SlideShare a Scribd company logo
1 of 87
R, Keras, TensorFlow and Deep
Learning
BARUG Meetup 01/16/2017
A9 Palo Alto
Oswald Campesato
ocampesato@yahoo.com
Overview
intro to AI/ML/DL
linear regression
activation functions
cost functions
gradient descent
back propagation
hyper-parameters
what are CNNs
R, Keras, TensorFlow
The Data/AI Landscape
Gartner 2017: Deep Learning (YES!)
The Official Start of AI (1956)
Neural Network with 3 Hidden Layers
Clustering Example #1
Given some red dots and blue dots
Red dots are in the upper half plane
Blue dots in the lower half plane
How to detect if a point is red or blue?
Clustering Example #1
Clustering Example #1
Clustering Example #2
Given some red dots and blue dots
Red dots are inside a unit square
Blue dots are outside the unit square
How to detect if a point is red or blue?
Clustering Example #2
 Two input nodes X and Y
 One hidden layer with 4 nodes (one per line)
 X & Y weights are the (x,y) values of the inward pointing
perpendicular vector of each side
 The threshold values are the negative of the y-intercept
(or the x-intercept)
 The outbound weights are all equal to 1
 The threshold for the output node node is 4
Clustering Example #2
Clustering Example #2
Clustering Exercises #1
Describe an NN for a triangle
Describe an NN for a pentagon
Describe an NN for an n-gon (convex)
Describe an NN for an n-gon (non-convex)
Clustering Exercises #2
Create an NN for an OR gate
Create an NN for a NOR gate
Create an NN for an AND gate
Create an NN for a NAND gate
Create an NN for an XOR gate
=> requires TWO hidden layers
Clustering Exercises #3
Convert example #2 to a 3D cube
Clustering Example #2
A few points to keep in mind:
A “step” activation function (0 or 1)
No back propagation
No cost function
=> no learning involved
A Basic Model in Machine Learning
Let’s perform the following steps:
1) Start with a simple model (2 variables)
2) Generalize that model (n variables)
3) See how it might apply to a NN
Linear Regression
One of the simplest models in ML
Fits a line (y = m*x + b) to data in 2D
Finds best line by minimizing MSE:
m = average of x values (“mean”)
b also has a closed form solution
Linear Regression in 2D: example
Sample Cost Function #1 (MSE)
Linear Regression: example #1
One feature (independent variable):
X = number of square feet
Predicted value (dependent variable):
Y = cost of a house
A very “coarse grained” model
We can devise a much better model
Linear Regression: example #2
Multiple features:
X1 = # of square feet
X2 = # of bedrooms
X3 = # of bathrooms (dependency?)
X4 = age of house
X5 = cost of nearby houses
X6 = corner lot (or not): Boolean
a much better model (6 features)
Linear Multivariate Analysis
General form of multivariate equation:
Y = w1*x1 + w2*x2 + . . . + wn*xn + b
w1, w2, . . . , wn are numeric values
x1, x2, . . . , xn are variables (features)
Properties of variables:
Can be independent (Naïve Bayes)
weak/strong dependencies can exist
Neural Network with 3 Hidden Layers
Neural Networks: equations
Node “values” in first hidden layer:
N1 = w11*x1+w21*x2+…+wn1*xn
N2 = w12*x1+w22*x2+…+wn2*xn
N3 = w13*x1+w23*x2+…+wn3*xn
. . .
Nn = w1n*x1+w2n*x2+…+wnn*xn
Similar equations for other pairs of layers
Neural Networks: Matrices
From inputs to first hidden layer:
Y1 = W1*X + B1 (X/Y1/B1: vectors; W1: matrix)
From first to second hidden layers:
Y2 = W2*X + B2 (X/Y2/B2: vectors; W2: matrix)
From second to third hidden layers:
Y3 = W3*X + B3 (X/Y3/B3: vectors; W3: matrix)
 Apply an “activation function” to y values
Neural Networks (general)
Multiple hidden layers:
Layer composition is your decision
Activation functions: sigmoid, tanh, RELU
https://en.wikipedia.org/wiki/Activation_function
Back propagation (1980s)
https://en.wikipedia.org/wiki/Backpropagation
=> Initial weights: small random numbers
Euler’s Function
The sigmoid Activation Function
The tanh Activation Function
The ReLU Activation Function
The softmax Activation Function
Activation Functions in Python
import numpy as np
...
# Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x)))
...
# Python tanh example:
z = np.tanh(np.dot(W,x));
# Python ReLU example:
z = np.maximum(0, np.dot(W, x))
What’s the “Best” Activation Function?
Initially: sigmoid was popular
Then: tanh became popular
Now: RELU is preferred (better results)
Softmax: for FC (fully connected) layers
NB: sigmoid and tanh are used in LSTMs
Even More Activation Functions!
https://stats.stackexchange.com/questions/11525
8/comprehensive-list-of-activation-functions-in-
neural-networks-with-pros-cons
https://medium.com/towards-data-
science/activation-functions-and-its-types-which-
is-better-a9a5310cc8f
https://medium.com/towards-data-science/multi-
layer-neural-networks-with-sigmoid-function-
deep-learning-for-rookies-2-bf464f09eb7f
Sample Cost Function #1 (MSE)
Sample Cost Function #2
Sample Cost Function #3
How to Select a Cost Function
mean-squared error:
for a regression problem
binary cross-entropy (or mse):
for a two-class classification problem
categorical cross-entropy:
for a many-class classification problem
GD versus SGD
SGD (Stochastic Gradient Descent):
+ involves a SUBSET of the dataset
+ aka Minibatch Stochastic Gradient Descent
GD (Gradient Descent):
+ involves the ENTIRE dataset
