SlideShare a Scribd company logo
1 of 66
Intro to Deep Learning, TensorFlow,
and tensorflow.js
GDG Meetup 10/10/2018
Next Space, Berkeley
Oswald Campesato
ocampesato@yahoo.com
Highlights/Overview
 intro to AI/ML/DL/NNs
 Hidden layers
 Initialization values
 Neurons per layer
 Activation function
 cost function
 gradient descent
 learning rate
 Dropout rate
 what are CNNs
 TensorFlow/tensorflow.js
The Data/AI Landscape
Use Cases for Deep Learning
computer vision
speech recognition
image processing
bioinformatics
social network filtering
drug design
Recommendation systems
Bioinformatics
Mobile Advertising
Many others
NN 3 Hidden Layers: Classifier
NN: 2 Hidden Layers (Regression)
Classification and Deep Learning
Euler’s Function (e: 2.71828. . .)
The sigmoid Activation Function
The tanh Activation Function
The ReLU Activation Function
The softmax Activation Function
Activation Functions in Python
import numpy as np
...
# Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x)))
...
# Python tanh example:
z = np.tanh(np.dot(W,x));
# Python ReLU example:
z = np.maximum(0, np.dot(W, x))
What’s the “Best” Activation Function?
Initially: sigmoid was popular
Then: tanh became popular
Now: RELU is preferred (better results)
Softmax: for FC (fully connected) layers
NB: sigmoid and tanh are used in LSTMs
Linear Regression
One of the simplest models in ML
Fits a line (y = m*x + b) to data in 2D
Finds best line by minimizing MSE:
m = slope of the best-fitting line
b = y-intercept of the best-fitting line
Linear Regression in 2D: example
Linear Regression in 2D: example
Sample Cost Function #1 (MSE)
Linear Regression: example #1
One feature (independent variable):
X = number of square feet
Predicted value (dependent variable):
Y = cost of a house
A very “coarse grained” model
We can devise a much better model
Linear Regression: example #2
Multiple features:
X1 = # of square feet
X2 = # of bedrooms
X3 = # of bathrooms (dependency?)
X4 = age of house
X5 = cost of nearby houses
X6 = corner lot (or not): Boolean
a much better model (6 features)
Linear Multivariate Analysis
General form of multivariate equation:
Y = w1*x1 + w2*x2 + . . . + wn*xn + b
w1, w2, . . . , wn are numeric values
x1, x2, . . . , xn are variables (features)
Properties of variables:
Can be independent (Naïve Bayes)
weak/strong dependencies can exist
Sample Cost Function #1 (MSE)
Sample Cost Function #2
Sample Cost Function #3
Types of Optimizers
SGD
rmsprop
Adagrad
Adam
Others
http://cs229.stanford.edu/notes/cs229-notes1.pdf
Deep Neural Network: summary
 input layer, multiple hidden layers, and output layer
 nonlinear processing via activation functions
 perform transformation and feature extraction
 gradient descent algorithm with back propagation
 each layer receives the output from previous layer
 results are comparable/superior to human experts
CNNs versus RNNs
CNNs (Convolutional NNs):
Good for image processing
2000: CNNs processed 10-20% of all checks
=> Approximately 60% of all NNs
RNNs (Recurrent NNs):
Good for NLP and audio
Used in hybrid networks
CNNs: Convolution, ReLU, and Max Pooling
CNNs: Convolution Calculations
https://docs.gimp.org/en/plug-in-convmatrix.html
CNNs: Convolution Matrices (examples)
Sharpen:
Blur:
CNNs: Convolution Matrices (examples)
Edge detect:
Emboss:
CNNs: Max Pooling Example
GANs: Generative Adversarial Networks
GANs: Generative Adversarial Networks
Make imperceptible changes to images
Can consistently defeat all NNs
Can have extremely high error rate
Some images create optical illusions
https://www.quora.com/What-are-the-pros-and-cons-
of-using-generative-adversarial-networks-a-type-of-
neural-network
GANs: Generative Adversarial Networks
Create your own GANs:
https://www.oreilly.com/learning/generative-adversarial-networks-for-
beginners
https://github.com/jonbruner/generative-adversarial-networks
GANs from MNIST:
