SlideShare a Scribd company logo
1 of 38
Download to read offline
Towards	
  Personal	
  
                   Health	
  Records,	
  
                   Transla3onal	
  
                   Research,	
  and	
  a	
  
                   Truly	
  IT	
  Revolu3on	
  
                   of	
  Medicine	
  
                       Nour	
  Shublaq,	
  PhD	
  
                 Centre	
  for	
  Computa-onal	
  Science    	
  
                  University	
  College	
  London,	
  UK	
  
                       n.shublaq@ucl.ac.uk        	
  


From Drug Discovery Informatics to Personalised
        Therapeutics – Oct 2012, Vienna
Overview	
  

•  Why	
  Personalised	
  Medicine?	
  	
  

•  The	
  Virtual	
  Physiological	
  Human	
  (VPH)	
  ini-a-ve	
  

•  VPH	
  Simula-on	
  Case	
  Study	
  –	
  towards	
  personalised	
  
   drug	
  design	
  

•  Infrastructure	
  suppor-ng	
  drug	
  discovery	
  –	
  Improving	
  
   the	
  odds	
  of	
  the	
  Medical	
  LoMery	
  

•  Conclusions	
  
Human	
  Genome	
  Project	
                                          30,000
                                                               3000

Sequencing of the human genome was                        10
profoundly important science that led
                                                      2
to fundamental shifts in our
understanding of biology.

30,000 – 40,000 protein coding genes
in the human genome and not more
than 100,000 previously thought.

Thousands of DNA variants have now
been associated with traits/diseases.

Human Genome Project, International
HapMap Project, and Genome wide
association studies (GWAS) in the last
decade

  Genomic	
     Mol.	
  Profiles	
     Structure	
  
New	
  Sequencers	
                             1 Human Genome in:
                                                5 years (2001)
                                                2 years (2004)
                                                4 days (Jan 2008)
                                                16 Hours (Oct 2008)
                                                3 Hours (Nov 2009)
                                                6 minutes (Now!)




Cost of whole genome sequencing expected to drop to $100 in a few years
 4
hMp://www.inbiomedvision.eu	
  	
  
Challenges	
  ahead	
  
Biological	
  challenges	
                            Societal	
  challenges	
  
    –  Do	
  we	
  understand	
  biology	
  and	
         –  Privacy	
  
       diseases	
  enough	
  to	
  develop	
              –  How	
  to	
  prevent	
  inequali-es	
  in	
  
       reliable	
  computa-onal	
  models?	
                 access	
  to	
  health	
  care?	
  
    –  How	
  to	
  integrate	
  growing	
                –  Health	
  care	
  economics	
  
       knowledge	
  into	
  models?	
  
                                                          –  Implementa-on	
  in	
  health	
  care	
  
                                                          –  How	
  to	
  prevent	
  adverse	
  
ICT	
  Challenges	
                                          effects/misuse?	
  
        –  Data	
  quality	
  
        –  Data	
  management	
  
        –  Data	
  security	
  
        –  User	
  interfaces	
  
1 Genotype-­phenotype	
  resources	
  

                                                                                                    Complex	
  disease	
  
                                                                                                       networks	
  
Molecular-­level	
  models	
  
        (GWAS,	
  PPI,	
  …)	
  
                                                                                                                       Disease	
  gene	
  
                                                                                                                          Oinding	
  




                                                                                      &	
  sema ing	
  	
  
                                                                                                 ntic	
  
                                                                           2




                                                                                                in
                                                                                                                          Disease	
  




                                                                                            web	
  
                                                                 Developments	
  




                                                                                      Text	
  m
                                                                                                                       susceptibility	
  
System-­level	
  models	
  
   (organ	
  networks,…)	
  
                                                                                                                    Phenotypic	
  
                                                                                                                     variation	
  



                                                                                                              Pharmacogenomics	
  
 Clinical	
  phenotypes	
  
    (EHR,	
  multi-­scale	
  
  physiological	
  models…)	
  


                                            Exposome	
                              3 Translational	
  Systems	
  Biology	
  
                                   (drugs,	
  diet,	
  environmental	
  
                                           chemicals,…)	
  

                                                                           Nour Shublaq et al. (2012) – under review
•  Why	
  Personalised	
  Medicine?	
  	