More details:
http://cs229.stanford.edu/notes/cs229-notes1.pdf
Setting up Data & the Model
Normalize the data (DL only):
Subtract the ‘mean’ and divide by stddev
[Central Limit Theorem]
Initial weight values for NNs:
Random numbers between -1 and 1 (or N(0,1))
More details:
http://cs231n.github.io/neural-networks-2/#losses
Hyper Parameters (examples)
# of hidden layers in a neural network
the learning rate (in many models)
the dropout rate
# of leaves or depth of a tree
# of latent factors in a matrix factorization
# of clusters in a k-means clustering
Hyper Parameter: dropout rate
"dropout" refers to dropping out units (both hidden
and visible) in a neural network
a regularization technique for reducing overfitting in
neural networks
prevents complex co-adaptations on training data
a very efficient way of performing model averaging
with neural networks
How Many Layers in a DNN?
Algorithm #1 (from Geoffrey Hinton):
1) add layers until you start overfitting your
training set
2) now add dropout or some another
regularization method
Algorithm #2 (Yoshua Bengio):
"Add layers until the test error does not improve
anymore.”
How Many Hidden Nodes in a DNN?
Based on a relationship between:
# of input and # of output nodes
Amount of training data available
Complexity of the cost function
The training algorithm
TF playground home page:
http://playground.tensorflow.org
CNNs versus RNNs
CNNs (Convolutional NNs):
Good for image processing
2000: CNNs processed 10-20% of all checks
=> Approximately 60% of all NNs
RNNs (Recurrent NNs):
Good for NLP and audio
CNNs: convolution and pooling (2)
CNNs: Convolution Calculations
https://docs.gimp.org/en/plug-in-convmatrix.html
CNNs: Convolution Matrices (examples)
Sharpen:
Blur:
CNNs: Convolution Matrices (examples)
Edge detect:
Emboss:
CNNs: Sample Convolutions/Filters
CNNs: Max Pooling Example
CNN in Python/Keras (fragment)
 from keras.models import Sequential
 from keras.layers.core import Dense, Dropout, Flatten, Activation
 from keras.layers.convolutional import Conv2D, MaxPooling2D
 from keras.optimizers import Adadelta
 input_shape = (3, 32, 32)
 nb_classes = 10
 model = Sequential()
 model.add(Conv2D(32, (3, 3), padding='same’,
input_shape=input_shape))
 model.add(Activation('relu'))
 model.add(Conv2D(32, (3, 3)))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.25))
R Interface to Keras
Uses the TensorFlow backend engine (default)
Supports TensorFlow, Theano, and CNTK
Detailed description:
https://blog.rstudio.com/2017/09/05/keras-for-r/
FAQ: https://keras.rstudio.com/articles/faq.html
Code samples: https://keras.rstudio.com/
R Packages and NNs
nnet, neuralnet, rnn
RSNNs, deepnet, darch
RcppDL, MXNetR
Others packages for specific tasks
R and Keras
R Interface to Keras:
https://github.com/rstudio/keras
R/Keras documentation (MNIST example):
https://keras.rstudio.com/
https://cran.r-
project.org/web/packages/kerasR/vignettes/introdu
ction.html
R and Keras
R/Keras Installation steps:
install.packages("devtools")
devtools::install_github("rstudio/keras")
library(keras)
# access the MNIST dataset:
data=dataset_mnist()
# how to define a layer (example):
layer <- layer_dense(units = 32, input_shape = c(784))
R and Keras
Define a model in Keras:
library(keras)
model <- keras_model_sequential() %>%
layer_dense(units = 16,activation="relu”,input_shape=c(10000)) %>%
layer_dense(units = 16, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")
R and Keras
 Define/compile/fit/evaluate a Keras model in R:
 model <- keras_model_sequential() %>%
 layer_dense(units = 32, input_shape = c(784))
%>%
 layer_dense(units = 32)
 model %>% compile(
 optimizer = optimizer_rmsprop(lr = 0.0001),
 loss = "mse",
 metrics = c("accuracy")
 )
 model %>% fit(input_tensor, target_tensor, batch_size = 128,
epochs = 10)
RNNs and R
rnn package in R
MxNetR TensorFlow for R
RNNs are mainly for sequence modeling
RNNs similar to an ANN with memory
info passed from state t to state t+1
Backpropagation Through Time (BPTT)
rnn package in R
library("rnn")
model <- trainr(Y = Y[train,],
 X = Y[train,],
 learningrate = 0.05,
 hidden_dim = 16,
 numepochs = 1000)
Yp <- predictr(model, Y[test,])
What is TensorFlow?
An open source framework for ML and DL
A “computation” graph
Created by Google (released 11/2015)
Evolved from Google Brain
Linux and Mac OS X support (VM for Windows)
TF home page: https://www.tensorflow.org/
What is TensorFlow?
Support for Python, Java, C++
TPUs available for faster processing
Can be embedded in Python scripts
Installation: pip install tensorflow
TensorFlow cluster:
https://www.tensorflow.org/deploy/distributed
TensorFlow Use Cases (Generic)
Image recognition
Computer vision
Voice/sound recognition
Time series analysis
Language detection
Language translation
Text-based processing
Handwriting Recognition
What is a Tensor?
TF tensors are n-dimensional arrays
TF tensors are very similar to numpy ndarrays
scalar number: a zeroth-order tensor
vector: a first-order tensor
matrix: a second-order tensor
3-dimensional array: a 3rd order tensor
https://dzone.com/articles/tensorflow-simplified-
examples
TensorFlow: constants (immutable)
 import tensorflow as tf # tf-const.py
 aconst = tf.constant(3.0)
 print(aconst)
# output: Tensor("Const:0", shape=(), dtype=float32)
 sess = tf.Session()
