SlideShare uma empresa Scribd logo
1 de 68
Baixar para ler offline
Types of Proof
Types of Proof
1. Deductive Proof
  Start with known facts and deduce what you are trying to prove.
Types of Proof
1. Deductive Proof
  Start with known facts and deduce what you are trying to prove.

2. Inductive Proof
  Assume what you are trying to prove and induce a solution.
Types of Proof
1. Deductive Proof
  Start with known facts and deduce what you are trying to prove.

2. Inductive Proof
  Assume what you are trying to prove and induce a solution.

3. Proof by Contradiction
  Assume the opposite of what you are trying to prove and create a
  contradiction.
  Contradiction means the original assumption is incorrect, therefore
  the opposite must be true.
Inequality Techniques
Inequality Techniques
  To prove x  y, it can be easier to prove x  y  0
Inequality Techniques
             To prove x  y, it can be easier to prove x  y  0
                           p2  q2
e.g. i 1995 Prove pq 
                               2
Inequality Techniques
             To prove x  y, it can be easier to prove x  y  0
                           p2  q2
e.g. i 1995 Prove pq 
                               2
    p2  q2
              pq
         2
Inequality Techniques
             To prove x  y, it can be easier to prove x  y  0
                             p2  q2
e.g. i 1995 Prove pq 
                                2
    p2  q2           p 2  2 pq  q 2
              pq 
         2                   2
Inequality Techniques
             To prove x  y, it can be easier to prove x  y  0
                             p2  q2
e.g. i 1995 Prove pq 
                                2
    p2  q2           p 2  2 pq  q 2
              pq 
         2                   2
                      p  q 2
                   
                          2
                    0
Inequality Techniques
             To prove x  y, it can be easier to prove x  y  0
                             p2  q2
e.g. i 1995 Prove pq 
                                2
    p2  q2           p 2  2 pq  q 2
              pq 
         2                   2
                       p  q2
                    
                          2
                    0
            p2  q2
                    pq
               2
Inequality Techniques
              To prove x  y, it can be easier to prove x  y  0
                              p2  q2
e.g. i 1995 Prove pq 
                                 2
    p q
      2     2
                       p  2 pq  q
                          2          2                         p2  q2
               pq                      OR Assume pq 
         2                    2                                   2
                        p  q2
                     
                            2
                     0
             p2  q2
                     pq
                2
Inequality Techniques
              To prove x  y, it can be easier to prove x  y  0
                              p2  q2
e.g. i 1995 Prove pq 
                                 2
    p q
      2     2
                       p  2 pq  q
                          2          2                         p2  q2
               pq                      OR Assume pq 
         2                    2                                    2
                        p  q2
                                                       2 pq  p 2  q 2
                     
                            2                              0  p 2  2 pq  q 2
                     0
                                                           0  ( p  q) 2
             p2  q2
                     pq
                2
Inequality Techniques
              To prove x  y, it can be easier to prove x  y  0
                              p2  q2
e.g. i 1995 Prove pq 
                                 2
    p q
      2     2
                       p  2 pq  q
                          2          2                         p2  q2
               pq                      OR Assume pq 
         2                    2                                    2
                        p  q2
                                                       2 pq  p 2  q 2
                     
                            2                              0  p 2  2 pq  q 2
                     0
                                                           0  ( p  q) 2
             p2  q2
                     pq
                2                                      But ( p  q) 2  0
Inequality Techniques
              To prove x  y, it can be easier to prove x  y  0
                              p2  q2
e.g. i 1995 Prove pq 
                                 2
    p q
      2     2
                       p  2 pq  q
                          2          2                         p2  q2
               pq                      OR Assume pq 
         2                    2                                    2
                        p  q2
                                                       2 pq  p 2  q 2
                     
                            2                              0  p 2  2 pq  q 2
                     0
                                                           0  ( p  q) 2
             p2  q2
                     pq
                2                                      But ( p  q) 2  0
                                                                   p2  q2
                                                          pq 
                                                                      2
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
                        a 2  b 2  2ab
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
                        a 2  b 2  2ab
                         a 2  c 2  2ac
                          b 2  c 2  2bc
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
                        a 2  b 2  2ab
                         a 2  c 2  2ac
                         b 2  c 2  2bc
                2a 2  2b 2  2c 2  2ab  2ac  2bc
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
                        a 2  b 2  2ab
                         a 2  c 2  2ac
                           b 2  c 2  2bc
                2a 2  2b 2  2c 2  2ab  2ac  2bc
                     a 2  b 2  c 2  ab  ac  bc
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
                        a 2  b 2  2ab
                         a 2  c 2  2ac
                           b 2  c 2  2bc
                2a 2  2b 2  2c 2  2ab  2ac  2bc
                     a 2  b 2  c 2  ab  ac  bc
                                             1
b) If a  b  c  1, prove ab  ac  bc 
                                             3
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
                        a 2  b 2  2ab
                         a 2  c 2  2ac
                           b 2  c 2  2bc
                2a 2  2b 2  2c 2  2ab  2ac  2bc
                     a 2  b 2  c 2  ab  ac  bc
                                             1
b) If a  b  c  1, prove ab  ac  bc 
                                             3
              a  b  c  a  b  c   2ab  ac  bc 
               2     2     2               2
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
                        a 2  b 2  2ab
                         a 2  c 2  2ac
                           b 2  c 2  2bc
                2a 2  2b 2  2c 2  2ab  2ac  2bc
                     a 2  b 2  c 2  ab  ac  bc
                                             1
b) If a  b  c  1, prove ab  ac  bc 
                                             3
              a  b  c  a  b  c   2ab  ac  bc 
               2     2     2               2