  

•  The	
  Virtual	
  Physiological	
  Human	
  (VPH)	
  ini-a-ve	
  

•  VPH	
  Simula-on	
  Case	
  Study	
  –	
  towards	
  personalised	
  
   drug	
  design	
  

•  Infrastructure	
  suppor-ng	
  drug	
  discovery	
  –	
  Improving	
  
   the	
  odds	
  of	
  the	
  Medical	
  LoMery	
  

•  Conclusions	
  
What	
  is	
  the	
  VPH?	
  	
  
•  The Virtual Physiological Human is
   a methodological and technological      Organism
   descriptive, integrative and
                                             Organ
   predictive, framework that is
                                            Tissue
   intended to enable the investigation
   of the human body as a single              Cell
   complex system                          Organelle
                                          Interaction
                                            Protein
•  Aims                                       Cell
    •  Enable collaborative                 Signals
       investigation of the human         Transcript
       body across all relevant scales       Gene
    •  Introduce multiscale                Molecule
       methodologies into medical                       €207M initiative
       and clinical research                               in EU-FP7
The	
  challenge:	
  organs	
  to	
  proteins	
  	
  
Environment	
                                       → Medical informatics
Organism	
  
Organ	
  system	
                                   → Personalised medicine
                        Heart   Lungs   Diaphragm     Knee   Colon   Liver   Eye

Organ	
  


                                     x 1million         20 generations
                      Cardiac sheets Acinus   Osteon Lymph node Liver lobule Nephron
Tissue	
  



Cell	
  

Network	
  
Protein	
  
Gene	
  
Atom	
  
•  Why	
  Personalised	
  Medicine?	
  	
  

•  The	
  Virtual	
  Physiological	
  Human	
  (VPH)	
  ini-a-ve	
  

•  VPH	
  Simula-on	
  Case	
  Study	
  –	
  towards	
  personalised	
  
   drug	
  design	
  

•  Infrastructure	
  suppor-ng	
  drug	
  discovery	
  –	
  Improving	
  
   the	
  odds	
  of	
  the	
  Medical	
  LoMery	
  

•  Conclusions	
  
Drug	
  Selec3on	
  and	
  Drug	
  Design	
  	
  
              Assessment	
  of	
  the	
  binding	
  of	
  small	
  molecules	
  to	
  proteins	
  
               key	
  to	
  both	
  drug	
  discovery	
  and	
  treatment	
  selec-on	
  
  Techniques	
  applicable	
  to	
  one	
  area	
  can	
  also	
  be	
  used	
  in	
  

               another	
  
  Quan-fying	
  drug	
  –	
  protein	
  binding	
  strength	
  requires	
  

               atomis-cally	
  detailed	
  models	
  
  Time	
  to	
  comple-on	
  key	
  in	
  both	
  drug	
  discovery	
  and	
  


	
  	
  	
  	
  clinical	
  applica-ons	
  
WIREs Syst Biol
                  Med, Aug 2012




Chem Biol Drug
Des special
theme, Jan 2013
Epub Jul 2012
Pa3ent-­‐specific	
  HIV	
  Drug	
  Therapy	
  	
  
HIV-­‐1	
  Protease	
  is	
  a	
  common	
  target	
  for	
  HIV	
  drug	
  therapy	
  
                                                                     Monomer B                         Monomer A
•  Enzyme	
  of	
  HIV	
  responsible	
  for	
  protein	
  
                                                                     101 - 199                         1 - 99
   matura-on	
                                                                              Flaps
                                                                  Glycine - 48, 148
•  Target	
  for	
  An--­‐retroviral	
  Inhibitors	
  
•  Example	
  of	
  Structure	
  Assisted	
  Drug	
  
   Design	
                                                                                                     Saquinavir

•  9	
  FDA	
  inhibitors	
  of	
  HIV-­‐1	
  protease	
  

So	
  what’s	
  the	
  problem?	
  