 print(sess.run(aconst))
# output: 3.0
 sess.close()
 # => there's a better way…
TensorFlow: constants
import tensorflow as tf # tf-const2.py
aconst = tf.constant(3.0)
print(aconst)
Automatically close “sess”
with tf.Session() as sess:
 print(sess.run(aconst))
TensorFlow Arithmetic
import tensorflow as tf # basic1.py
a = tf.add(4, 2)
b = tf.subtract(8, 6)
c = tf.multiply(a, 3)
d = tf.div(a, 6)
with tf.Session() as sess:
print(sess.run(a)) # 6
print(sess.run(b)) # 2
print(sess.run(c)) # 18
print(sess.run(d)) # 1
TensorFlow Arithmetic Methods
import tensorflow as tf #tf-math-ops.py
PI = 3.141592
sess = tf.Session()
print(sess.run(tf.div(12,8)))
print(sess.run(tf.floordiv(20.0,8.0)))
print(sess.run(tf.sin(PI)))
print(sess.run(tf.cos(PI)))
print(sess.run(tf.div(tf.sin(PI/4.), tf.cos(PI/4.))))
TensorFlow Arithmetic Methods
Output from tf-math-ops.py:
1
2.0
6.27833e-07
-1.0
1.0
TensorFlow: placeholders example
import tensorflow as tf # tf-var-multiply.py
a = tf.placeholder("float")
b = tf.placeholder("float")
c = tf.multiply(a,b)
# initialize a and b:
feed_dict = {a:2, b:3}
# multiply a and b:
with tf.Session() as sess:
print(sess.run(c, feed_dict))
TensorFlow fetch/feed_dict
 import tensorflow as tf # fetch-feeddict.py
 # y = W*x + b: W and x are 1d arrays
 W = tf.constant([10,20], name=’W’)
 x = tf.placeholder(tf.int32, name='x')
 b = tf.placeholder(tf.int32, name='b')
 Wx = tf.multiply(W, x, name='Wx')
 y = tf.add(Wx, b, name=’y’)
TensorFlow fetch/feed_dict
with tf.Session() as sess:
print("Result 1: Wx = ",
sess.run(Wx, feed_dict={x:[5,10]}))
print("Result 2: y = ",
sess.run(y, feed_dict={x:[5,10], b:[15,25]}))
Result 1: Wx = [50 200]
Result 2: y = [65 225]
TensorFlow Arithmetic Expressions
import tensorflow as tf # tf-save-data.py
x = tf.constant(5,name="x")
y = tf.constant(8,name="y")
z = tf.Variable(2*x+3*y, name="z”)
model = tf.global_variables_initializer()
with tf.Session() as session:
writer = tf.summary.FileWriter(”./tf_logs",session.graph)
session.run(model)
print 'z = ',session.run(z) # => z = 34
# tensorboard –logdir=./tf_logs
TensorFlow Eager Execution
An imperative interface to TF (experimental)
Fast debugging & immediate run-time errors
Eager execution is not included in v1.4 of TF
build TF from source or install the nightly build
pip install tf-nightly # CPU
pip install tf-nightly-gpu #GPU
=> requires Python 3.x (not Python 2.x)
TensorFlow Eager Execution
integration with Python tools
Supports dynamic models + Python control flow
support for custom and higher-order gradients
Supports most TensorFlow operations
https://research.googleblog.com/2017/10/eager-
execution-imperative-define-by.html
TensorFlow Eager Execution
import tensorflow as tf # tf-eager1.py
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
x = [[2.]]
m = tf.matmul(x, x)
print(m)
# tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
R and TensorFlow (sample)
library(tensorflow)
sess = tf$Session()
hello <- tf$constant('Hello, TensorFlow!')
sess$run(hello)
b'Hello, TensorFlow!'
GANs: Generative Adversarial Networks
GANs: Generative Adversarial Networks
Make imperceptible changes to images
Can consistently defeat all NNs
Can have extremely high error rate
Some images create optical illusions
https://www.quora.com/What-are-the-pros-and-cons-
of-using-generative-adversarial-networks-a-type-of-
neural-network
GANs: Generative Adversarial Networks
Create your own GANs:
https://www.oreilly.com/learning/generative-adversarial-networks-for-
beginners
https://github.com/jonbruner/generative-adversarial-networks
GANs from MNIST:
http://edwardlib.org/tutorials/gan
GANs: Generative Adversarial Networks
GANs, Graffiti, and Art:
https://thenewstack.io/camouflaged-graffiti-road-signs-can-fool-
machine-learning-models/
GANs and audio:
https://www.technologyreview.com/s/608381/ai-shouldnt-believe-
everything-it-hears
Image recognition (single pixel change):
http://www.bbc.com/news/technology-41845878
Houdini algorithm: https://arxiv.org/abs/1707.05373
Deep Learning and Art
“Convolutional Blending” (19-layer CNN):
www.deepart.io
Bots created their own language:
https://www.recode.net/2017/3/23/14962182/ai-learning-
language-open-ai-research
https://www.fastcodesign.com/90124942/this-google-
engineer-taught-an-algorithm-to-make-train-footage-
and-its-hypnotic
What Do I Learn Next?
 PGMs (Probabilistic Graphical Models)
 MC (Markov Chains)
 MCMC (Markov Chains Monte Carlo)
 HMMs (Hidden Markov Models)
 RL (Reinforcement Learning)
 Hopfield Nets
 Neural Turing Machines
 Autoencoders
 Hypernetworks
 Pixel Recurrent Neural Networks
 Bayesian Neural Networks
 SVMs
About Me: Recent Books
1) HTML5 Canvas and CSS3 Graphics (2013)
2) jQuery, CSS3, and HTML5 for Mobile (2013)
3) HTML5 Pocket Primer (2013)
4) jQuery Pocket Primer (2013)
5) HTML5 Mobile Pocket Primer (2014)
6) D3 Pocket Primer (2015)
7) Python Pocket Primer (2015)
8) SVG Pocket Primer (2016)
9) CSS3 Pocket Primer (2016)
10) Android Pocket Primer (2017)
11) Angular Pocket Primer (2017)
12) Data Cleaning Pocket Primer (2018)
13) RegEx Pocket Primer (2018)
About Me: Training
=> Deep Learning. Keras, and TensorFlow:
http://codeavision.io/training/deep-learning-workshop
=> Mobile and TensorFlow Lite
=> R and Deep Learning (WIP)
=> Android for Beginners