            a  b  c   2ab  ac  bc   ab  ac  bc
                          2
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
                        a 2  b 2  2ab
                         a 2  c 2  2ac
                           b 2  c 2  2bc
                2a 2  2b 2  2c 2  2ab  2ac  2bc
                     a 2  b 2  c 2  ab  ac  bc
                                             1
b) If a  b  c  1, prove ab  ac  bc 
                                             3
              a  b  c  a  b  c   2ab  ac  bc 
               2     2     2               2


            a  b  c   2ab  ac  bc   ab  ac  bc
                          2


                             3ab  ac  bc   a  b  c 
                                                           2
ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
                        a  b   0
                                2


                  a 2  2ab  b 2  0
                        a 2  b 2  2ab
                         a 2  c 2  2ac
                           b 2  c 2  2bc
                2a 2  2b 2  2c 2  2ab  2ac  2bc
                     a 2  b 2  c 2  ab  ac  bc
                                             1
b) If a  b  c  1, prove ab  ac  bc 
                                             3
              a  b  c  a  b  c   2ab  ac  bc 
               2     2     2               2


            a  b  c   2ab  ac  bc   ab  ac  bc
                          2


                               3ab  ac  bc   a  b  c 
                                                              2


                             3ab  ac  bc   1
                                                1
                                ab  ac  bc 
                                                3
1
c) Prove     a  b  c   3 abc
           3
1
c) Prove     a  b  c   3 abc
           3
  a 2  b 2  c 2  ab  ac  bc
1
c) Prove     a  b  c   3 abc
           3
  a 2  b 2  c 2  ab  ac  bc
 a 2  b 2  c 2  ab  ac  bc  0
1
c) Prove     a  b  c   3 abc
           3
  a 2  b 2  c 2  ab  ac  bc
 a 2  b 2  c 2  ab  ac  bc  0
 a  b  c a 2  b 2  c 2  ab  ac  bc   0
1
c) Prove     a  b  c   3 abc
           3
  a 2  b 2  c 2  ab  ac  bc
 a 2  b 2  c 2  ab  ac  bc  0
 a  b  c a 2  b 2  c 2  ab  ac  bc   0
 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c
                   a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0
1
c) Prove     a  b  c   3 abc
           3
  a 2  b 2  c 2  ab  ac  bc
 a 2  b 2  c 2  ab  ac  bc  0
 a  b  c a 2  b 2  c 2  ab  ac  bc   0
 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c
                   a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0
                            a 3  b3  c3  3abc  0
1
c) Prove     a  b  c   3 abc
           3
  a 2  b 2  c 2  ab  ac  bc
 a 2  b 2  c 2  ab  ac  bc  0
 a  b  c a 2  b 2  c 2  ab  ac  bc   0
 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c
                   a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0
                            a 3  b3  c3  3abc  0
                                a  b  c   abc
                             1 3 3 3
                             3
1
c) Prove     a  b  c   3 abc
           3
  a 2  b 2  c 2  ab  ac  bc
 a 2  b 2  c 2  ab  ac  bc  0
 a  b  c a 2  b 2  c 2  ab  ac  bc   0
 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c
                   a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0
                            a 3  b3  c3  3abc  0
                                a  b  c   abc
                             1 3 3 3
                             3
           1      1         1
let a  a , b  b , c  c
           3      3         3
1
c) Prove     a  b  c   3 abc
           3
  a 2  b 2  c 2  ab  ac  bc
 a 2  b 2  c 2  ab  ac  bc  0
 a  b  c a 2  b 2  c 2  ab  ac  bc   0
 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c
                   a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0
                            a 3  b3  c3  3abc  0
                                a  b  c   abc
                             1 3 3 3
                             3
           1      1         1
let a  a , b  b , c  c
           3      3         3
                                                    1 1 1
                                1
                                  a  b  c   a 3b 3 c 3
                                3
1
c) Prove     a  b  c   3 abc
           3
  a 2  b 2  c 2  ab  ac  bc
 a 2  b 2  c 2  ab  ac  bc  0
 a  b  c a 2  b 2  c 2  ab  ac  bc   0
 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c
                   a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0
                            a 3  b3  c3  3abc  0
                                a  b  c   abc
                             1 3 3 3
                             3
           1      1         1
let a  a , b  b , c  c
           3      3         3
                                                    1 1 1
                                1
                                  a  b  c   a 3b 3 c 3
                                3
                                1
                                  a  b  c   3 abc
                                3
Arithmetic Mean  Geometric Mean
 a1  a2    an n
                  a1a2  an
         n
Arithmetic Mean  Geometric Mean
                  a1  a2    an n
                                   a1a2  an
                          n

