SlideShare a Scribd company logo
1 of 54
Download to read offline
Inequalities & Graphs
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2      Oblique asymptote:
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1                       x2         4
                x2      Oblique asymptote:      x2
                                            x2        x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1
                x2
Inequalities & Graphs
                 x2
e.g. i  Solve     1         x2
                x2                1
                              x2
                             x2  x  2
                           x2  x  2  0
                          x  2 x  1  0
                         x  2 or x  1
Inequalities & Graphs
                 x2
e.g. i  Solve     1          x2
                x2                 1
                               x2
                              x2  x  2
                            x2  x  2  0
                           x  2 x  1  0
                           x  2 or x  1

                                x2
                                    1
                               x2
                         x  2 or  1  x  2
(ii) (1990)




Consider the graph y  x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x
   dy     1
      
   dx 2 x
  dy
  0 for x  0
  dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
 dy   1
    
 dx 2 x
 dy
  0 for x  0
 dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
  dy
  0 for x  0
  dx
(ii) (1990)




Consider the graph y  x
a) Show that the graph is increasing for all x  0
                             dy
   Curve is increasing when     0
                             dx
    y x                              at x  0, y  0
   dy     1                            when x  0, y  0
      
   dx 2 x
  dy
  0 for x  0                   curve is increasing for x  0
  dx
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                    n
                  1  2    n   xdx
                                    0
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                     n
                  1  2    n   xdx
                                     0
                                           n
                                    2 x x
                                   
                                    3    0
                                          
                                    2
                                    n n
                                    3
b) Hence show that;
                      n
                         2
  1  2    n   xdx  n n
                  0
                         3


             As x is increasing;
             Area outer rectangles  Area under curve
                                     n
                  1  2    n   xdx
                                     0
                                           n
                                    2 x x
                                   
                                    3    0
                                          
                                    2
                                    n n
                                    3
                                    n
                                       2
               1  2    n   xdx  n n
                                0
                                       3
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
 L.H .S  1
        1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                         L.H .S  R.H .S
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                      41  3
 L.H .S  1                                   R.H .S          1
                                                         6
        1
                                                      7
                                                    
                                                      6
                       L.H .S  R.H .S
                   Hence the result is true for n = 1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
              i.e. 1  2    k                 k
                                           6
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
               i.e. 1  2    k                k
                                           6
Prove the result is true for n  k  1
c) Use mathematical induction to show that;
                4n  3
  1  2  n         n for all integers n  1
                  6
Test: n = 1
                                                       41  3
 L.H .S  1                                   R.H .S           1
                                                          6
        1
                                                       7
                                                     
                                                       6
                        L.H .S  R.H .S
                    Hence the result is true for n = 1
Assume the result is true for n  k where k is a positive integer
                                        4k  3
                i.e. 1  2    k               k
                                           6
Prove the result is true for n  k  1
                                            4k  7
        i.e. Prove 1  2    k  1                k 1
                                               6
Proof:
Proof:   1  2  k 1  1  2  k  k 1
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                k  k 1
                            6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                   2


                                     6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                 k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                    2


                                      6
                           16k 3  24k 2  9k  6 k  1
                        
                                        6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                             6
                         
                            k  14k  12  1  6 k  1
                                          6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                  k  k 1
                            6
                        
                           4k  3 k  6 k  1
                                     2


                                       6
                           16k 3  24k 2  9k  6 k  1
                        
                                         6
                            k  116k 2  8k  1  1  6 k  1
                        
                                              6
                         
                            k  14k  12  1  6 k  1
                                           6
                         
                            k  14k  1  6 k  1
                                            2


                                         6
Proof:   1  2  k 1  1  2  k  k 1
                          4k  3
                                   k  k 1
                             6
                        
                            4k  3 k  6 k  1
                                      2


                                        6
                            16k 3  24k 2  9k  6 k  1
                        
                                           6
                             k  116k 2  8k  1  1  6 k  1
                        
                                               6
                         
                             k  14k  12  1  6 k  1
                                            6
                         
                             k  14k  1  6 k  1
                                             2


                                          6
                           4k  1 k  1  6 k  1
                         
                                          6
                         
                           4k  7  k  1
                                    6
Hence the result is true for n = k +1 if it is also true for n =k
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
   1  2    10000 to the nearest hundred
           2                          4n  3
             n n  1  2  n              n
           3                            6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred
Hence the result is true for n = k +1 if it is also true for n =k
Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2,
and since the result is true for n = 2 then it is also true for n =2+1 i.e.
n=3, and so on for all positive integral values of n
d) Use b) and c) to estimate;
    1  2    10000 to the nearest hundred
            2                          4n  3
              n n  1  2  n               n
            3                            6
2                                          410000  3
  10000 10000  1  2    10000                    10000
3                                                6
          666700  1  2    10000  666700
 1  2    10000  666700 to the nearest hundred


