Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.
Próximos SlideShares
Carregando em…5
×

# Fuzzy c-means clustering for image segmentation

13.110 visualizações

Fuzzy c-means clustering for image segmentation

• Full Name
Comment goes here.

Are you sure you want to Yes No

Tem certeza que deseja  Sim  Não
Insira sua mensagem aqui
• i want c++ code of fcm

Tem certeza que deseja  Sim  Não
Insira sua mensagem aqui
• good

Tem certeza que deseja  Sim  Não
Insira sua mensagem aqui

### Fuzzy c-means clustering for image segmentation

1. 1. Fuzzy C-Means Clustering For Image Segmentation Computer Vision And Image Processing Course Project -Submitted By, Dharmesh Patel 961 Nikunj Gamit 954
2. 2. Introduction <ul><li>There are several methods for segmenting gray-level images </li></ul><ul><li>1. Based on discontinuity </li></ul><ul><li>2. Based on similarity </li></ul><ul><li>First approach use the discontinuities between gray level regions to detect isolated points, edges and contours. </li></ul><ul><li>second approach include clustering, thresholding, region growing, region splitting and merging. </li></ul>
3. 3. The Algorithm <ul><li>Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong to two or more clusters. This method is frequently used in pattern recognition. It is based on minimization of the objective function ! </li></ul><ul><li>1.Initialize U=[u ij ] matrix, U (0)1 </li></ul><ul><li>2. At k-step: calculate the centers vectors C (k) =[c j ] with U (k) </li></ul>
4. 4. The Algorithm (Contd…) <ul><li>3. Update U (k) , U (k+1) </li></ul><ul><li>4. If || U (k+1) – U (k) || < £ then STOP; otherwise return to step 2. </li></ul><ul><li>Where, </li></ul><ul><li>U = Membership Matrix £ = Termination Criteria </li></ul><ul><li>C = Centroids </li></ul><ul><li>X = Pixel Intensity </li></ul>
5. 5. Membership Function <ul><li>K-Means C-Means </li></ul>
6. 6. Experimental Results <ul><li>Source Images Output Images </li></ul><ul><li>C = 2 C = 3 </li></ul><ul><ul><ul><ul><ul><li>C = 4 C = 5 </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>C - No. Of clusters </li></ul></ul></ul></ul></ul>
7. 7. Limitations <ul><li>Standard Fuzzy C-Mean is not suitable for the lip and skin region </li></ul><ul><li>The resulting regions are not spatially continuous, due to the fact that only gray level uniformity is checked. </li></ul>
8. 8. Enhancement <ul><li>We can use an enhancement of fuzzy c-means, to ensure spatially continuous regions after segmentation. </li></ul><ul><li>We can use the geometric properties of the pixels in different sized neighborhoods (typically 3x3). </li></ul><ul><li>We can also use information about the spatial position of the pixels and not only their gray level values. </li></ul>
9. 9. <ul><li>Thank You !!! </li></ul>