d) Suppose 1  x 1  y 1  z   8, prove xyz  1
Arithmetic Mean  Geometric Mean
                  a1  a2    an n
                                   a1a2  an
                          n

d) Suppose 1  x 1  y 1  z   8, prove xyz  1

                             1  x 1  y 1  z   8
              1  x  y  xy  z  xz  yz  xyz  8
Arithmetic Mean  Geometric Mean
                  a1  a2    an n
                                   a1a2  an
                          n

d) Suppose 1  x 1  y 1  z   8, prove xyz  1

                             1  x 1  y 1  z   8
              1  x  y  xy  z  xz  yz  xyz  8
                                     1
                                        x  y  z   3 xyz   AM  GM
                                     3
Arithmetic Mean  Geometric Mean
                  a1  a2    an n
                                   a1a2  an
                          n

d) Suppose 1  x 1  y 1  z   8, prove xyz  1

                             1  x 1  y 1  z   8
              1  x  y  xy  z  xz  yz  xyz  8
                                     1
                                        x  y  z   3 xyz   AM  GM
                                     3
                                         x  y  z  33 xyz
Arithmetic Mean  Geometric Mean
                  a1  a2    an n
                                   a1a2  an
                          n

d) Suppose 1  x 1  y 1  z   8, prove xyz  1

                             1  x 1  y 1  z   8
              1  x  y  xy  z  xz  yz  xyz  8
                                     1
                                        x  y  z   3 xyz          AM  GM
                                     3
                                         x  y  z  33 xyz
                                    xy  yz  xz  33  xy  yz  xz 
Arithmetic Mean  Geometric Mean
                  a1  a2    an n
                                   a1a2  an
                          n

d) Suppose 1  x 1  y 1  z   8, prove xyz  1

                             1  x 1  y 1  z   8
              1  x  y  xy  z  xz  yz  xyz  8
                                     1
                                        x  y  z   3 xyz          AM  GM
                                     3
                                         x  y  z  33 xyz
                                    xy  yz  xz  33  xy  yz  xz 
                                    xy  yz  xz  33 x 2 y 2 z 2
Arithmetic Mean  Geometric Mean
                  a1  a2    an n
                                   a1a2  an
                          n

d) Suppose 1  x 1  y 1  z   8, prove xyz  1

                             1  x 1  y 1  z   8
              1  x  y  xy  z  xz  yz  xyz  8
                                     1
                                        x  y  z   3 xyz          AM  GM
                                     3
                                         x  y  z  33 xyz
                                    xy  yz  xz  33  xy  yz  xz 
                                    xy  yz  xz  33 x 2 y 2 z 2
                                     xy  yz  xz  3 xyz 
                                                                2
                                                            3
1  x  y  z  xy  xz  yz  xyz  8
1  x  y  z  xy  xz  yz  xyz  8
     1  3 xyz  3 xyz   xyz  8
                          2
          3         3
1  x  y  z  xy  xz  yz  xyz  8
     1  3 xyz  3 xyz   xyz  8
                            2
          3         3


1  3 xyz  3 xyz    xyz   8
                        2       3
     3         3            3
1  x  y  z  xy  xz  yz  xyz  8
     1  3 xyz  3 xyz   xyz  8
                               2
          3         3


1  3 xyz  3 xyz    xyz   8
                        2             3
     3         3               3


                        1    3   xyz   8
                                       3
1  x  y  z  xy  xz  yz  xyz  8
     1  3 xyz  3 xyz   xyz  8
                               2
          3         3


1  3 xyz  3 xyz    xyz   8
                        2             3
     3         3               3


                        1    3   xyz   8
                                       3



                            1  3 xyz  2
1  x  y  z  xy  xz  yz  xyz  8
     1  3 xyz  3 xyz   xyz  8
                               2
          3         3


1  3 xyz  3 xyz    xyz   8
                        2                3
     3         3               3


                        1    3   xyz   8
                                         3



                            1  3 xyz  2
                                   3   xyz  1
1  x  y  z  xy  xz  yz  xyz  8
     1  3 xyz  3 xyz   xyz  8
                               2
          3         3