http://edwardlib.org/tutorials/gan
GANs and Capsule networks
CNN in Python/Keras (fragment)
 from keras.models import Sequential
 from keras.layers.core import Dense, Dropout, Activation
 from keras.layers.convolutional import Conv2D, MaxPooling2D
 from keras.optimizers import Adadelta
 input_shape = (3, 32, 32)
 nb_classes = 10
 model = Sequential()
 model.add(Conv2D(32,(3, 3),padding='same’,
input_shape=input_shape))
 model.add(Activation('relu'))
 model.add(Conv2D(32, (3, 3)))
 model.add(Activation('relu'))
 model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Dropout(0.25))
What is TensorFlow?
An open source framework for ML and DL
A “computation” graph
Created by Google (released 11/2015)
Evolved from Google Brain
Linux and Mac OS X support (VM for Windows)
TF home page: https://www.tensorflow.org/
What is TensorFlow?
Support for Python, Java, C++
Desktop, server, mobile device (TensorFlow Lite)
CPU/GPU/TPU support
Visualization via TensorBoard
Can be embedded in Python scripts
Installation: pip install tensorflow
TensorFlow cluster:
https://www.tensorflow.org/deploy/distributed
TensorFlow Use Cases (Generic)
Image recognition
Computer vision
Voice/sound recognition
Time series analysis
Language detection
Language translation
Text-based processing
Handwriting Recognition
Aspects of TensorFlow
Graph: graph of operations (DAG)
Sessions: contains Graph(s)
lazy execution (default)
operations in parallel (default)
Nodes: operators/variables/constants
Edges: tensors
=> graphs are split into subgraphs and
executed in parallel (or multiple CPUs)
TensorFlow Graph Execution
Execute statements in a tf.Session() object
Invoke the “run” method of that object
“eager” execution is available (>= v1.4)
included in the mainline (v1.7)
Installation: pip install tensorflow
What is a Tensor?
TF tensors are n-dimensional arrays
TF tensors are very similar to numpy ndarrays
scalar number: a zeroth-order tensor
vector: a first-order tensor
matrix: a second-order tensor
3-dimensional array: a 3rd order tensor
https://dzone.com/articles/tensorflow-simplified-
examples
TensorFlow “primitive types”
tf.constant:
+ initialized immediately
+ immutable
tf.placeholder (a function):
+ initial value is not required
+ can have variable shape
+ assigned value via feed_dict at run time
+ receive data from “external” sources
TensorFlow “primitive types”
tf.Variable (a class):
+ initial value is required
+ updated during training
+ maintain state across calls to “run()”
+ in-memory buffer (saved/restored from disk)
+ can be shared in a distributed environment
+ they hold learned parameters of a model
TensorFlow: constants (immutable)
 import tensorflow as tf
 aconst = tf.constant(3.0)
 print(aconst)
# output: Tensor("Const:0", shape=(), dtype=float32)
 sess = tf.Session()
 print(sess.run(aconst))
# output: 3.0
 sess.close()
 # => there's a better way
TensorFlow: constants
import tensorflow as tf
aconst = tf.constant(3.0)
print(aconst)
Automatically close “sess”
with tf.Session() as sess:
 print(sess.run(aconst))
TensorFlow Arithmetic
import tensorflow as tf
a = tf.add(4, 2)
b = tf.subtract(8, 6)
c = tf.multiply(a, 3)
d = tf.div(a, 6)
with tf.Session() as sess:
print(sess.run(a)) # 6
print(sess.run(b)) # 2
print(sess.run(c)) # 18
print(sess.run(d)) # 1
TF placeholders and feed_dict
import tensorflow as tf
a = tf.placeholder("float")
b = tf.placeholder("float")
c = tf.multiply(a,b)
# initialize a and b:
feed_dict = {a:2, b:3}
# multiply a and b:
with tf.Session() as sess:
print(sess.run(c, feed_dict))
TensorFlow: Simple Equation
import tensorflow as tf
# W and x are 1d arrays
W = tf.constant([10,20], name='W')
X = tf.placeholder(tf.int32, name='x')
b = tf.placeholder(tf.int32, name='b')
Wx = tf.multiply(W, x, name='Wx')
y = tf.add(Wx, b, name='y') OR
y2 = tf.add(tf.multiply(W,x),b)
TensorFlow fetch/feed_dict
with tf.Session() as sess:
print("Result 1: Wx = ",