•  Emergence	
  of	
  drug	
  resistant	
        P2 Subsite                                             Catalytic Aspartic
      muta-ons	
  in	
  protease	
                                                                      Acids - 25, 125

•  Render	
  drug	
  ineffec-ve	
                       Leucine - 90, 190                  C-terminal       N-terminal
•  Drug	
  resistant	
  mutants	
  have	
  emerged	
  
      for	
  all	
  FDA	
  inhibitors	
  

 EU FP6 ViroLab project and EU FP7 CHAIN project
Clinical	
  SeSng	
  –	
  HIV	
  drug	
  ranking	
  

    agtgttaccgtactcatcagactcgaggttcaccgta
    ctcatcagactcgaattcaccgtactcatcagactcg
    attcaccgtactcatcagactcgsattcaaacccttg
    gatcaagtgttaccgtactcatcagactcgsattcac
    cgtactcatcagactcgattcaccgtactcatcagac
    tcgsattcaccgtactcatcagactcgdsaddttcaa
    accgggtcacacaagg
Too	
  many	
  muta-ons	
  to	
  interpret	
  by	
  
                                    a	
  clinician	
  
                                    Support	
  so]ware	
  is	
  used	
  to	
  
                                    interpret	
  genotypic	
  assays	
  from	
  
                                    pa-ents	
  
                                    Uses	
  both	
  in	
  vivo	
  and	
  in	
  vitro	
  data	
  
                                    Is	
  dependent	
  on	
  
                                            Size	
  and	
  accuracy	
  of	
  in	
  vivo	
  
                                            clinical	
  data	
  set	
  
                                            Amount	
  of	
  in	
  vitro	
  phenotypic	
  
                                            informa-on	
  available	
  -­‐	
  e.g.	
  
                                            binding	
  affinity	
  data	
  




Patient sequence for which existing clinical decision support tools
provide differing resistance assessments
Simulator	
  for	
  Personalised	
  Drug	
  Ranking	
  
  BAC Simulator: a decision support software to assist clinicians for cancer treatment, and to
  reliably predicts patient-specific drug susceptibility.


Array of available drugs




                                                    BAC Simulator

Variant of target from patient
                                                                                        Ranking of drug binding

 The system could be used to rank proteins of different sequence with the same drug

  Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I, Sadiq SK,
  Coveney PV. J Am Chem Soc. 2008 Feb 27;130(8):2639-48. Epub 2008 Jan 29.
High	
  Throughput	
  Automa3on	
  
•  Needs a grid or grid-
   of-grids
•  We calculate “many”
   binding affinities
   rapidly
•  Do not need to
   manually launch
   each simulation




                           Technological	
  environment	
  accesses	
  
                           worldwide	
  Grid	
  resources	
  
HIV-­‐1	
  Protease:	
  	
  
Mul3ple	
  Drug	
  Resistance	
  
                    •  Simulate	
  5	
  clinically	
  
                       relevant	
  variants	
  bound	
  to	
  
                       inhibitor	
  lopinavir	
  
                    •  Reproduce	
  experimental*	
  
                       binding	
  affinity	
  ranking	
  
                    •  Require	
  mul-ple	
  
                       simula-ons	
  to	
  efficiently	
  
                       explore	
  relevant	
  ensemble	
  
                       of	
  structures	
  

                       Sadiq et al. J Chem Inf Model 50(5),
                       890-905
                       * Ohtaka et al. Biochemistry 2003, 42
                       (46), 13659-13666
HIV-­‐1	
  Protease:	
  	
  
Mul3ple	
  Drug	
  Resistance	
  
                       •  Effect	
  of	
  
                          muta-onal	
  
                          combina-ons	
  
                          superaddi-ve	
  
                       •  50	
  replica	
  
                          simula-ons	
  
                          performed	
  for	
  each	
  
                          data	
  point	
  
                       •  Results	
  replicated	
  
                          to	
  within	
  1.3	
  kcal/
                          mol	
  	
  
EGFR	
  muta3ons	
  for	
  lung	
  cancer	
  
                        A750P
                                        •  Over	
  expression	
  of	
  	
  
                                           Epidermal	
  Growth	
  Factor	
  
                        L747-E749 del      Receptor	
  (EGFR)	
  is	
  
                                           associated	
  with	
  cancer	
  
                          L858R
G719S                                   •  Target	
  for	
  inhibitory	
  drugs	
  