1  3 xyz  3 xyz    xyz   8
                        2                3
     3         3               3


                        1    3   xyz   8
                                         3



                            1  3 xyz  2
                                   3   xyz  1
                                       xyz  1
OR
     1  x   2   x   AM  GM
OR
     1  x   2   x   AM  GM

     1  y   2   y
     1  z   2   z
OR
                     1  x   2   x             AM  GM

                     1  y   2   y
                     1  z   2   z
     (1  x)(1  y ) 1  z   2   x 2 y 2 z
                             8 xyz
OR
                     1  x   2   x             AM  GM

                     1  y   2   y
                     1  z   2   z
     (1  x)(1  y ) 1  z   2   x 2 y 2 z
                             8 xyz
                       8  8 xyz
OR
                     1  x   2   x             AM  GM

                     1  y   2   y
                     1  z   2   z
     (1  x)(1  y ) 1  z   2   x 2 y 2 z
                             8 xyz
                       8  8 xyz
                          1  1 xyz
                       xyz  1
                       xyz  1
9    2   2    2  1 1 1
 iii  Prove                    
                abc ab bc a c a b c
9       2    2   2  1 1 1
 iii  Prove                      
              abc ab bc a c a b c
          1 1            1
 a  b      2 ab  2
          a b            ab
                4
9       2    2   2  1 1 1
 iii  Prove                      
              abc ab bc a c a b c
          1 1            1
 a  b      2 ab  2
          a b            ab
                4
            1 1    4
              
            a b ab
9       2    2   2  1 1 1
 iii  Prove                      
              abc ab bc a c a b c
          1 1            1
 a  b      2 ab  2
          a b            ab
                4
            1 1    4
              
            a b ab
            1 1     4
              
            b c bc
            1 1     4
              
            a c ac
9        2    2   2  1 1 1
 iii  Prove                       
              abc ab bc a c a b c
          1 1             1
 a  b      2 ab  2
          a b             ab
                 4
            1 1     4
              
            a b ab
            1 1     4
              
            b c bc
            1 1     4
              
            a c ac
2 2 2          4      4     4
                     
a b c ab bc ac
9        2    2   2  1 1 1
 iii  Prove                       
              abc ab bc a c a b c
          1 1              1
 a  b      2 ab  2
          a b             ab
                 4
            1 1     4
              
            a b ab
            1 1     4
              
            b c bc
            1 1     4
              
            a c ac
2 2 2          4      4     4
                     
a b c ab bc ac
1 1 1         2       2     2
                     
a b c ab bc ac
9        2    2        2      1 1 1
 iii  Prove                               
              abc ab bc a c a b c
          1 1              1                1 1 1                  1
 a  b      2 ab  2       a  b  c       3 3 abc  3 3
          a b             ab                a b c                 abc
                 4                                   9
            1 1     4
              
            a b ab
            1 1     4
              
            b c bc
            1 1     4
              
            a c ac
2 2 2          4      4     4
                     
a b c ab bc ac
1 1 1         2       2     2
                     
a b c ab bc ac
9        2    2        2      1 1 1
 iii  Prove                               
              abc ab bc a c a b c
          1 1              1                1 1 1                  1
 a  b      2 ab  2       a  b  c       3 3 abc  3 3
          a b             ab                a b c                 abc
                 4                                   9
            1 1     4                           1 1 1        9
                                                 
            a b ab                             a b c abc
            1 1     4
              
            b c bc
            1 1     4
              
            a c ac
2 2 2          4      4     4
                     
a b c ab bc ac
1 1 1         2       2     2
                     
a b c ab bc ac
9       2    2        2      1 1 1
 iii  Prove                              
              abc ab bc a c a b c
          1 1            1                 1 1 1                  1
 a  b      2 ab  2      a  b  c       3 3 abc  3 3
          a b            ab                a b c                 abc
                4                                    9
            1 1    4                           1 1 1        9
                                                
            a b ab
                                     1        1a b 1 c a  b  c
                                                              9
            1 1
              
                    4                               
            b c bc                a  b b  c a  c 2a  b  c
      1 1   4                        2   2   2    9
                                           
      a c ac                       ab bc ac abc
2 2 2   4    4   4
           
a b c ab bc ac
1 1 1   2    2   2
           
a b c ab bc ac
9       2    2        2      1 1 1
 iii  Prove                              
              abc ab bc a c a b c
          1 1            1                 1 1 1                  1
 a  b      2 ab  2      a  b  c       3 3 abc  3 3
          a b            ab                a b c                 abc
                4                                    9
            1 1    4                           1 1 1        9
                                                
            a b ab
                                     1        1a b 1 c a  b  c
                                                              9
            1 1
              