sess.run(Wx, feed_dict={x:[5,10]}))
print("Result 2: y = ",
sess.run(y,feed_dict={x:[5,10],b:[15,25]}))
 Result 1: Wx = [50 200]
 Result 2: y = [65 225]
Saving Graphs for TensorBoard
import tensorflow as tf
x = tf.constant(5,name="x")
y = tf.constant(8,name="y")
z = tf.Variable(2*x+3*y, name="z")
init = tf.global_variables_initializer()
with tf.Session() as session:
writer = tf.summary.FileWriter("./tf_logs",session.graph)
session.run(init)
print 'z = ',session.run(z) # => z = 34
# launch: tensorboard –logdir=./tf_logs
TensorFlow Eager Execution
An imperative interface to TF
Fast debugging & immediate run-time errors
Eager execution is “mainline” in v1.7 of TF
=> requires Python 3.x (not Python 2.x)
TensorFlow Eager Execution
integration with Python tools
Supports dynamic models + Python control flow
support for custom and higher-order gradients
Supports most TensorFlow operations
Emphasized in TensorFlow 2.0
https://research.googleblog.com/2017/10/eager-
execution-imperative-define-by.html
TensorFlow Eager Execution
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
x = [[2.]]
m = tf.matmul(x, x)
print(m)
# tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
What is tensorflow.js?
 an ecosystem of JS tools for machine learning
 TensorFlow.js also includes a Layers API
 a library for building machine learning models
 tools to port TF SavedModels & Keras HDF5 models
 => https://js.tensorflow.org/
What is tensorflow.js?
 tensorflow.js evolved from deeplearn.js
 deeplearn.js is now called TensorFlow.js Core
 TensorFlow.js Core: a flexible low-level API
 TensorFlow.js Layers:
a high-level API similar to Keras
 TensorFlow.js Converter:
tools to import a TF SavedModel to TensorFlow.js
async keyword
keyword placed before JS functions
For functions that return a Promise
Trivial example:
async function f() {
return 1;
}
await keyword
Works only inside async JS functions
Trivial example:
let value = await mypromise;
async/await example
async function f() {
let promise = new Promise((resolve, reject) => {
setTimeout(() => resolve("done!"), 1000)
});
// wait till the promise resolves
let result = await promise
alert(result)
}
f()
Tensorflow.js Samples
1) tfjs-example.html (linear regression)
2) js.tensorflow.org (home page)
3) https://github.com/tensorflow/tfjs-examples-master
a)cd mnist-core
b) yarn
c) yarn watch
What is GAN Lab?
An online visualization tool for GANs
Visualizes discriminator and generator
Georgia Tech and Google Brain/PAIR
Based on tensorflow.js
experiment in your browser GANs:
https://poloclub.github.io/ganlab/
tfjs-vis for Data Visualization
“a library for in browser visualization”
intended for TensorFlow.js
this library provides:
1) Visualizations to view model behaviour
2) high level functions for visualizing TFJS objects
https://github.com/tensorflow/tfjs-vis
aijs.rocks AI-based Apps
curated collection of apps
AI-powered JavaScript apps
Based on tensorflow.js
https://aijs.rocks/
Deep Learning and Art/”Stuff”
“Convolutional Blending” images:
=> 19-layer Convolutional Neural Network
www.deepart.io
https://www.fastcodesign.com/90124942/this-google-
engineer-taught-an-algorithm-to-make-train-footage-
and-its-hypnotic
Some of my Books
1) HTML5 Canvas and CSS3 Graphics (2013)
2) jQuery, CSS3, and HTML5 for Mobile (2013)
3) HTML5 Pocket Primer (2013)
4) jQuery Pocket Primer (2013)
5) HTML5 Mobile Pocket Primer (2014)
6) D3 Pocket Primer (2015)
7) Python Pocket Primer (2015)
8) SVG Pocket Primer (2016)
9) CSS3 Pocket Primer (2016)
10) Android Pocket Primer (2017)
11) Angular Pocket Primer (2017)
12) Data Cleaning Pocket Primer (2018)
13) RegEx Pocket Primer (2018)
What I do (Training)
=> Instructor at UCSC:
Deep Learning with TensorFlow (10/2018 & 02/2019)
Machine Learning Introduction (01/18/2019)
=> Mobile and TensorFlow Lite (WIP)
=> R and Deep Learning (WIP)
=> Android for Beginners (multi-day workshops)