More Related Content

What's hot

Introduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlowIntroduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlowSri Ambati
 
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)Universitat Politècnica de Catalunya
 
Deep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLDeep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLOswald Campesato
 
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018Universitat Politècnica de Catalunya
 
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...Universitat Politècnica de Catalunya
 
Introduction to Machine Learning with TensorFlow
Introduction to Machine Learning with TensorFlowIntroduction to Machine Learning with TensorFlow
Introduction to Machine Learning with TensorFlowPaolo Tomeo
 
Tensor flow (1)
Tensor flow (1)Tensor flow (1)
Tensor flow (1)景逸 王
 
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...Universitat Politècnica de Catalunya
 
Machine Learning - Introduction to Tensorflow
Machine Learning - Introduction to TensorflowMachine Learning - Introduction to Tensorflow
Machine Learning - Introduction to TensorflowAndrew Ferlitsch
 
Learning Financial Market Data with Recurrent Autoencoders and TensorFlow
Learning Financial Market Data with Recurrent Autoencoders and TensorFlowLearning Financial Market Data with Recurrent Autoencoders and TensorFlow
Learning Financial Market Data with Recurrent Autoencoders and TensorFlowAltoros
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Larry Guo
 
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...Universitat Politècnica de Catalunya
 
Tutorial on convolutional neural networks
Tutorial on convolutional neural networksTutorial on convolutional neural networks
Tutorial on convolutional neural networksHojin Yang
 
Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)
Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)
Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)Universitat Politècnica de Catalunya
 
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)Universitat Politècnica de Catalunya
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Alessio Tonioni
 
(Kpi summer school 2015) theano tutorial part2
(Kpi summer school 2015) theano tutorial part2(Kpi summer school 2015) theano tutorial part2
(Kpi summer school 2015) theano tutorial part2Serhii Havrylov
 

What's hot (20)

Introduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlowIntroduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlow
 
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
Optimization (DLAI D4L1 2017 UPC Deep Learning for Artificial Intelligence)
 
Deep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLDeep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGL
 
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
 
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...
Deep Generative Models I (DLAI D9L2 2017 UPC Deep Learning for Artificial Int...
 
The Perceptron (D1L2 Deep Learning for Speech and Language)
The Perceptron (D1L2 Deep Learning for Speech and Language)The Perceptron (D1L2 Deep Learning for Speech and Language)
The Perceptron (D1L2 Deep Learning for Speech and Language)
 
Introduction to Machine Learning with TensorFlow
Introduction to Machine Learning with TensorFlowIntroduction to Machine Learning with TensorFlow
Introduction to Machine Learning with TensorFlow
 
Tensor flow (1)
Tensor flow (1)Tensor flow (1)
Tensor flow (1)
 
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
Multilayer Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intell...
 
Backpropagation - Elisa Sayrol - UPC Barcelona 2018
Backpropagation - Elisa Sayrol - UPC Barcelona 2018Backpropagation - Elisa Sayrol - UPC Barcelona 2018
Backpropagation - Elisa Sayrol - UPC Barcelona 2018
 
Machine Learning - Introduction to Tensorflow
Machine Learning - Introduction to TensorflowMachine Learning - Introduction to Tensorflow
Machine Learning - Introduction to Tensorflow
 
Learning Financial Market Data with Recurrent Autoencoders and TensorFlow
Learning Financial Market Data with Recurrent Autoencoders and TensorFlowLearning Financial Market Data with Recurrent Autoencoders and TensorFlow
Learning Financial Market Data with Recurrent Autoencoders and TensorFlow
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10)
 
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
Optimization for Neural Network Training - Veronica Vilaplana - UPC Barcelona...
 
