SlideShare uma empresa Scribd logo
1 de 27
Baixar para ler offline
Graphing Inverse
 Trig Functions
Graphing Inverse
        Trig Functions
                   x
e.g i  y  5 sin
                1

                   3
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
               1

                   3
Domain:  1  x  1
                   3
             3 x  3
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
                1

                    3
Domain:  1  x  1
                   3
              3 x  3
Range:    y  
              2 5 2
             5       5
                 y
              2        2
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
                1
                                     y
                    3
Domain:  1  x  1                 5
                   3                 2
              3 x  3
Range:    y           -3            3   x
              2 5 2
             5       5            5
                 y           
              2        2             2
Graphing Inverse
        Trig Functions
                    x
e.g i  y  5 sin
                1
                                     y
                    3                           1 x
Domain:  1  x  1                 5   y  5 sin
                                                   3
                   3                 2
              3 x  3
Range:    y           -3            3     x
              2 5 2
             5       5            5
                 y           
              2        2             2
ii  y  tan 1  3  x 2 
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
             x   3, y  tan 1 0
                        0
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
             x   3, y  tan 1 0
                        0
             x  0, y  tan 1 3
                           
                       
                           3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3
 Range: x  3, y  tan 1 0
                 0
             x   3, y  tan 1 0
                        0
             x  0, y  tan 1 3
                           
                       
                           3
                           
                 0 y
                           3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3                      y
 Range: x  3, y  tan 1 0                
                                           3
                 0
             x   3, y  tan 1 0
                        0                         x
                                      3       3
             x  0, y  tan 1 3
                           
                       
                           3
                           
                 0 y
                           3
ii  y  tan 1  3  x 2 

Domain: 3  x 2  0
              3x 3                      y
 Range: x  3, y  tan 1 0                            
                                               y  tan 1 3  x 2   
                                           3
                 0
             x   3, y  tan 1 0
                        0                                  x
                                      3          3
             x  0, y  tan 1 3
                           
                       
                           3
                           
                 0 y
                           3
(iii ) y  sin 1 sin x
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                all real x
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                  all real x

                         
Range:             y
              2           2
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                  all real x
                                            y
                         
Range:             y
              2           2         
                                    2

                                                 x
                                        
                                    
                                        2
(iii ) y  sin 1 sin x
Domain:  1  sin x  1
                  all real x
                                            y
                         
Range:             y
              2           2                    y  sin 1 sin x
                                    2

                                                           x
                                        
                                    
                                        2
(iv) y  sin sin 1 x
(iv) y  sin sin 1 x
Domain:  1  x  1
(iv) y  sin sin 1 x
Domain:  1  x  1

Range: when x  1, y  sin sin 1 1
                                
                         sin
                                2
                        1
(iv) y  sin sin 1 x
Domain:  1  x  1

Range: when x  1, y  sin sin 1 1
                                 
                          sin
                                 2
                       1
        when x  1, y  sin sin 1  1
                               
                         sin    
                               2
                         1
(iv) y  sin sin 1 x
Domain:  1  x  1

Range: when x  1, y  sin sin 1 1
                                 
                          sin
                                 2
                       1
        when x  1, y  sin sin 1  1
                              
                        sin       
                              2
                        1
        when x  0, y  sin sin 1 0
                        sin 0
                        0
                 1  y  1
y
(iv) y  sin sin 1 x
Domain:  1  x  1                              1

Range: when x  1, y  sin sin 1 1
                                            -1        1   x
                                 
                          sin                   -1
                                 2
                       1
        when x  1, y  sin sin 1  1
                              
                        sin       
                              2
                        1
        when x  0, y  sin sin 1 0
                        sin 0
                        0
                 1  y  1
y
(iv) y  sin sin 1 x
Domain:  1  x  1                                   y  sin sin 1 x
                                                 1

Range: when x  1, y  sin sin 1 1
                                            -1        1    x
                                 
                          sin                   -1
                                 2
                       1
        when x  1, y  sin sin 1  1
                              