                                        •  Important	
  muta3ons	
  
                                           include	
  dele3ons	
  
                                        •  Again	
  binding	
  affinity	
  
                                           calcula3ons	
  can	
  be	
  used	
  to	
  
                                           determine	
  muta3onal	
  
                                           effects	
  
    EGFR Tyrosine Kinase Domain
•  Why	
  Personalised	
  Medicine?	
  	
  

•  The	
  Virtual	
  Physiological	
  Human	
  (VPH)	
  ini-a-ve	
  

•  VPH	
  Simula-on	
  Case	
  Study	
  –	
  towards	
  personalised	
  
   drug	
  design	
  

•  Infrastructure	
  suppor-ng	
  drug	
  discovery	
  –	
  Improving	
  
   the	
  odds	
  of	
  the	
  Medical	
  LoMery	
  

•  Conclusions	
  
E-­‐infrastructure	
  	
  
-­‐	
  Collec3on	
  of	
  pa3ent	
  data	
  &	
  storage	
  
-­‐	
  Access	
  to	
  high	
  performance	
  	
  
compu3ng	
  infrastructure	
  to	
  perform	
  	
  
drug	
  response	
  simula3ons	
  based	
  on	
  	
  
the	
  characteris3cs	
  of	
  an	
  individual	
  	
  
IMENSE:	
  Individualised	
  Medicine	
  
Simula3on	
  Environment	
  
 •  Central	
  integrated	
  repository	
  of	
  pa-ent	
  data	
  for	
  project	
  clinicians	
  &	
  
    researchers	
  
     –  Storage	
  of	
  and	
  audit	
  trail	
  of	
  computa-onal	
  results	
  
     –  Interfaces	
  for	
  data	
  collec-on,	
  edi-ng	
  and	
  display	
  
     –  Provides	
  a	
  data	
  environment	
  for	
  integra-on	
  of	
  mul--­‐scale	
  data	
  &	
  
        decision	
  support	
  environment	
  for	
  clinicians	
  

 •  Cri-cal	
  factors	
  for	
  Success	
  and	
  longevity	
  
     –  Use	
  Standards	
  and	
  Open	
  Source	
  solu-ons	
  
     –  Use	
  pre-­‐exis-ng	
  EU	
  FP6/FP7	
  solu-ons	
  and	
  interac-on	
  with	
  VPH-­‐
        NoE	
  Toolkit	
  

 S. J. Zasada et al., “IMENSE: An e-Infrastructure Environment for Patient Specific Multiscale Modelling and Treatment,
 Journal of Computational Science, In Press, Available online 26 July 2011, ISSN 1877-7503, DOI: 10.1016/j.jocs.
 2011.07.001.
P-­‐Medicine	
  	
  

     Disease                         Disease                                Disease                    Multi-scale therapy
     Modelling at the                Modelling at the   G S G M
                                                        1   2
                                                                  G
                                                                  0         Modelling at the           predictions/disease
     molecular Level                 cellular Level                   N A
                                                                            tissue/organ               evolution results
                                                                            Level




 •  Predic-ve	
  disease	
  modelling	
  
 •  Exploi-ng	
  the	
  individual	
  data	
  of	
  the	
  pa-ent	
  	
  
 •  Op-miza-on	
   of	
   cancer	
   treatment	
   (Wilms	
   tumor,	
   breast	
   cancer	
   and       	
  
    acute	
  lymphoblas-c	
  leukemia)	
  
 •  Scalable	
  for	
  any	
  disease,	
  as	
  long	
  as:	
  
     –  predic-ve	
  modeling	
  is	
  clinically	
  significant	
  in	
  one	
  or	
  more	
  levels	
  
     –  development	
  of	
  such	
  models	
  is	
  feasible	
  

 Led	
  by	
  a	
  clinical	
  oncologist	
  	
  -­‐	
  Prof	
  Norbert	
  Graf!	
  	