                            Exercise 10F

More Related Content

What's hot (15)

1003 ch 10 day 3
1003 ch 10 day 31003 ch 10 day 3
1003 ch 10 day 3
 
Unexpected ineq
Unexpected ineqUnexpected ineq
Unexpected ineq
 
1008 ch 10 day 8
1008 ch 10 day 81008 ch 10 day 8
1008 ch 10 day 8
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 
Day 6 multiplying binomials
Day 6 multiplying binomialsDay 6 multiplying binomials
Day 6 multiplying binomials
 
09 trial melaka_s2
09 trial melaka_s209 trial melaka_s2
09 trial melaka_s2
 
calculo vectorial
calculo vectorialcalculo vectorial
calculo vectorial
 
Sol Purcell Ingles
Sol Purcell InglesSol Purcell Ingles
Sol Purcell Ingles
 
Slides September 16
Slides September 16Slides September 16
Slides September 16
 
Day 1 adding polynomials
Day 1 adding polynomialsDay 1 adding polynomials
Day 1 adding polynomials
 
Actividad 4 calculo diferencial
Actividad 4 calculo diferencialActividad 4 calculo diferencial
Actividad 4 calculo diferencial
 
Lesson 54
Lesson 54Lesson 54
Lesson 54
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
0308 ch 3 day 8
0308 ch 3 day 80308 ch 3 day 8
0308 ch 3 day 8
 

Viewers also liked

11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 X1 T01 06 equations and inequations (2010)
11 X1 T01 06 equations and inequations (2010)11 X1 T01 06 equations and inequations (2010)
11 X1 T01 06 equations and inequations (2010)Nigel Simmons
 
11 x1 t03 01 inequations & inequalities (2012)
11 x1 t03 01 inequations & inequalities (2012)11 x1 t03 01 inequations & inequalities (2012)
11 x1 t03 01 inequations & inequalities (2012)Nigel Simmons
 
11X1 T01 06 equations & inequations (2011)
11X1 T01 06 equations & inequations (2011)11X1 T01 06 equations & inequations (2011)
11X1 T01 06 equations & inequations (2011)Nigel Simmons
 
11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)Nigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 

Viewers also liked (6)

11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 X1 T01 06 equations and inequations (2010)
11 X1 T01 06 equations and inequations (2010)11 X1 T01 06 equations and inequations (2010)
11 X1 T01 06 equations and inequations (2010)
 
11 x1 t03 01 inequations & inequalities (2012)
11 x1 t03 01 inequations & inequalities (2012)11 x1 t03 01 inequations & inequalities (2012)
11 x1 t03 01 inequations & inequalities (2012)
 
11X1 T01 06 equations & inequations (2011)
11X1 T01 06 equations & inequations (2011)11X1 T01 06 equations & inequations (2011)
11X1 T01 06 equations & inequations (2011)
 
11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)11X1 T03 04 absolute value (13)
11X1 T03 04 absolute value (13)
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Similar to X2 T08 01 inequalities and graphs (2010)

Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Septiko Aji
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsNigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handoutcoburgmaths
 
Differential equations
Differential equationsDifferential equations
Differential equationsjanetvmiller
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)Nigel Simmons
 
11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)Nigel Simmons
 
11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)Nigel Simmons
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometryphysics101
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberAPEX INSTITUTE
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 
11X1 T09 01 first derivative
11X1 T09 01 first derivative11X1 T09 01 first derivative
11X1 T09 01 first derivativeNigel Simmons
 

Similar to X2 T08 01 inequalities and graphs (2010) (20)

Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)Special Techniques (Teknik Khusus)
Special Techniques (Teknik Khusus)
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
X2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphsX2 T08 03 inequalities & graphs
X2 T08 03 inequalities & graphs
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
Stationary Points Handout
Stationary Points HandoutStationary Points Handout
Stationary Points Handout
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)11X1 T12 01 first derivative (2010)
11X1 T12 01 first derivative (2010)
 