                        sin       
                              2
                        1
        when x  0, y  sin sin 1 0
                        sin 0
                        0
                 1  y  1
y
(iv) y  sin sin 1 x
Domain:  1  x  1                                       y  sin sin 1 x
                                                  1

Range: when x  1, y  sin sin 1 1
                                             -1          1     x
                                 
                          sin                    -1
                                 2
                       1
        when x  1, y  sin sin 1  1
                              
                        sin       
                              2
                        1                 Exercise 1C; 2 to 5ace,
        when x  0, y  sin sin 1 0         6a b i,iii, 9, 11 to 15
                        sin 0
                        0
                 1  y  1

Mais conteúdo relacionado

Mais procurados

Shirin1
Shirin1Shirin1
Shirin1bu655
 
Ejercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccssEjercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccssMatemolivares1
 
Hephuongtrinh bookbooming
Hephuongtrinh   bookboomingHephuongtrinh   bookbooming
Hephuongtrinh bookboomingbookbooming
 
Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Qwerty1293
 
Modul 1 pd linier orde satu
Modul 1 pd linier orde satuModul 1 pd linier orde satu
Modul 1 pd linier orde satuDhifa Tasrif
 

Mais procurados (8)

Wiris edu ardo
Wiris edu ardoWiris edu ardo
Wiris edu ardo
 
Shirin1
Shirin1Shirin1
Shirin1
 
Ejercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccssEjercicios de limites 2º bach.ccss
Ejercicios de limites 2º bach.ccss
 
Hephuongtrinh bookbooming
Hephuongtrinh   bookboomingHephuongtrinh   bookbooming
Hephuongtrinh bookbooming
 
Algebra 3
Algebra 3Algebra 3
Algebra 3
 
Tarea 3
Tarea 3Tarea 3
Tarea 3
 
Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)
 
Modul 1 pd linier orde satu
Modul 1 pd linier orde satuModul 1 pd linier orde satu
Modul 1 pd linier orde satu
 

Destaque

12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 02 inverse trig functions (2012)12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 02 inverse trig functions (2012)Nigel Simmons
 
12 x1 t05 06 general solutions (2012)
12 x1 t05 06 general solutions (2012)12 x1 t05 06 general solutions (2012)
12 x1 t05 06 general solutions (2012)Nigel Simmons
 
12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)Nigel Simmons
 
11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)Nigel Simmons
 
12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)Nigel Simmons
 
12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)Nigel Simmons
 
12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)Nigel Simmons
 
12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)Nigel Simmons
 
12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)Nigel Simmons
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)Nigel Simmons
 
12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)Nigel Simmons
 
12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)Nigel Simmons
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)Nigel Simmons
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)Nigel Simmons
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)Nigel Simmons
 

Destaque (15)

12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 02 inverse trig functions (2012)12 x1 t05 02 inverse trig functions (2012)
12 x1 t05 02 inverse trig functions (2012)
 
12 x1 t05 06 general solutions (2012)
12 x1 t05 06 general solutions (2012)12 x1 t05 06 general solutions (2012)
12 x1 t05 06 general solutions (2012)
 
12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)12 x1 t05 04 differentiating inverse trig (2012)
12 x1 t05 04 differentiating inverse trig (2012)
 
11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)11 x1 t01 06 equations & inequations (2013)
11 x1 t01 06 equations & inequations (2013)
 
12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)12 x1 t04 04 travel graphs (2013)
12 x1 t04 04 travel graphs (2013)
 
12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)
 
12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)12 x1 t04 02 growth & decay (2013)
12 x1 t04 02 growth & decay (2013)
 
12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)12 x1 t05 05 integration with inverse trig (2012)
12 x1 t05 05 integration with inverse trig (2012)
 
12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)12 x1 t04 03 further growth & decay (2012)
12 x1 t04 03 further growth & decay (2012)
 
12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)12 x1 t04 06 integrating functions of time (2012)
12 x1 t04 06 integrating functions of time (2012)
 