                    4                               
            b c bc                a  b b  c a  c 2a  b  c
      1 1   4                        2   2   2    9
                                           
      a c ac                       ab bc ac abc
2 2 2   4    4   4
           
a b c ab bc ac
1 1 1   2    2   2
           
a b c ab bc ac
                     9    2   2   2  1 1 1
                                   
                   abc ab bc ac a b c
9       2    2        2      1 1 1
 iii  Prove                              
              abc ab bc a c a b c
          1 1            1                 1 1 1                  1
 a  b      2 ab  2      a  b  c       3 3 abc  3 3
          a b            ab                a b c                 abc
                4                                    9
            1 1    4                           1 1 1        9
                                                
            a b ab
                                     1        1a b 1 c a  b  c
                                                              9
            1 1
              
                    4                               
            b c bc                a  b b  c a  c 2a  b  c
      1 1   4                        2   2   2    9
                                           
      a c ac                       ab bc ac abc
2 2 2   4    4   4                          Inequalities Sheet
           
a b c ab bc ac
1 1 1   2    2   2                            Exercise 10D
           
a b c ab bc ac                   Note: Cambridge 8H (Book 1); 28
                     9    2   2   2  1 1 1
                                   
                   abc ab bc ac a b c

Mais conteúdo relacionado

Destaque

11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)Nigel Simmons
 
11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)Nigel Simmons
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)Nigel Simmons
 
11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)Nigel Simmons
 
11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theoremsNigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 

Destaque (9)

11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)11 x1 t13 05 tangent theorems 1 (2012)
11 x1 t13 05 tangent theorems 1 (2012)
 
11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)11 x1 t05 05 perpendicular distance (2013)
11 x1 t05 05 perpendicular distance (2013)
 
11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)11 x1 t05 03 equation of lines (2013)
11 x1 t05 03 equation of lines (2013)
 
11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)11 x1 t05 04 point slope formula (2013)
11 x1 t05 04 point slope formula (2013)
 
11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems11X1 T07 01 definitions & chord theorems
11X1 T07 01 definitions & chord theorems
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Mais de Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 

Último

Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Eesti Loodusturism
 
Cuando callaron las armas es un título de lectura para escolares de enseñanza...
Cuando callaron las armas es un título de lectura para escolares de enseñanza...Cuando callaron las armas es un título de lectura para escolares de enseñanza...
Cuando callaron las armas es un título de lectura para escolares de enseñanza...chamboli
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfKhaled Elbattawy
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning ProjectNuckles
 

Último (7)

Energy drink .
Energy drink                           .Energy drink                           .
Energy drink .
 
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
 
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
 
Cuando callaron las armas es un título de lectura para escolares de enseñanza...
Cuando callaron las armas es un título de lectura para escolares de enseñanza...Cuando callaron las armas es un título de lectura para escolares de enseñanza...
Cuando callaron las armas es un título de lectura para escolares de enseñanza...
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 

X2 t08 04 inequality techniques (2012)

