Definition Personalisierung Anpassung von angebotenen Informationen an die Interessen des jeweiligen Betrachters. Aber auch: Sammlung von Informationen über das jeweilige Verhalten des Betrachters
Problem: http:// Das http-Protokoll ist Verbindungslos. Das Web hat also kein Gedächtnis Get URL1 URL i Get URL2 Get URL3 . . . Im Prinzip ist für jede Webseite eine Verbindung notwendig
Techniken: Codierte URLs Nach der Definition der persönlichen Einstellungen wird eine Eintrittswebsite als Favorit gespeichert: http://www.test.com/start.htm ?userid=215859 Über den Übergabestring kann der User beim Anklicken dieses Links wieder identifiziert werden
Techniken: Auslesen der Userdaten <% DbConn=Server.CreateObject(ADODB.Connection) DbConn.open (DSN=´´odbc-name´´) RS=Server.CreateObject(ADODB.RecordSet) SQL=´´Select * FROM userdaten where ID = ´´& userid RS.open DBConn, SQL %> Hallo <%=RS(´´Vorname´´)%> schön Sie wieder zusehen
Techniken: Automatische Erfassung von MetaDaten Abhdsivfnrnvfr poevppopopovgt Fkmkmkgmg < rthhzzjz > Eruh kog W i Vektor aus N Merkmalen, die jedem Dokument zugeordnet werden i Index für Merkmal j Index für Dokument URL j
Content-Based Filtering: KI-Trainingsphase Abhdsivfnrnvfr poevppopopovgt Fkmkmkgmg < rthhzzjz > Eruh kog URL j Kodierung Input 0 uninteressant 1 interessant Wertung Dim N Neuronales Netz Dim N+1 W i . . . W i 1
Content-Based Filtering: KI-Trainingsphase Die kategorisierten Seite bilden Punkte in N+1 dim Vektorraum Punkt j aus Website Punkt k aus Training Metrik ermöglicht Erkennung interessanter Seiten W i 1
Quellen Übersichtsartikel Agentenbasiertes Suchen, Filtern und Klassifizieren von Informationsangeboten , Dipl. Kaufmann Frank Teuteberg, Preprint Europa Universität Viadrina Frankfurt Untersuchungen zur Personalisierung, Dipl.-Ing. Michael Sonntag, http://www.fim.uni-linz.ac.at/Publications/Aussendung10.98/Personalisierung.htm SWAMI, a framework for collaborative filetring algorithm development and evaluation , Danyel Fisher et al., University of Berkeley, http://epoch.cs.berkeley.edu:8000/~mct/f99/paper.html Seminar zur Personalisierung im Internet WS 00/01 , Universität Frankfurt, Lehrstuhl BWL , http://www.ecommerce.wiwi.uni-frankfurt.de:8080/lehre/00ws/seminar/seminararbeiten. html Viele Gesichter , c`t 2000, Heft 18, S88, Dietmar Janetzko, Dirk Zugemaier Wichtige Quelle für Forschungsarbeiten auf dem Gebiet des Collaborative Filtering: http://www.cs.umn.edu/Research/GroupLens/