12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)12 x1 t04 01 rates of change (2013)
12 x1 t04 01 rates of change (2013)
 
12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)12 x1 t03 02 graphing trig functions (2013)
12 x1 t03 02 graphing trig functions (2013)
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)
 
12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)12 x1 t05 01 inverse functions (2013)
12 x1 t05 01 inverse functions (2013)
 
12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)12 x1 t05 06 general solutions (2013)
12 x1 t05 06 general solutions (2013)
 

Mais de Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

Mais de Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Último

Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Eesti Loodusturism
 
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfKhaled Elbattawy
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 

Último (6)

Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
 
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
 
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
 
Energy drink .
Energy drink                           .Energy drink                           .
Energy drink .
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
 

12 x1 t05 03 graphing inverse trig (2012)

  • 2. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 3
  • 3. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 3 Domain:  1  x  1 3 3 x  3
  • 4. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 3 Domain:  1  x  1 3 3 x  3 Range:    y   2 5 2 5 5   y 2 2
  • 5. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 y 3 Domain:  1  x  1 5 3 2 3 x  3 Range:    y   -3 3 x 2 5 2 5 5 5   y  2 2 2
  • 6. Graphing Inverse Trig Functions x e.g i  y  5 sin 1 y 3 1 x Domain:  1  x  1 5 y  5 sin 3 3 2 3 x  3 Range:    y   -3 3 x 2 5 2 5 5 5   y  2 2 2
  • 7. ii  y  tan 1  3  x 2 
  • 8. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3
  • 9. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0
  • 10. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0
  • 11. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0 x  0, y  tan 1 3   3
  • 12. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 Range: x  3, y  tan 1 0 0 x   3, y  tan 1 0 0 x  0, y  tan 1 3   3  0 y 3
  • 13. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 y Range: x  3, y  tan 1 0  3 0 x   3, y  tan 1 0 0 x  3 3 x  0, y  tan 1 3   3  0 y 3
  • 14. ii  y  tan 1  3  x 2  Domain: 3  x 2  0  3x 3 y Range: x  3, y  tan 1 0   y  tan 1 3  x 2  3 0 x   3, y  tan 1 0 0 x  3 3 x  0, y  tan 1 3   3  0 y 3
  • 15. (iii ) y  sin 1 sin x
  • 16. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x
  • 17. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x   Range:   y 2 2
  • 18. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x y   Range:   y 2 2  2   x   2
  • 19. (iii ) y  sin 1 sin x Domain:  1  sin x  1 all real x y   Range:   y 2 2  y  sin 1 sin x 2   x   2
  • 20. (iv) y  sin sin 1 x
  • 21. (iv) y  sin sin 1 x Domain:  1  x  1
  • 22. (iv) y  sin sin 1 x Domain:  1  x  1 Range: when x  1, y  sin sin 1 1   sin 2 1
  • 23. (iv) y  sin sin 1 x Domain:  1  x  1 Range: when x  1, y  sin sin 1 1   sin 2 1 when x  1, y  sin sin 1  1    sin    2  1
  • 24. (iv) y  sin sin 1 x Domain:  1  x  1 Range: when x  1, y  sin sin 1 1   sin 2 1 when x  1, y  sin sin 1  1    sin    2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
  • 25. y (iv) y  sin sin 1 x Domain:  1  x  1 1 Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1    sin    2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
  • 26. y (iv) y  sin sin 1 x Domain:  1  x  1 y  sin sin 1 x 1 Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1    sin    2  1 when x  0, y  sin sin 1 0  sin 0 0 1  y  1
  • 27. y (iv) y  sin sin 1 x Domain:  1  x  1 y  sin sin 1 x 1 Range: when x  1, y  sin sin 1 1 -1 1 x   sin -1 2 1 when x  1, y  sin sin 1  1    sin    2  1 Exercise 1C; 2 to 5ace, when x  0, y  sin sin 1 0 6a b i,iii, 9, 11 to 15  sin 0 0 1  y  1