  • 2. Types of Proof 1. Deductive Proof Start with known facts and deduce what you are trying to prove.
  • 3. Types of Proof 1. Deductive Proof Start with known facts and deduce what you are trying to prove. 2. Inductive Proof Assume what you are trying to prove and induce a solution.
  • 4. Types of Proof 1. Deductive Proof Start with known facts and deduce what you are trying to prove. 2. Inductive Proof Assume what you are trying to prove and induce a solution. 3. Proof by Contradiction Assume the opposite of what you are trying to prove and create a contradiction. Contradiction means the original assumption is incorrect, therefore the opposite must be true.
  • 6. Inequality Techniques To prove x  y, it can be easier to prove x  y  0
  • 7. Inequality Techniques To prove x  y, it can be easier to prove x  y  0 p2  q2 e.g. i 1995 Prove pq  2
  • 8. Inequality Techniques To prove x  y, it can be easier to prove x  y  0 p2  q2 e.g. i 1995 Prove pq  2 p2  q2  pq 2
  • 9. Inequality Techniques To prove x  y, it can be easier to prove x  y  0 p2  q2 e.g. i 1995 Prove pq  2 p2  q2 p 2  2 pq  q 2  pq  2 2
  • 10. Inequality Techniques To prove x  y, it can be easier to prove x  y  0 p2  q2 e.g. i 1995 Prove pq  2 p2  q2 p 2  2 pq  q 2  pq  2 2  p  q 2  2 0
  • 11. Inequality Techniques To prove x  y, it can be easier to prove x  y  0 p2  q2 e.g. i 1995 Prove pq  2 p2  q2 p 2  2 pq  q 2  pq  2 2  p  q2  2 0 p2  q2   pq 2
  • 12. Inequality Techniques To prove x  y, it can be easier to prove x  y  0 p2  q2 e.g. i 1995 Prove pq  2 p q 2 2 p  2 pq  q 2 2 p2  q2  pq  OR Assume pq  2 2 2  p  q2  2 0 p2  q2   pq 2
  • 13. Inequality Techniques To prove x  y, it can be easier to prove x  y  0 p2  q2 e.g. i 1995 Prove pq  2 p q 2 2 p  2 pq  q 2 2 p2  q2  pq  OR Assume pq  2 2 2  p  q2 2 pq  p 2  q 2  2 0  p 2  2 pq  q 2 0 0  ( p  q) 2 p2  q2   pq 2
  • 14. Inequality Techniques To prove x  y, it can be easier to prove x  y  0 p2  q2 e.g. i 1995 Prove pq  2 p q 2 2 p  2 pq  q 2 2 p2  q2  pq  OR Assume pq  2 2 2  p  q2 2 pq  p 2  q 2  2 0  p 2  2 pq  q 2 0 0  ( p  q) 2 p2  q2   pq 2 But ( p  q) 2  0
  • 15. Inequality Techniques To prove x  y, it can be easier to prove x  y  0 p2  q2 e.g. i 1995 Prove pq  2 p q 2 2 p  2 pq  q 2 2 p2  q2  pq  OR Assume pq  2 2 2  p  q2 2 pq  p 2  q 2  2 0  p 2  2 pq  q 2 0 0  ( p  q) 2 p2  q2   pq 2 But ( p  q) 2  0 p2  q2  pq  2
  • 16. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac
  • 17. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2
  • 18. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0
  • 19. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0  a 2  b 2  2ab
  • 20. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0  a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc
  • 21. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0  a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2ac  2bc
  • 22. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0  a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2ac  2bc a 2  b 2  c 2  ab  ac  bc
  • 23. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0  a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2ac  2bc a 2  b 2  c 2  ab  ac  bc 1 b) If a  b  c  1, prove ab  ac  bc  3
  • 24. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0  a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2ac  2bc a 2  b 2  c 2  ab  ac  bc 1 b) If a  b  c  1, prove ab  ac  bc  3 a  b  c  a  b  c   2ab  ac  bc  2 2 2 2
  • 25. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0  a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2ac  2bc a 2  b 2  c 2  ab  ac  bc 1 b) If a  b  c  1, prove ab  ac  bc  3 a  b  c  a  b  c   2ab  ac  bc  2 2 2 2  a  b  c   2ab  ac  bc   ab  ac  bc 2