More Related Content

What's hot

Working with tf.data (TF 2)
Working with tf.data (TF 2)Working with tf.data (TF 2)
Working with tf.data (TF 2)Oswald Campesato
 
Deep Learning, Keras, and TensorFlow
Deep Learning, Keras, and TensorFlowDeep Learning, Keras, and TensorFlow
Deep Learning, Keras, and TensorFlowOswald Campesato
 
Introduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasIntroduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasOswald Campesato
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2Oswald Campesato
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2Oswald Campesato
 
Deep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLDeep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLOswald Campesato
 
Java and Deep Learning (Introduction)
Java and Deep Learning (Introduction)Java and Deep Learning (Introduction)
Java and Deep Learning (Introduction)Oswald Campesato
 
Tensor flow (1)
Tensor flow (1)Tensor flow (1)
Tensor flow (1)景逸 王
 
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0Databricks
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlowOswald Campesato
 
Natural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usageNatural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usagehyunyoung Lee
 
DeepStochLog: Neural Stochastic Logic Programming
DeepStochLog: Neural Stochastic Logic ProgrammingDeepStochLog: Neural Stochastic Logic Programming
DeepStochLog: Neural Stochastic Logic ProgrammingThomas Winters
 
Pydiomatic
PydiomaticPydiomatic
Pydiomaticrik0
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Larry Guo
 
Tensorflow for Beginners
Tensorflow for BeginnersTensorflow for Beginners
Tensorflow for BeginnersSam Dias
 
Learning stochastic neural networks with Chainer
Learning stochastic neural networks with ChainerLearning stochastic neural networks with Chainer
Learning stochastic neural networks with ChainerSeiya Tokui
 
Machine Learning for Trading
Machine Learning for TradingMachine Learning for Trading
Machine Learning for TradingLarry Guo
 

What's hot (20)

Working with tf.data (TF 2)
Working with tf.data (TF 2)Working with tf.data (TF 2)
Working with tf.data (TF 2)
 
Deep Learning, Keras, and TensorFlow
Deep Learning, Keras, and TensorFlowDeep Learning, Keras, and TensorFlow
Deep Learning, Keras, and TensorFlow
 
Introduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasIntroduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and Keras
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
 
C++ and Deep Learning
C++ and Deep LearningC++ and Deep Learning
C++ and Deep Learning
 
Deep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGLDeep Learning in your Browser: powered by WebGL
Deep Learning in your Browser: powered by WebGL
 
Scala and Deep Learning
Scala and Deep LearningScala and Deep Learning
Scala and Deep Learning
 
Java and Deep Learning (Introduction)
Java and Deep Learning (Introduction)Java and Deep Learning (Introduction)
Java and Deep Learning (Introduction)
 
Tensor flow (1)
Tensor flow (1)Tensor flow (1)
Tensor flow (1)
 
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlow
 
Natural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usageNatural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usage
 
Google TensorFlow Tutorial
Google TensorFlow TutorialGoogle TensorFlow Tutorial
Google TensorFlow Tutorial
 
DeepStochLog: Neural Stochastic Logic Programming
DeepStochLog: Neural Stochastic Logic ProgrammingDeepStochLog: Neural Stochastic Logic Programming
DeepStochLog: Neural Stochastic Logic Programming
 
Pydiomatic
PydiomaticPydiomatic
Pydiomatic
 
Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10) Deep Learning: Recurrent Neural Network (Chapter 10)
Deep Learning: Recurrent Neural Network (Chapter 10)
 
Tensorflow for Beginners
Tensorflow for BeginnersTensorflow for Beginners
Tensorflow for Beginners
 