Tutorial on convolutional neural networks
Tutorial on convolutional neural networksTutorial on convolutional neural networks
Tutorial on convolutional neural networks
 
Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)
Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)
Backpropagation (DLAI D3L1 2017 UPC Deep Learning for Artificial Intelligence)
 
Multilayer Perceptron - Elisa Sayrol - UPC Barcelona 2018
Multilayer Perceptron - Elisa Sayrol - UPC Barcelona 2018Multilayer Perceptron - Elisa Sayrol - UPC Barcelona 2018
Multilayer Perceptron - Elisa Sayrol - UPC Barcelona 2018
 
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
The Perceptron (DLAI D1L2 2017 UPC Deep Learning for Artificial Intelligence)
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)
 
(Kpi summer school 2015) theano tutorial part2
(Kpi summer school 2015) theano tutorial part2(Kpi summer school 2015) theano tutorial part2
(Kpi summer school 2015) theano tutorial part2
 

Similar to Deep Learning: R with Keras and TensorFlow

Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)Oswald Campesato
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningOswald Campesato
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningOswald Campesato
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlowOswald Campesato
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep LearningOswald Campesato
 
TypeScript and Deep Learning
TypeScript and Deep LearningTypeScript and Deep Learning
TypeScript and Deep LearningOswald Campesato
 
Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and SparkOswald Campesato
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your BrowserOswald Campesato
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlowOswald Campesato
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your BrowserOswald Campesato
 
Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowOswald Campesato
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsOswald Campesato
 
Introduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and TensorflowIntroduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and TensorflowOswald Campesato
 
Neural networks and google tensor flow
Neural networks and google tensor flowNeural networks and google tensor flow
Neural networks and google tensor flowShannon McCormick
 
nlp dl 1.pdf
nlp dl 1.pdfnlp dl 1.pdf
nlp dl 1.pdfnyomans1
 

Similar to Deep Learning: R with Keras and TensorFlow (20)

Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)
 
Android and Deep Learning
Android and Deep LearningAndroid and Deep Learning
Android and Deep Learning
 
Java and Deep Learning
Java and Deep LearningJava and Deep Learning
Java and Deep Learning
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep Learning
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep Learning
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlow
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep Learning
 
TypeScript and Deep Learning
TypeScript and Deep LearningTypeScript and Deep Learning
TypeScript and Deep Learning
 
Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and Spark
 
Angular and Deep Learning
Angular and Deep LearningAngular and Deep Learning
Angular and Deep Learning
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your Browser
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlow
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your Browser
 
Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlow
 
H2 o berkeleydltf
H2 o berkeleydltfH2 o berkeleydltf
H2 o berkeleydltf
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.js
 
Introduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and TensorflowIntroduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and Tensorflow
 
Deep learning (2)
Deep learning (2)Deep learning (2)
Deep learning (2)
 
Neural networks and google tensor flow
Neural networks and google tensor flowNeural networks and google tensor flow
Neural networks and google tensor flow
 
nlp dl 1.pdf
nlp dl 1.pdfnlp dl 1.pdf
nlp dl 1.pdf
 

More from Oswald Campesato

Working with tf.data (TF 2)
Working with tf.data (TF 2)Working with tf.data (TF 2)
Working with tf.data (TF 2)Oswald Campesato
 
Introduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasIntroduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasOswald Campesato
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2Oswald Campesato
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2Oswald Campesato
 
"An Introduction to AI and Deep Learning"
"An Introduction to AI and Deep Learning""An Introduction to AI and Deep Learning"
"An Introduction to AI and Deep Learning"Oswald Campesato
 
Introduction to Deep Learning for Non-Programmers
Introduction to Deep Learning for Non-ProgrammersIntroduction to Deep Learning for Non-Programmers
Introduction to Deep Learning for Non-ProgrammersOswald Campesato
 

More from Oswald Campesato (7)

Working with tf.data (TF 2)
Working with tf.data (TF 2)Working with tf.data (TF 2)
Working with tf.data (TF 2)
 
Introduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasIntroduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and Keras
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
 
"An Introduction to AI and Deep Learning"
"An Introduction to AI and Deep Learning""An Introduction to AI and Deep Learning"
"An Introduction to AI and Deep Learning"
 
Introduction to Deep Learning for Non-Programmers
Introduction to Deep Learning for Non-ProgrammersIntroduction to Deep Learning for Non-Programmers
Introduction to Deep Learning for Non-Programmers
 
Introduction to Kotlin
Introduction to KotlinIntroduction to Kotlin
Introduction to Kotlin
 

Recently uploaded

Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024SynarionITSolutions
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodJuan lago vázquez
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesBoston Institute of Analytics
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 

Recently uploaded (20)

Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024Top 10 Most Downloaded Games on Play Store in 2024
Top 10 Most Downloaded Games on Play Store in 2024
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 