  • 26. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0  a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2ac  2bc a 2  b 2  c 2  ab  ac  bc 1 b) If a  b  c  1, prove ab  ac  bc  3 a  b  c  a  b  c   2ab  ac  bc  2 2 2 2  a  b  c   2ab  ac  bc   ab  ac  bc 2 3ab  ac  bc   a  b  c  2
  • 27. ii 1994 a) Prove a 2  b 2  c 2  ab  bc  ac a  b   0 2 a 2  2ab  b 2  0  a 2  b 2  2ab a 2  c 2  2ac b 2  c 2  2bc 2a 2  2b 2  2c 2  2ab  2ac  2bc a 2  b 2  c 2  ab  ac  bc 1 b) If a  b  c  1, prove ab  ac  bc  3 a  b  c  a  b  c   2ab  ac  bc  2 2 2 2  a  b  c   2ab  ac  bc   ab  ac  bc 2 3ab  ac  bc   a  b  c  2 3ab  ac  bc   1 1 ab  ac  bc  3
  • 28. 1 c) Prove a  b  c   3 abc 3
  • 29. 1 c) Prove a  b  c   3 abc 3 a 2  b 2  c 2  ab  ac  bc
  • 30. 1 c) Prove a  b  c   3 abc 3 a 2  b 2  c 2  ab  ac  bc a 2  b 2  c 2  ab  ac  bc  0
  • 31. 1 c) Prove a  b  c   3 abc 3 a 2  b 2  c 2  ab  ac  bc a 2  b 2  c 2  ab  ac  bc  0 a  b  c a 2  b 2  c 2  ab  ac  bc   0
  • 32. 1 c) Prove a  b  c   3 abc 3 a 2  b 2  c 2  ab  ac  bc a 2  b 2  c 2  ab  ac  bc  0 a  b  c a 2  b 2  c 2  ab  ac  bc   0 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c  a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0
  • 33. 1 c) Prove a  b  c   3 abc 3 a 2  b 2  c 2  ab  ac  bc a 2  b 2  c 2  ab  ac  bc  0 a  b  c a 2  b 2  c 2  ab  ac  bc   0 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c  a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0 a 3  b3  c3  3abc  0
  • 34. 1 c) Prove a  b  c   3 abc 3 a 2  b 2  c 2  ab  ac  bc a 2  b 2  c 2  ab  ac  bc  0 a  b  c a 2  b 2  c 2  ab  ac  bc   0 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c  a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0 a 3  b3  c3  3abc  0 a  b  c   abc 1 3 3 3 3
  • 35. 1 c) Prove a  b  c   3 abc 3 a 2  b 2  c 2  ab  ac  bc a 2  b 2  c 2  ab  ac  bc  0 a  b  c a 2  b 2  c 2  ab  ac  bc   0 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c  a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0 a 3  b3  c3  3abc  0 a  b  c   abc 1 3 3 3 3 1 1 1 let a  a , b  b , c  c 3 3 3
  • 36. 1 c) Prove a  b  c   3 abc 3 a 2  b 2  c 2  ab  ac  bc a 2  b 2  c 2  ab  ac  bc  0 a  b  c a 2  b 2  c 2  ab  ac  bc   0 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c  a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0 a 3  b3  c3  3abc  0 a  b  c   abc 1 3 3 3 3 1 1 1 let a  a , b  b , c  c 3 3 3 1 1 1 1 a  b  c   a 3b 3 c 3 3
  • 37. 1 c) Prove a  b  c   3 abc 3 a 2  b 2  c 2  ab  ac  bc a 2  b 2  c 2  ab  ac  bc  0 a  b  c a 2  b 2  c 2  ab  ac  bc   0 a 3  ab 2  ac 2  a 2b  a 2 c  abc  a 2b  b3  bc 2  ab 2  abc  b 2 c  a 2 c  b 2 c  c 3  abc  ac 2  bc 2  0 a 3  b3  c3  3abc  0 a  b  c   abc 1 3 3 3 3 1 1 1 let a  a , b  b , c  c 3 3 3 1 1 1 1 a  b  c   a 3b 3 c 3 3 1 a  b  c   3 abc 3
  • 38. Arithmetic Mean  Geometric Mean a1  a2    an n  a1a2  an n
  • 39. Arithmetic Mean  Geometric Mean a1  a2    an n  a1a2  an n d) Suppose 1  x 1  y 1  z   8, prove xyz  1
  • 40. Arithmetic Mean  Geometric Mean a1  a2    an n  a1a2  an n d) Suppose 1  x 1  y 1  z   8, prove xyz  1 1  x 1  y 1  z   8 1  x  y  xy  z  xz  yz  xyz  8
  • 41. Arithmetic Mean  Geometric Mean a1  a2    an n  a1a2  an n d) Suppose 1  x 1  y 1  z   8, prove xyz  1 1  x 1  y 1  z   8 1  x  y  xy  z  xz  yz  xyz  8 1  x  y  z   3 xyz AM  GM 3
  • 42. Arithmetic Mean  Geometric Mean a1  a2    an n  a1a2  an n d) Suppose 1  x 1  y 1  z   8, prove xyz  1 1  x 1  y 1  z   8 1  x  y  xy  z  xz  yz  xyz  8 1  x  y  z   3 xyz AM  GM 3 x  y  z  33 xyz
  • 43. Arithmetic Mean  Geometric Mean a1  a2    an n  a1a2  an n d) Suppose 1  x 1  y 1  z   8, prove xyz  1 1  x 1  y 1  z   8 1  x  y  xy  z  xz  yz  xyz  8 1  x  y  z   3 xyz AM  GM 3 x  y  z  33 xyz xy  yz  xz  33  xy  yz  xz 
  • 44. Arithmetic Mean  Geometric Mean a1  a2    an n  a1a2  an n d) Suppose 1  x 1  y 1  z   8, prove xyz  1 1  x 1  y 1  z   8 1  x  y  xy  z  xz  yz  xyz  8 1  x  y  z   3 xyz AM  GM 3 x  y  z  33 xyz xy  yz  xz  33  xy  yz  xz  xy  yz  xz  33 x 2 y 2 z 2