Learning stochastic neural networks with Chainer
Learning stochastic neural networks with ChainerLearning stochastic neural networks with Chainer
Learning stochastic neural networks with Chainer
 
Machine Learning for Trading
Machine Learning for TradingMachine Learning for Trading
Machine Learning for Trading
 

Similar to Deep Learning in Your Browser

Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and SparkOswald Campesato
 
TensorFlow for IITians
TensorFlow for IITiansTensorFlow for IITians
TensorFlow for IITiansAshish Bansal
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningOswald Campesato
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningOswald Campesato
 
TypeScript and Deep Learning
TypeScript and Deep LearningTypeScript and Deep Learning
TypeScript and Deep LearningOswald Campesato
 
Introduction to Deep Learning and Tensorflow
Introduction to Deep Learning and TensorflowIntroduction to Deep Learning and Tensorflow
Introduction to Deep Learning and TensorflowOswald Campesato
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep LearningOswald Campesato
 
Deep Learning: R with Keras and TensorFlow
Deep Learning: R with Keras and TensorFlowDeep Learning: R with Keras and TensorFlow
Deep Learning: R with Keras and TensorFlowOswald Campesato
 
Language translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlowLanguage translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlowS N
 
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...Raffi Khatchadourian
 
Introduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep LearningIntroduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep Learningali alemi
 
Introduction to Tensor Flow for Optical Character Recognition (OCR)
Introduction to Tensor Flow for Optical Character Recognition (OCR)Introduction to Tensor Flow for Optical Character Recognition (OCR)
Introduction to Tensor Flow for Optical Character Recognition (OCR)Vincenzo Santopietro
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016Andrii Babii
 
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)Oswald Campesato
 
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...Databricks
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Alessio Tonioni
 

Similar to Deep Learning in Your Browser (20)

Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and Spark
 
TensorFlow for IITians
TensorFlow for IITiansTensorFlow for IITians
TensorFlow for IITians
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep Learning
 
D3, TypeScript, and Deep Learning
D3, TypeScript, and Deep LearningD3, TypeScript, and Deep Learning
D3, TypeScript, and Deep Learning
 
TypeScript and Deep Learning
TypeScript and Deep LearningTypeScript and Deep Learning
TypeScript and Deep Learning
 
Angular and Deep Learning
Angular and Deep LearningAngular and Deep Learning
Angular and Deep Learning
 
Java and Deep Learning
Java and Deep LearningJava and Deep Learning
Java and Deep Learning
 
Introduction to Deep Learning and Tensorflow
Introduction to Deep Learning and TensorflowIntroduction to Deep Learning and Tensorflow
Introduction to Deep Learning and Tensorflow
 
Introduction to Deep Learning
Introduction to Deep LearningIntroduction to Deep Learning
Introduction to Deep Learning
 
Deep Learning: R with Keras and TensorFlow
Deep Learning: R with Keras and TensorFlowDeep Learning: R with Keras and TensorFlow
Deep Learning: R with Keras and TensorFlow
 
Language translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlowLanguage translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlow
 
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
 
Introduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep LearningIntroduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep Learning
 
Introduction to Tensor Flow for Optical Character Recognition (OCR)
Introduction to Tensor Flow for Optical Character Recognition (OCR)Introduction to Tensor Flow for Optical Character Recognition (OCR)
Introduction to Tensor Flow for Optical Character Recognition (OCR)
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
 
Android and Deep Learning
Android and Deep LearningAndroid and Deep Learning
Android and Deep Learning
 
Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)Diving into Deep Learning (Silicon Valley Code Camp 2017)
Diving into Deep Learning (Silicon Valley Code Camp 2017)
 
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
A Tale of Three Deep Learning Frameworks: TensorFlow, Keras, & PyTorch with B...
 