Deep Learning: R with Keras and TensorFlow

  • 1. R, Keras, TensorFlow and Deep Learning BARUG Meetup 01/16/2017 A9 Palo Alto Oswald Campesato ocampesato@yahoo.com
  • 2. Overview intro to AI/ML/DL linear regression activation functions cost functions gradient descent back propagation hyper-parameters what are CNNs R, Keras, TensorFlow
  • 4. Gartner 2017: Deep Learning (YES!)
  • 5. The Official Start of AI (1956)
  • 6. Neural Network with 3 Hidden Layers
  • 7. Clustering Example #1 Given some red dots and blue dots Red dots are in the upper half plane Blue dots in the lower half plane How to detect if a point is red or blue?
  • 10. Clustering Example #2 Given some red dots and blue dots Red dots are inside a unit square Blue dots are outside the unit square How to detect if a point is red or blue?
  • 11. Clustering Example #2  Two input nodes X and Y  One hidden layer with 4 nodes (one per line)  X & Y weights are the (x,y) values of the inward pointing perpendicular vector of each side  The threshold values are the negative of the y-intercept (or the x-intercept)  The outbound weights are all equal to 1  The threshold for the output node node is 4
  • 14. Clustering Exercises #1 Describe an NN for a triangle Describe an NN for a pentagon Describe an NN for an n-gon (convex) Describe an NN for an n-gon (non-convex)
  • 15. Clustering Exercises #2 Create an NN for an OR gate Create an NN for a NOR gate Create an NN for an AND gate Create an NN for a NAND gate Create an NN for an XOR gate => requires TWO hidden layers
  • 16. Clustering Exercises #3 Convert example #2 to a 3D cube
  • 17. Clustering Example #2 A few points to keep in mind: A “step” activation function (0 or 1) No back propagation No cost function => no learning involved
  • 18. A Basic Model in Machine Learning Let’s perform the following steps: 1) Start with a simple model (2 variables) 2) Generalize that model (n variables) 3) See how it might apply to a NN
  • 19. Linear Regression One of the simplest models in ML Fits a line (y = m*x + b) to data in 2D Finds best line by minimizing MSE: m = average of x values (“mean”) b also has a closed form solution
  • 20. Linear Regression in 2D: example
  • 22. Linear Regression: example #1 One feature (independent variable): X = number of square feet Predicted value (dependent variable): Y = cost of a house A very “coarse grained” model We can devise a much better model
  • 23. Linear Regression: example #2 Multiple features: X1 = # of square feet X2 = # of bedrooms X3 = # of bathrooms (dependency?) X4 = age of house X5 = cost of nearby houses X6 = corner lot (or not): Boolean a much better model (6 features)
  • 24. Linear Multivariate Analysis General form of multivariate equation: Y = w1*x1 + w2*x2 + . . . + wn*xn + b w1, w2, . . . , wn are numeric values x1, x2, . . . , xn are variables (features) Properties of variables: Can be independent (Naïve Bayes) weak/strong dependencies can exist
  • 25. Neural Network with 3 Hidden Layers
  • 26. Neural Networks: equations Node “values” in first hidden layer: N1 = w11*x1+w21*x2+…+wn1*xn N2 = w12*x1+w22*x2+…+wn2*xn N3 = w13*x1+w23*x2+…+wn3*xn . . . Nn = w1n*x1+w2n*x2+…+wnn*xn Similar equations for other pairs of layers
  • 27. Neural Networks: Matrices From inputs to first hidden layer: Y1 = W1*X + B1 (X/Y1/B1: vectors; W1: matrix) From first to second hidden layers: Y2 = W2*X + B2 (X/Y2/B2: vectors; W2: matrix) From second to third hidden layers: Y3 = W3*X + B3 (X/Y3/B3: vectors; W3: matrix)  Apply an “activation function” to y values
  • 28. Neural Networks (general) Multiple hidden layers: Layer composition is your decision Activation functions: sigmoid, tanh, RELU https://en.wikipedia.org/wiki/Activation_function Back propagation (1980s) https://en.wikipedia.org/wiki/Backpropagation => Initial weights: small random numbers
  • 34. Activation Functions in Python import numpy as np ... # Python sigmoid example: z = 1/(1 + np.exp(-np.dot(W, x))) ... # Python tanh example: z = np.tanh(np.dot(W,x)); # Python ReLU example: z = np.maximum(0, np.dot(W, x))
  • 35. What’s the “Best” Activation Function? Initially: sigmoid was popular Then: tanh became popular Now: RELU is preferred (better results) Softmax: for FC (fully connected) layers NB: sigmoid and tanh are used in LSTMs
  • 36. Even More Activation Functions! https://stats.stackexchange.com/questions/11525 8/comprehensive-list-of-activation-functions-in- neural-networks-with-pros-cons https://medium.com/towards-data- science/activation-functions-and-its-types-which- is-better-a9a5310cc8f https://medium.com/towards-data-science/multi- layer-neural-networks-with-sigmoid-function- deep-learning-for-rookies-2-bf464f09eb7f
  • 40. How to Select a Cost Function mean-squared error: for a regression problem binary cross-entropy (or mse): for a two-class classification problem categorical cross-entropy: for a many-class classification problem
  • 41. GD versus SGD SGD (Stochastic Gradient Descent): + involves a SUBSET of the dataset + aka Minibatch Stochastic Gradient Descent GD (Gradient Descent): + involves the ENTIRE dataset More details: http://cs229.stanford.edu/notes/cs229-notes1.pdf
