f(x)= -(x + 1)2 + 2 -1 2 V(-1,2) -6 1 V(1,-6)
  23. 23. El discriminante se define como: Δ = b2 - 4ac a) Si el discriminante es positivo, entonces la parábola intersecta en dos puntos al eje X. Δ > 0 6. Discriminante Propiedad Intelectual Cpech
  24. 24. b) Si el discriminante es negativo, entonces la parábola NO intersecta al eje X. Δ < 0
  25. 25. c) Si el discriminante es igual a cero, entonces la parábola intersecta en un solo punto al eje X, es tangente a él. Δ = 0
  26. 26.  Dominio: El dominio de cualquier función cuadrática siempre será IR. Dom f = IR  Recorrido: Dependerá de la concavidad de la parábola:  Sí es cóncava hacia arriba, (a>0) es: ó  Sí es cóncava hacia abajo, (a<0) es: ó 7. Dominio y recorrido
  27. 27. ACTIVIDADES DE REFUERZO • Desarrolla las actividades propuestas en las páginas 128 a 136 de tu texto. • 142 (actividades de función cuadrática) v , vi , vii , viii (1,2,3,4,8,10,11,16,17,18,20,22, 23,33,34,35,36,37,38,39,40)

×