Python idiomatico
Python idiomaticoPython idiomatico
Python idiomatico
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)
 

Recently uploaded

Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxRemote DBA Services
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businesspanagenda
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Zilliz
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 

Recently uploaded (20)

Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 

Deep Learning in Your Browser

  • 1. Intro to Deep Learning, TensorFlow, and tensorflow.js GDG Meetup 10/10/2018 Next Space, Berkeley Oswald Campesato ocampesato@yahoo.com
  • 2. Highlights/Overview  intro to AI/ML/DL/NNs  Hidden layers  Initialization values  Neurons per layer  Activation function  cost function  gradient descent  learning rate  Dropout rate  what are CNNs  TensorFlow/tensorflow.js
  • 4. Use Cases for Deep Learning computer vision speech recognition image processing bioinformatics social network filtering drug design Recommendation systems Bioinformatics Mobile Advertising Many others
  • 5. NN 3 Hidden Layers: Classifier
  • 6. NN: 2 Hidden Layers (Regression)
  • 8. Euler’s Function (e: 2.71828. . .)
  • 13. Activation Functions in Python import numpy as np ... # Python sigmoid example: z = 1/(1 + np.exp(-np.dot(W, x))) ... # Python tanh example: z = np.tanh(np.dot(W,x)); # Python ReLU example: z = np.maximum(0, np.dot(W, x))
  • 14. What’s the “Best” Activation Function? Initially: sigmoid was popular Then: tanh became popular Now: RELU is preferred (better results) Softmax: for FC (fully connected) layers NB: sigmoid and tanh are used in LSTMs
  • 15. Linear Regression One of the simplest models in ML Fits a line (y = m*x + b) to data in 2D Finds best line by minimizing MSE: m = slope of the best-fitting line b = y-intercept of the best-fitting line
  • 16. Linear Regression in 2D: example
  • 17. Linear Regression in 2D: example
  • 19. Linear Regression: example #1 One feature (independent variable): X = number of square feet Predicted value (dependent variable): Y = cost of a house A very “coarse grained” model We can devise a much better model
  • 20. Linear Regression: example #2 Multiple features: X1 = # of square feet X2 = # of bedrooms X3 = # of bathrooms (dependency?) X4 = age of house X5 = cost of nearby houses X6 = corner lot (or not): Boolean a much better model (6 features)
  • 21. Linear Multivariate Analysis General form of multivariate equation: Y = w1*x1 + w2*x2 + . . . + wn*xn + b w1, w2, . . . , wn are numeric values x1, x2, . . . , xn are variables (features) Properties of variables: Can be independent (Naïve Bayes) weak/strong dependencies can exist
  • 26. Deep Neural Network: summary  input layer, multiple hidden layers, and output layer  nonlinear processing via activation functions  perform transformation and feature extraction  gradient descent algorithm with back propagation  each layer receives the output from previous layer  results are comparable/superior to human experts
  • 27. CNNs versus RNNs CNNs (Convolutional NNs): Good for image processing 2000: CNNs processed 10-20% of all checks => Approximately 60% of all NNs RNNs (Recurrent NNs): Good for NLP and audio Used in hybrid networks
  • 28. CNNs: Convolution, ReLU, and Max Pooling
  • 30. CNNs: Convolution Matrices (examples) Sharpen: Blur:
  • 31. CNNs: Convolution Matrices (examples) Edge detect: Emboss:
  • 32. CNNs: Max Pooling Example
  • 34. GANs: Generative Adversarial Networks Make imperceptible changes to images Can consistently defeat all NNs Can have extremely high error rate Some images create optical illusions https://www.quora.com/What-are-the-pros-and-cons- of-using-generative-adversarial-networks-a-type-of- neural-network
  • 35. GANs: Generative Adversarial Networks Create your own GANs: https://www.oreilly.com/learning/generative-adversarial-networks-for- beginners https://github.com/jonbruner/generative-adversarial-networks GANs from MNIST: http://edwardlib.org/tutorials/gan GANs and Capsule networks
