Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Agrupamento Vertical de Escolas de D. António da Costa
Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigue...
Próximos SlideShares
Carregando em…5
×

Resumos para a prova de aferição de matemática 4 ano

1.223 visualizações

Publicada em

Resumos para a prova de aferição de matemática

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
1.223
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
43
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Resumos para a prova de aferição de matemática 4 ano

  1. 1. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues Resumos para a Prova de Aferição de Matemática Números e operações 1.Leitura e escrita de números inteiros 1.1. Conjunto de números naturais Os números 1, 2, 3, 4, … são números naturais. O conjunto dos números naturais tem uma infinidade de elementos e representa-se por N. N = {1, 2, 3, 4, … }= { Números naturais } O símbolo  lê-se pertence a e o símbolo  lê-se não pertence a. Assim, é verdade que 6 N 2,5 N. O conjunto dos números inteiros é formado pelos números naturais e pelo zero. Assim,  0 = {0, 1, 2, 3, …} = {números inteiros} 1.2.Leitura e escrita de números À posição que o algarismo ocupa na representação de um número chama-se ordem. Por exemplo: 6 7 9 Ordem das dezenas Ordem das centenas Ordem das unidades Um número pode ter mais do que uma leitura.
  2. 2. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues Por exemplo: 679 = 6x100 + 7x10 + 9 Seis centenas, sete dezenas e nove unidades 679 = 6x100 +79 Seis centenas e setenta e nove unidades 679 = 67 x 10 + 9 Sessenta e sete dezenas e nove unidades As ordens agrupam-se em classes. Por exemplo, na tabela seguinte temos cinco classes e 15 ordens. Classes dos biliões Classes dos milhares de milhão Classe dos milhões Classe dos milhares Classes das unidades 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Na tabela está escrito o número duzentos biliões. 2. Números decimais, Adição e subtracção 2.1. Números decimais menores que a unidade ● Dividindo uma unidade em 10 partes iguais, a cada uma dessas partes chama-se uma décima e representa-se por 0,1 ou ● O rectângulo em baixo está dividido em 10 partes iguais e pintado com duas cores diferentes, relativamente a este podemos dizer que: = 0,6 (seis décimas) estão pintadas a cor-de-laranja; = 0,4 (quatro décimas) estão pintadas a cor verde. 2.2. Números decimais superiores à unidade ● Um número decimal superior à unidade tem uma parte inteira superior a zero e uma parte decimal.
  3. 3. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues Por exemplo, o número 25,36 lê-se vinte e cinco unidades e trinta e seis centésimas. No número 25,36, tem-se: 25  é a parte inteira e 0,36  é a parte decimal 2.3. Ordenação de números Para comparar o valor dos números usam-se os símbolos =,  e . Por exemplo: 2,3 = ; 2,3  2,27; 2,27  2,3 lê-se: “é Igual a” lê-se: “é maior do que” lê-se: “é menor do que” 2.4.Adição. Propriedades da adição Leitura da adição A expressão 2+3 =5 lê-se: a soma de dois com três é igual a cinco. 2 e 3 são as parcelas e 5 é a soma. Propriedades da adição ● Propriedade comutativa: a + b = b + a Trocando a ordem das parcelas a soma não se altera. ● Propriedade associativa: A soma não se altera associando as parcelas de formas diferentes. ● Elemento neutro: O número zero é o elemento neutro da adição. 2.5.Subtracção. Propriedade fundamental da subtracção Leitura da subtracção A expressão 12-2 = 10 lê-se: a diferença entre doze e dois é igual a dez. a + b = b + a (a + b) + c = a + (b + c) 0 + a = a + 0 =0
  4. 4. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues Doze é o aditivo, dois o subtractivo e dez a diferença. A diferença é o resultado da subtracção. Se 12-2 = 10, então 2+10=12. ● Propriedade fundamental da subtracção: A soma do subtractivo com a diferença é igual ao aditivo. ● A subtracção é a operação inversa da adição 3. Números decimais. Multiplicação e divisão 3.1. Multiplicação e propriedades Leitura de uma multiplicação Comprimento = 10 cm largura = 5 cm A área do rectângulo representado na figura em cima é (5x10) cm ao quadrado. A expressão 5x10 = 50 lê-se: o produto de cinco por dez é cinquenta. 5 e 10 são os factores e 50 é o produto. Propriedades da multiplicação ● Propriedade comutativa: a + b = b + a Numa multiplicação o produto não se altera trocando a ordem dos factores. ● Propriedade associativa da multiplicação: O valor de uma expressão numérica onde apenas aparece a operação multiplicação não depende da forma como se associam os factores. ● Elemento neutro: O número 1 é o elemento neutro da multiplicação. O produto de qualquer número por 1 é o próprio número. a x b = b x a a x 1 = 1 x a = a (a x b) x c = a x ( b x c )