  • 42. Setting up Data & the Model Normalize the data (DL only): Subtract the ‘mean’ and divide by stddev [Central Limit Theorem] Initial weight values for NNs: Random numbers between -1 and 1 (or N(0,1)) More details: http://cs231n.github.io/neural-networks-2/#losses
  • 43. Hyper Parameters (examples) # of hidden layers in a neural network the learning rate (in many models) the dropout rate # of leaves or depth of a tree # of latent factors in a matrix factorization # of clusters in a k-means clustering
  • 44. Hyper Parameter: dropout rate "dropout" refers to dropping out units (both hidden and visible) in a neural network a regularization technique for reducing overfitting in neural networks prevents complex co-adaptations on training data a very efficient way of performing model averaging with neural networks
  • 45. How Many Layers in a DNN? Algorithm #1 (from Geoffrey Hinton): 1) add layers until you start overfitting your training set 2) now add dropout or some another regularization method Algorithm #2 (Yoshua Bengio): "Add layers until the test error does not improve anymore.”
  • 46. How Many Hidden Nodes in a DNN? Based on a relationship between: # of input and # of output nodes Amount of training data available Complexity of the cost function The training algorithm TF playground home page: http://playground.tensorflow.org
  • 47. CNNs versus RNNs CNNs (Convolutional NNs): Good for image processing 2000: CNNs processed 10-20% of all checks => Approximately 60% of all NNs RNNs (Recurrent NNs): Good for NLP and audio
  • 48. CNNs: convolution and pooling (2)
  • 50. CNNs: Convolution Matrices (examples) Sharpen: Blur:
  • 51. CNNs: Convolution Matrices (examples) Edge detect: Emboss:
  • 53. CNNs: Max Pooling Example
  • 54. CNN in Python/Keras (fragment)  from keras.models import Sequential  from keras.layers.core import Dense, Dropout, Flatten, Activation  from keras.layers.convolutional import Conv2D, MaxPooling2D  from keras.optimizers import Adadelta  input_shape = (3, 32, 32)  nb_classes = 10  model = Sequential()  model.add(Conv2D(32, (3, 3), padding='same’, input_shape=input_shape))  model.add(Activation('relu'))  model.add(Conv2D(32, (3, 3)))  model.add(Activation('relu'))  model.add(MaxPooling2D(pool_size=(2, 2)))  model.add(Dropout(0.25))
  • 55. R Interface to Keras Uses the TensorFlow backend engine (default) Supports TensorFlow, Theano, and CNTK Detailed description: https://blog.rstudio.com/2017/09/05/keras-for-r/ FAQ: https://keras.rstudio.com/articles/faq.html Code samples: https://keras.rstudio.com/
  • 56. R Packages and NNs nnet, neuralnet, rnn RSNNs, deepnet, darch RcppDL, MXNetR Others packages for specific tasks
  • 57. R and Keras R Interface to Keras: https://github.com/rstudio/keras R/Keras documentation (MNIST example): https://keras.rstudio.com/ https://cran.r- project.org/web/packages/kerasR/vignettes/introdu ction.html
  • 58. R and Keras R/Keras Installation steps: install.packages("devtools") devtools::install_github("rstudio/keras") library(keras) # access the MNIST dataset: data=dataset_mnist() # how to define a layer (example): layer <- layer_dense(units = 32, input_shape = c(784))
  • 59. R and Keras Define a model in Keras: library(keras) model <- keras_model_sequential() %>% layer_dense(units = 16,activation="relu”,input_shape=c(10000)) %>% layer_dense(units = 16, activation = "relu") %>% layer_dense(units = 1, activation = "sigmoid")
  • 60. R and Keras  Define/compile/fit/evaluate a Keras model in R:  model <- keras_model_sequential() %>%  layer_dense(units = 32, input_shape = c(784)) %>%  layer_dense(units = 32)  model %>% compile(  optimizer = optimizer_rmsprop(lr = 0.0001),  loss = "mse",  metrics = c("accuracy")  )  model %>% fit(input_tensor, target_tensor, batch_size = 128, epochs = 10)
  • 61. RNNs and R rnn package in R MxNetR TensorFlow for R RNNs are mainly for sequence modeling RNNs similar to an ANN with memory info passed from state t to state t+1 Backpropagation Through Time (BPTT)
  • 62. rnn package in R library("rnn") model <- trainr(Y = Y[train,],  X = Y[train,],  learningrate = 0.05,  hidden_dim = 16,  numepochs = 1000) Yp <- predictr(model, Y[test,])
  • 63. What is TensorFlow? An open source framework for ML and DL A “computation” graph Created by Google (released 11/2015) Evolved from Google Brain Linux and Mac OS X support (VM for Windows) TF home page: https://www.tensorflow.org/
  • 64. What is TensorFlow? Support for Python, Java, C++ TPUs available for faster processing Can be embedded in Python scripts Installation: pip install tensorflow TensorFlow cluster: https://www.tensorflow.org/deploy/distributed
  • 65. TensorFlow Use Cases (Generic) Image recognition Computer vision Voice/sound recognition Time series analysis Language detection Language translation Text-based processing Handwriting Recognition
  • 66. What is a Tensor? TF tensors are n-dimensional arrays TF tensors are very similar to numpy ndarrays scalar number: a zeroth-order tensor vector: a first-order tensor matrix: a second-order tensor 3-dimensional array: a 3rd order tensor https://dzone.com/articles/tensorflow-simplified- examples
  • 67. TensorFlow: constants (immutable)  import tensorflow as tf # tf-const.py  aconst = tf.constant(3.0)  print(aconst) # output: Tensor("Const:0", shape=(), dtype=float32)  sess = tf.Session()  print(sess.run(aconst)) # output: 3.0  sess.close()  # => there's a better way…