  • 36. CNN in Python/Keras (fragment)  from keras.models import Sequential  from keras.layers.core import Dense, Dropout, Activation  from keras.layers.convolutional import Conv2D, MaxPooling2D  from keras.optimizers import Adadelta  input_shape = (3, 32, 32)  nb_classes = 10  model = Sequential()  model.add(Conv2D(32,(3, 3),padding='same’, input_shape=input_shape))  model.add(Activation('relu'))  model.add(Conv2D(32, (3, 3)))  model.add(Activation('relu'))  model.add(MaxPooling2D(pool_size=(2, 2)))  model.add(Dropout(0.25))
  • 37. What is TensorFlow? An open source framework for ML and DL A “computation” graph Created by Google (released 11/2015) Evolved from Google Brain Linux and Mac OS X support (VM for Windows) TF home page: https://www.tensorflow.org/
  • 38. What is TensorFlow? Support for Python, Java, C++ Desktop, server, mobile device (TensorFlow Lite) CPU/GPU/TPU support Visualization via TensorBoard Can be embedded in Python scripts Installation: pip install tensorflow TensorFlow cluster: https://www.tensorflow.org/deploy/distributed
  • 39. TensorFlow Use Cases (Generic) Image recognition Computer vision Voice/sound recognition Time series analysis Language detection Language translation Text-based processing Handwriting Recognition
  • 40. Aspects of TensorFlow Graph: graph of operations (DAG) Sessions: contains Graph(s) lazy execution (default) operations in parallel (default) Nodes: operators/variables/constants Edges: tensors => graphs are split into subgraphs and executed in parallel (or multiple CPUs)
  • 41. TensorFlow Graph Execution Execute statements in a tf.Session() object Invoke the “run” method of that object “eager” execution is available (>= v1.4) included in the mainline (v1.7) Installation: pip install tensorflow
  • 42. What is a Tensor? TF tensors are n-dimensional arrays TF tensors are very similar to numpy ndarrays scalar number: a zeroth-order tensor vector: a first-order tensor matrix: a second-order tensor 3-dimensional array: a 3rd order tensor https://dzone.com/articles/tensorflow-simplified- examples
  • 43. TensorFlow “primitive types” tf.constant: + initialized immediately + immutable tf.placeholder (a function): + initial value is not required + can have variable shape + assigned value via feed_dict at run time + receive data from “external” sources
  • 44. TensorFlow “primitive types” tf.Variable (a class): + initial value is required + updated during training + maintain state across calls to “run()” + in-memory buffer (saved/restored from disk) + can be shared in a distributed environment + they hold learned parameters of a model
  • 45. TensorFlow: constants (immutable)  import tensorflow as tf  aconst = tf.constant(3.0)  print(aconst) # output: Tensor("Const:0", shape=(), dtype=float32)  sess = tf.Session()  print(sess.run(aconst)) # output: 3.0  sess.close()  # => there's a better way
  • 46. TensorFlow: constants import tensorflow as tf aconst = tf.constant(3.0) print(aconst) Automatically close “sess” with tf.Session() as sess:  print(sess.run(aconst))
  • 47. TensorFlow Arithmetic import tensorflow as tf a = tf.add(4, 2) b = tf.subtract(8, 6) c = tf.multiply(a, 3) d = tf.div(a, 6) with tf.Session() as sess: print(sess.run(a)) # 6 print(sess.run(b)) # 2 print(sess.run(c)) # 18 print(sess.run(d)) # 1
  • 48. TF placeholders and feed_dict import tensorflow as tf a = tf.placeholder("float") b = tf.placeholder("float") c = tf.multiply(a,b) # initialize a and b: feed_dict = {a:2, b:3} # multiply a and b: with tf.Session() as sess: print(sess.run(c, feed_dict))
  • 49. TensorFlow: Simple Equation import tensorflow as tf # W and x are 1d arrays W = tf.constant([10,20], name='W') X = tf.placeholder(tf.int32, name='x') b = tf.placeholder(tf.int32, name='b') Wx = tf.multiply(W, x, name='Wx') y = tf.add(Wx, b, name='y') OR y2 = tf.add(tf.multiply(W,x),b)