  5. 5. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues ● Elemento absorvente: O número zero é o elemento absorvente da multiplicação. O produto de qualquer número por zero é igual a zero. ● Propriedade distributiva da multiplicação relativamente à adição O produto de um número por uma soma é igual à soma dos produtos desse número por cada uma das parcelas. ● Propriedade distributiva da multiplicação relativamente à subtracção O produto de um número por uma soma é igual à diferença entre o produto do número pelo aditivo e o produto do número pelo subtractivo. 3.2. Multiplicação por 10; 100; 1000; … 0,1; 0,01; 0,001; … Recorda que: 0,35 x 10 = 3,5 0,35 x 100 = 35 0,35 x 1000 = 350 35 x 0,1 = 3,5 35 x 0,01 = 0,35 35 x 0,001 = 0,035 3.3. Divisão. Propriedade fundamental da divisão A divisão é a operação inversa da multiplicação. ● Propriedade fundamental da divisão Numa divisão exacta o dividendo é igual ao produto do divisor pelo quociente. Por exemplo: Se 15 : 3 = 5, então 15 = 3 x 5 ● Propriedade fundamental da divisão interna Dividendo = Quociente x Divisor + Resto, Resto  Divisor 0 x a = a x 0 = 0 a x ( b + c ) = a x b + a x c a x ( b – c ) = a x b – a x c
  6. 6. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues Dividendo 7 2 Divisor 1 3 Resto Quociente 3.4. Divisão por 10; 100; 1000; … ; 0,1; 0,01; 0,001; … Recorda que: 35,16 : 10 = 3,516 35,16 : 0,1 = 351,6 35,16 : 100 = 0,3516 35,16 : 0,01 = 3516 35,16 : 1000 = 0,03516 35,16 : 0,001 = 35 160 4. Múltiplos. Divisores. 4.1. Múltiplos Múltiplos de 2: 0, 2, 4, 6, 8, 10, 12, … Múltiplos de 3: 0, 3, 6, 9, 12, 15, 18, … ● Múltiplo de um número é o produto de qualquer número inteiro por esse número. ● O número zero é múltiplo de qualquer número. ● O dobro, o triplo, o quádruplo, … de um número são múltiplos desse número. 4.2. Divisores Divisor de 1 : D1 = { 1 } Divisor de 2 : D2 = { 1, 2 } Divisor de 3 : D3 = { 1, 3 } Divisor de 4 : D4 = { 1, 2, 4 } ● O número 1 é divisor de qualquer número ou qualquer número é divisível por 1. ● Qualquer número é divisor de si próprio ou qualquer número é divisível por si próprio.
  7. 7. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues Os termos: divisor e múltiplo estão relacionados. Por exemplo: se 3 é divisor de 315, então 315 é múltiplo de 3. 4.3. Critérios de divisibilidade ● Um número é divisível por 2 quando o seu algarismo das unidades é 0, 2, 4, 6 ou 8. ● Um número é divisível por 5 quando o seu algarismo das unidades é 0 ou 5. ● Um número é divisível por 10 quando o seu algarismo das unidades é 0. ● Um número é divisível por 100 quando o seu algarismo das unidades e das dezenas são iguais a 0. 4.4. Números partitivos ● Metade, a terça parte, a quarta parte, a quinta parte, … são expressões que se utilizam no dia-a-dia e que significam, respectivamente, dividir por 2, 3, 4, 5, … 5. Números representados por Fracções Que parte do pudim vai a Margarida comer? Vai comer a quarta parte do pudim ou um quarto de pudim. A quarta parte ou um quarto é … 1 : 4 ou ¼ Avó, posso comer pudim? Podes. Divide-o em 4 partes iguais e come uma. delas?
  8. 8. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues Exemplo: Números racionais. Fracções Numerador (representa o dividendo), representa o número de partes que estão a ser consideradas. Denominador (representa o divisor), representa o número de partes iguais em que se supõe dividida a unidade. Traço de fracção indica operação divisão Números racionais. Fracções Exemplo de leitura de fracções Quatro sextos Dois sextos Um quarto Dois oitavos Quatro dezasseis avos
  9. 9. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues Fracções decimais e números decimais Fracções decimais Números decimais Exemplos: 156/100 = 1,56 1,2 = 12/10 Números inteiros e fraccionários Número racional inteiro, porque o numerador é múltiplo do denominador Número racional fraccionário, porque o numerador não é múltiplo do denominador. 5 : 2 = 2,5 O número fraccionário cinco meios pode ser representado por: Uma fracção ou uu Um número decimal 2,55/2 5/2
  10. 10. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues 2 1 e 8 4 são fracções equivalentes porque representam o mesmo número. Para obteres uma fracção equivalente a outra, deves multiplicar ou dividir o numerador e o denominador pelo mesmo número natural. Para simplificar uma fracção escrevemos uma fracção equivalente mas com termos menores. Uma fracção que não pode ser simplificada chama-se fracção irredutível. Adição e subtracção de fracções  Fracções com denominador igual: somam-se ou subtraem-se os numeradores e escreve-se o mesmo denominador.  Fracções com denominador diferente: 1º reduzem-se as fracções ao mesmo denominador; 2º somam-se ou subtraem-se os numeradores e escreve-se o mesmo denominador. Numa expressão numérica, os parênteses indicam a operação a efectuar em primeiro lugar. 6. Fracções equivalentes. Simplificar. 7. Operações com números racionais 7.1.Expressões numéricas
  11. 11. Agrupamento Vertical de Escolas de D. António da Costa Resumos de Matemática – 6º ano Elaborado por: Prof. Sandra Rodrigues Multiplicação de fracções Para multiplicar dois números representados por fracções, multiplicam-se os numeradores e multiplicam-se os denominadores. Ainda te lembras? um terço de trinta calcula-se fazendo 10 3 30 30 3 1  “de” Uma potência é um produto de factores iguais, ou seja, 8 1 2 1 2 1 2 1 2 1 3       Dizemos que um terço ao cubo é um oitavo. Resolução de expressões numéricas: 1.º Parênteses 2.º Potências 3.º Multiplicações e divisões (por ordem) 4.º Adições e subtracções (por ordem) 7.3. Multiplicação de fracções 7.4. Potências 7.5. Resolução de expressões numéricas              2 4 2 2 1 2 4 1 4 3 2 1 22 1 16 16 16 8 16 8 16 8 2 1 2 4 2 4 2 2 1 

×