11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)11X1 T10 01 first derivative (2011)
11X1 T10 01 first derivative (2011)
 
11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)11 x1 t10 01 first derivative (2012)
11 x1 t10 01 first derivative (2012)
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
STUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex numberSTUDY MATERIAL FOR IIT-JEE on Complex number
STUDY MATERIAL FOR IIT-JEE on Complex number
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 
11X1 T09 01 first derivative
11X1 T09 01 first derivative11X1 T09 01 first derivative
11X1 T09 01 first derivative
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 

Recently uploaded (20)

SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

X2 T08 01 inequalities and graphs (2010)

  • 2. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 3. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 4. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 5. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 6. Inequalities & Graphs x2 e.g. i  Solve 1 x2 Oblique asymptote:
  • 7. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 8. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 9. Inequalities & Graphs x2 e.g. i  Solve 1 x2 4 x2 Oblique asymptote:  x2 x2 x2
  • 10. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 11. Inequalities & Graphs x2 e.g. i  Solve 1 x2
  • 12. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1
  • 13. Inequalities & Graphs x2 e.g. i  Solve 1 x2 x2 1 x2 x2  x  2 x2  x  2  0  x  2 x  1  0 x  2 or x  1 x2 1 x2 x  2 or  1  x  2
  • 14. (ii) (1990) Consider the graph y  x
  • 15. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0
  • 16. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx
  • 17. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x
  • 18. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x dy 1  dx 2 x dy   0 for x  0 dx
  • 19. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1  dx 2 x dy   0 for x  0 dx
  • 20. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0 dx
  • 21. (ii) (1990) Consider the graph y  x a) Show that the graph is increasing for all x  0 dy Curve is increasing when 0 dx y x at x  0, y  0 dy 1 when x  0, y  0  dx 2 x dy   0 for x  0  curve is increasing for x  0 dx
  • 22. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 23. b) Hence show that; n 2 1  2    n   xdx  n n 0 3
  • 24. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve
  • 25. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0
  • 26. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x  3 0  2  n n 3
  • 27. b) Hence show that; n 2 1  2    n   xdx  n n 0 3 As x is increasing; Area outer rectangles  Area under curve n 1  2    n   xdx 0 n 2 x x  3 0  2  n n 3 n 2  1  2    n   xdx  n n 0 3
  • 28. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6
  • 29. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1
  • 30. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 L.H .S  1 1
  • 31. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6
  • 32. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S
  • 33. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1
  • 34. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer
  • 35. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6
  • 36. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1
  • 37. c) Use mathematical induction to show that; 4n  3 1  2  n  n for all integers n  1 6 Test: n = 1 41  3 L.H .S  1 R.H .S  1 6 1 7  6  L.H .S  R.H .S Hence the result is true for n = 1 Assume the result is true for n  k where k is a positive integer 4k  3 i.e. 1  2    k  k 6 Prove the result is true for n  k  1 4k  7 i.e. Prove 1  2    k  1  k 1 6
  • 39. Proof: 1  2  k 1  1  2  k  k 1
  • 40. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6
  • 41. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6
  • 42. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6
  • 43. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6
  • 44. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6
  • 45. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6  k  14k  1  6 k  1 2 6
  • 46. Proof: 1  2  k 1  1  2  k  k 1 4k  3  k  k 1 6  4k  3 k  6 k  1 2 6 16k 3  24k 2  9k  6 k  1  6 k  116k 2  8k  1  1  6 k  1  6  k  14k  12  1  6 k  1 6  k  14k  1  6 k  1 2 6 4k  1 k  1  6 k  1  6  4k  7  k  1 6
  • 47. Hence the result is true for n = k +1 if it is also true for n =k
  • 48. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n
  • 49. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred
  • 50. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6
  • 51. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6
  • 52. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700
  • 53. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred
  • 54. Hence the result is true for n = k +1 if it is also true for n =k Since the result is true for n = 1 then it is also true for n =1+1 i.e. n=2, and since the result is true for n = 2 then it is also true for n =2+1 i.e. n=3, and so on for all positive integral values of n d) Use b) and c) to estimate; 1  2    10000 to the nearest hundred 2 4n  3 n n  1  2  n  n 3 6 2 410000  3 10000 10000  1  2    10000  10000 3 6 666700  1  2    10000  666700  1  2    10000  666700 to the nearest hundred Exercise 10F