  • 45. Arithmetic Mean  Geometric Mean a1  a2    an n  a1a2  an n d) Suppose 1  x 1  y 1  z   8, prove xyz  1 1  x 1  y 1  z   8 1  x  y  xy  z  xz  yz  xyz  8 1  x  y  z   3 xyz AM  GM 3 x  y  z  33 xyz xy  yz  xz  33  xy  yz  xz  xy  yz  xz  33 x 2 y 2 z 2 xy  yz  xz  3 xyz  2 3
  • 46. 1  x  y  z  xy  xz  yz  xyz  8
  • 47. 1  x  y  z  xy  xz  yz  xyz  8 1  3 xyz  3 xyz   xyz  8 2 3 3
  • 48. 1  x  y  z  xy  xz  yz  xyz  8 1  3 xyz  3 xyz   xyz  8 2 3 3 1  3 xyz  3 xyz    xyz   8 2 3 3 3 3
  • 49. 1  x  y  z  xy  xz  yz  xyz  8 1  3 xyz  3 xyz   xyz  8 2 3 3 1  3 xyz  3 xyz    xyz   8 2 3 3 3 3 1  3 xyz   8 3
  • 50. 1  x  y  z  xy  xz  yz  xyz  8 1  3 xyz  3 xyz   xyz  8 2 3 3 1  3 xyz  3 xyz    xyz   8 2 3 3 3 3 1  3 xyz   8 3 1  3 xyz  2
  • 51. 1  x  y  z  xy  xz  yz  xyz  8 1  3 xyz  3 xyz   xyz  8 2 3 3 1  3 xyz  3 xyz    xyz   8 2 3 3 3 3 1  3 xyz   8 3 1  3 xyz  2 3 xyz  1
  • 52. 1  x  y  z  xy  xz  yz  xyz  8 1  3 xyz  3 xyz   xyz  8 2 3 3 1  3 xyz  3 xyz    xyz   8 2 3 3 3 3 1  3 xyz   8 3 1  3 xyz  2 3 xyz  1 xyz  1
  • 53. OR 1  x   2 x AM  GM
  • 54. OR 1  x   2 x AM  GM 1  y   2 y 1  z   2 z
  • 55. OR 1  x   2 x AM  GM 1  y   2 y 1  z   2 z (1  x)(1  y ) 1  z   2 x 2 y 2 z  8 xyz
  • 56. OR 1  x   2 x AM  GM 1  y   2 y 1  z   2 z (1  x)(1  y ) 1  z   2 x 2 y 2 z  8 xyz 8  8 xyz
  • 57. OR 1  x   2 x AM  GM 1  y   2 y 1  z   2 z (1  x)(1  y ) 1  z   2 x 2 y 2 z  8 xyz 8  8 xyz 1  1 xyz xyz  1 xyz  1
  • 58. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c
  • 59. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1  a  b      2 ab  2 a b ab 4
  • 60. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1  a  b      2 ab  2 a b ab 4 1 1 4   a b ab
  • 61. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1  a  b      2 ab  2 a b ab 4 1 1 4   a b ab 1 1 4   b c bc 1 1 4   a c ac
  • 62. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1  a  b      2 ab  2 a b ab 4 1 1 4   a b ab 1 1 4   b c bc 1 1 4   a c ac 2 2 2 4 4 4      a b c ab bc ac
  • 63. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1  a  b      2 ab  2 a b ab 4 1 1 4   a b ab 1 1 4   b c bc 1 1 4   a c ac 2 2 2 4 4 4      a b c ab bc ac 1 1 1 2 2 2      a b c ab bc ac
  • 64. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1 1 1 1 1  a  b      2 ab  2  a  b  c       3 3 abc  3 3 a b ab a b c abc 4 9 1 1 4   a b ab 1 1 4   b c bc 1 1 4   a c ac 2 2 2 4 4 4      a b c ab bc ac 1 1 1 2 2 2      a b c ab bc ac
  • 65. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1 1 1 1 1  a  b      2 ab  2  a  b  c       3 3 abc  3 3 a b ab a b c abc 4 9 1 1 4 1 1 1 9      a b ab a b c abc 1 1 4   b c bc 1 1 4   a c ac 2 2 2 4 4 4      a b c ab bc ac 1 1 1 2 2 2      a b c ab bc ac
  • 66. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1 1 1 1 1  a  b      2 ab  2  a  b  c       3 3 abc  3 3 a b ab a b c abc 4 9 1 1 4 1 1 1 9      a b ab 1 1a b 1 c a  b  c 9 1 1   4    b c bc a  b b  c a  c 2a  b  c 1 1 4 2 2 2 9      a c ac ab bc ac abc 2 2 2 4 4 4      a b c ab bc ac 1 1 1 2 2 2      a b c ab bc ac
  • 67. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1 1 1 1 1  a  b      2 ab  2  a  b  c       3 3 abc  3 3 a b ab a b c abc 4 9 1 1 4 1 1 1 9      a b ab 1 1a b 1 c a  b  c 9 1 1   4    b c bc a  b b  c a  c 2a  b  c 1 1 4 2 2 2 9      a c ac ab bc ac abc 2 2 2 4 4 4      a b c ab bc ac 1 1 1 2 2 2      a b c ab bc ac 9 2 2 2 1 1 1       abc ab bc ac a b c
  • 68. 9 2 2 2 1 1 1  iii  Prove       abc ab bc a c a b c 1 1 1 1 1 1 1  a  b      2 ab  2  a  b  c       3 3 abc  3 3 a b ab a b c abc 4 9 1 1 4 1 1 1 9      a b ab 1 1a b 1 c a  b  c 9 1 1   4    b c bc a  b b  c a  c 2a  b  c 1 1 4 2 2 2 9      a c ac ab bc ac abc 2 2 2 4 4 4 Inequalities Sheet      a b c ab bc ac 1 1 1 2 2 2 Exercise 10D      a b c ab bc ac Note: Cambridge 8H (Book 1); 28 9 2 2 2 1 1 1       abc ab bc ac a b c