  • 50. TensorFlow fetch/feed_dict with tf.Session() as sess: print("Result 1: Wx = ", sess.run(Wx, feed_dict={x:[5,10]})) print("Result 2: y = ", sess.run(y,feed_dict={x:[5,10],b:[15,25]}))  Result 1: Wx = [50 200]  Result 2: y = [65 225]
  • 51. Saving Graphs for TensorBoard import tensorflow as tf x = tf.constant(5,name="x") y = tf.constant(8,name="y") z = tf.Variable(2*x+3*y, name="z") init = tf.global_variables_initializer() with tf.Session() as session: writer = tf.summary.FileWriter("./tf_logs",session.graph) session.run(init) print 'z = ',session.run(z) # => z = 34 # launch: tensorboard –logdir=./tf_logs
  • 52. TensorFlow Eager Execution An imperative interface to TF Fast debugging & immediate run-time errors Eager execution is “mainline” in v1.7 of TF => requires Python 3.x (not Python 2.x)
  • 53. TensorFlow Eager Execution integration with Python tools Supports dynamic models + Python control flow support for custom and higher-order gradients Supports most TensorFlow operations Emphasized in TensorFlow 2.0 https://research.googleblog.com/2017/10/eager- execution-imperative-define-by.html
  • 54. TensorFlow Eager Execution import tensorflow as tf import tensorflow.contrib.eager as tfe tfe.enable_eager_execution() x = [[2.]] m = tf.matmul(x, x) print(m) # tf.Tensor([[4.]], shape=(1, 1), dtype=float32)
  • 55. What is tensorflow.js?  an ecosystem of JS tools for machine learning  TensorFlow.js also includes a Layers API  a library for building machine learning models  tools to port TF SavedModels & Keras HDF5 models  => https://js.tensorflow.org/
  • 56. What is tensorflow.js?  tensorflow.js evolved from deeplearn.js  deeplearn.js is now called TensorFlow.js Core  TensorFlow.js Core: a flexible low-level API  TensorFlow.js Layers: a high-level API similar to Keras  TensorFlow.js Converter: tools to import a TF SavedModel to TensorFlow.js
  • 57. async keyword keyword placed before JS functions For functions that return a Promise Trivial example: async function f() { return 1; }
  • 58. await keyword Works only inside async JS functions Trivial example: let value = await mypromise;
  • 59. async/await example async function f() { let promise = new Promise((resolve, reject) => { setTimeout(() => resolve("done!"), 1000) }); // wait till the promise resolves let result = await promise alert(result) } f()
  • 60. Tensorflow.js Samples 1) tfjs-example.html (linear regression) 2) js.tensorflow.org (home page) 3) https://github.com/tensorflow/tfjs-examples-master a)cd mnist-core b) yarn c) yarn watch
  • 61. What is GAN Lab? An online visualization tool for GANs Visualizes discriminator and generator Georgia Tech and Google Brain/PAIR Based on tensorflow.js experiment in your browser GANs: https://poloclub.github.io/ganlab/
  • 62. tfjs-vis for Data Visualization “a library for in browser visualization” intended for TensorFlow.js this library provides: 1) Visualizations to view model behaviour 2) high level functions for visualizing TFJS objects https://github.com/tensorflow/tfjs-vis
  • 63. aijs.rocks AI-based Apps curated collection of apps AI-powered JavaScript apps Based on tensorflow.js https://aijs.rocks/
  • 64. Deep Learning and Art/”Stuff” “Convolutional Blending” images: => 19-layer Convolutional Neural Network www.deepart.io https://www.fastcodesign.com/90124942/this-google- engineer-taught-an-algorithm-to-make-train-footage- and-its-hypnotic
  • 65. Some of my Books 1) HTML5 Canvas and CSS3 Graphics (2013) 2) jQuery, CSS3, and HTML5 for Mobile (2013) 3) HTML5 Pocket Primer (2013) 4) jQuery Pocket Primer (2013) 5) HTML5 Mobile Pocket Primer (2014) 6) D3 Pocket Primer (2015) 7) Python Pocket Primer (2015) 8) SVG Pocket Primer (2016) 9) CSS3 Pocket Primer (2016) 10) Android Pocket Primer (2017) 11) Angular Pocket Primer (2017) 12) Data Cleaning Pocket Primer (2018) 13) RegEx Pocket Primer (2018)
  • 66. What I do (Training) => Instructor at UCSC: Deep Learning with TensorFlow (10/2018 & 02/2019) Machine Learning Introduction (01/18/2019) => Mobile and TensorFlow Lite (WIP) => R and Deep Learning (WIP) => Android for Beginners (multi-day workshops)