  • 68. TensorFlow: constants import tensorflow as tf # tf-const2.py aconst = tf.constant(3.0) print(aconst) Automatically close “sess” with tf.Session() as sess:  print(sess.run(aconst))
  • 69. TensorFlow Arithmetic import tensorflow as tf # basic1.py a = tf.add(4, 2) b = tf.subtract(8, 6) c = tf.multiply(a, 3) d = tf.div(a, 6) with tf.Session() as sess: print(sess.run(a)) # 6 print(sess.run(b)) # 2 print(sess.run(c)) # 18 print(sess.run(d)) # 1
  • 70. TensorFlow Arithmetic Methods import tensorflow as tf #tf-math-ops.py PI = 3.141592 sess = tf.Session() print(sess.run(tf.div(12,8))) print(sess.run(tf.floordiv(20.0,8.0))) print(sess.run(tf.sin(PI))) print(sess.run(tf.cos(PI))) print(sess.run(tf.div(tf.sin(PI/4.), tf.cos(PI/4.))))
  • 71. TensorFlow Arithmetic Methods Output from tf-math-ops.py: 1 2.0 6.27833e-07 -1.0 1.0
  • 72. TensorFlow: placeholders example import tensorflow as tf # tf-var-multiply.py a = tf.placeholder("float") b = tf.placeholder("float") c = tf.multiply(a,b) # initialize a and b: feed_dict = {a:2, b:3} # multiply a and b: with tf.Session() as sess: print(sess.run(c, feed_dict))
  • 73. TensorFlow fetch/feed_dict  import tensorflow as tf # fetch-feeddict.py  # y = W*x + b: W and x are 1d arrays  W = tf.constant([10,20], name=’W’)  x = tf.placeholder(tf.int32, name='x')  b = tf.placeholder(tf.int32, name='b')  Wx = tf.multiply(W, x, name='Wx')  y = tf.add(Wx, b, name=’y’)
  • 74. TensorFlow fetch/feed_dict with tf.Session() as sess: print("Result 1: Wx = ", sess.run(Wx, feed_dict={x:[5,10]})) print("Result 2: y = ", sess.run(y, feed_dict={x:[5,10], b:[15,25]})) Result 1: Wx = [50 200] Result 2: y = [65 225]
  • 75. TensorFlow Arithmetic Expressions import tensorflow as tf # tf-save-data.py x = tf.constant(5,name="x") y = tf.constant(8,name="y") z = tf.Variable(2*x+3*y, name="z”) model = tf.global_variables_initializer() with tf.Session() as session: writer = tf.summary.FileWriter(”./tf_logs",session.graph) session.run(model) print 'z = ',session.run(z) # => z = 34 # tensorboard –logdir=./tf_logs
  • 76. TensorFlow Eager Execution An imperative interface to TF (experimental) Fast debugging & immediate run-time errors Eager execution is not included in v1.4 of TF build TF from source or install the nightly build pip install tf-nightly # CPU pip install tf-nightly-gpu #GPU => requires Python 3.x (not Python 2.x)
  • 77. TensorFlow Eager Execution integration with Python tools Supports dynamic models + Python control flow support for custom and higher-order gradients Supports most TensorFlow operations https://research.googleblog.com/2017/10/eager- execution-imperative-define-by.html
  • 78. TensorFlow Eager Execution import tensorflow as tf # tf-eager1.py import tensorflow.contrib.eager as tfe tfe.enable_eager_execution() x = [[2.]] m = tf.matmul(x, x) print(m) # tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
  • 79. R and TensorFlow (sample) library(tensorflow) sess = tf$Session() hello <- tf$constant('Hello, TensorFlow!') sess$run(hello) b'Hello, TensorFlow!'
  • 81. GANs: Generative Adversarial Networks Make imperceptible changes to images Can consistently defeat all NNs Can have extremely high error rate Some images create optical illusions https://www.quora.com/What-are-the-pros-and-cons- of-using-generative-adversarial-networks-a-type-of- neural-network
  • 82. GANs: Generative Adversarial Networks Create your own GANs: https://www.oreilly.com/learning/generative-adversarial-networks-for- beginners https://github.com/jonbruner/generative-adversarial-networks GANs from MNIST: http://edwardlib.org/tutorials/gan
  • 83. GANs: Generative Adversarial Networks GANs, Graffiti, and Art: https://thenewstack.io/camouflaged-graffiti-road-signs-can-fool- machine-learning-models/ GANs and audio: https://www.technologyreview.com/s/608381/ai-shouldnt-believe- everything-it-hears Image recognition (single pixel change): http://www.bbc.com/news/technology-41845878 Houdini algorithm: https://arxiv.org/abs/1707.05373
  • 84. Deep Learning and Art “Convolutional Blending” (19-layer CNN): www.deepart.io Bots created their own language: https://www.recode.net/2017/3/23/14962182/ai-learning- language-open-ai-research https://www.fastcodesign.com/90124942/this-google- engineer-taught-an-algorithm-to-make-train-footage- and-its-hypnotic
  • 85. What Do I Learn Next?  PGMs (Probabilistic Graphical Models)  MC (Markov Chains)  MCMC (Markov Chains Monte Carlo)  HMMs (Hidden Markov Models)  RL (Reinforcement Learning)  Hopfield Nets  Neural Turing Machines  Autoencoders  Hypernetworks  Pixel Recurrent Neural Networks  Bayesian Neural Networks  SVMs
  • 86. About Me: Recent Books 1) HTML5 Canvas and CSS3 Graphics (2013) 2) jQuery, CSS3, and HTML5 for Mobile (2013) 3) HTML5 Pocket Primer (2013) 4) jQuery Pocket Primer (2013) 5) HTML5 Mobile Pocket Primer (2014) 6) D3 Pocket Primer (2015) 7) Python Pocket Primer (2015) 8) SVG Pocket Primer (2016) 9) CSS3 Pocket Primer (2016) 10) Android Pocket Primer (2017) 11) Angular Pocket Primer (2017) 12) Data Cleaning Pocket Primer (2018) 13) RegEx Pocket Primer (2018)
  • 87. About Me: Training => Deep Learning. Keras, and TensorFlow: http://codeavision.io/training/deep-learning-workshop => Mobile and TensorFlow Lite => R and Deep Learning (WIP) => Android for Beginners