  €13M,	
  2011-­‐2013,	
  EU	
  FP7	
  
VPH-­‐Share	
  	
  
                             HIV          Heart            Aneurisms                   Musculoskeletal




     VPH-­‐Share	
  will	
  provide	
  the	
  organisa>onal	
  fabric	
  realised	
  as	
  a	
  series	
  of	
  services,	
  offered	
  
     in	
  an	
  integrated	
  framework,	
  to	
  expose	
  and	
  to	
  manage	
  data,	
  informa>on	
  and	
  tools,	
  to	
  
            enable	
  the	
  composi>on	
  and	
  opera>on	
  of	
  new	
  VPH	
  workflows	
  and	
  to	
  facilitate	
  
                        collabora>ons	
  between	
  the	
  members	
  of	
  the	
  VPH	
  community.	
  

            €11M,	
  2011-­‐2015,	
  EU	
  FP7	
  –	
  Promotes	
  cloud	
  technologies	
  	
  	
  
IT	
  Future	
  of	
  Medicine	
  
Up	
  to	
  €1B	
  EU	
  Future	
  Emerging	
  Technologies	
  Flagship	
  proposal	
  

•  Exploit	
  unprecedented	
  amounts	
  of	
  detailed	
  biological	
  data	
  
   being	
  accumulated	
  for	
  individual	
  people	
  

•  Harness	
  the	
  latest	
  developments	
  in	
  ICT	
  
    –  large	
  scale	
  data	
  integra-on	
  and	
  mining,	
  cloud	
  compu-ng,	
  
       high	
  performance	
  compu-ng,	
  advanced	
  modelling	
  and	
  
       simula-on,	
  	
  
    –  all	
  brought	
  together	
  in	
  a	
  highly	
  flexible	
  plakorm.	
  	
  

•  Turn	
  this	
  informa-on	
  into	
  knowledge	
  that	
  assists	
  in	
  taking	
  
   medical,	
  clinical	
  and	
  lifestyle	
  decisions	
  
                                                                           hMp://www.ikom.eu	
  	
  	
  	
  
ITFoM
     Health care                                            Industry
      & society         Computational
                           models of




                                               Innovation
     User needs       biological systems:
                             cells                            ICT
                            organs                             &
                          individuals                       Biotech
Personalised medicine     populations                       Pharma
    Public health



                            Virtual patient
    Better drugs, disease prevention, evidence-based decision-making
Use	
  Case:	
  Cancer	
  Treatment	
  
                                              	
  


                   Mutation Database

                                                   The Cancer Model



                                                                           Drug Database




                                                                      X         31
Tumor sampling                Genome
Tumor stem cell extraction/   and Transcriptome
expansion
                              sequencing

                                                     X            X
                                                                              Modeling        Drug treatment
                                                                              Drug Response   recommendation
                                                  Patient Specific Model
ICT	
  Layers	
  of	
  ITFoM	
  
Rela3on	
  to	
  EU	
  Infrastructures	
  
                                                 	
  


European Sequencing and
Genotyping Infrastructure




  ISBE
                                                         Integrated Structural
                                                         Biology Infrastructure


Infrastructure for Systems
Biology – Europe



                                                    Partnership for Advanced
                                                    Computing in Europe




                             33
Computational Life and ife	
  and	
  Medical	
  Sciences	
  
 UCL	
  Computa3onal	
  L Medical Science
 (CLMS)	
  Network	
                               hMp://www.clms.ucl.ac.uk	
  	
  	
  	
  	
  




                                                                          Management:
UCL Partners: 14 NHS
                                Supported by the                  Dean’s Committee
Trusts and affiliated
healthcare institutes/clinics   Provost's Strategic Fund         Steering Committee
CLMS Goals
1. Maintain and expand UCL’s world-leading
   position in life and biomedical sciences

2. Improve collaboration with academic
   institutions: within UCL, with UCLP and the
   NHS, Francis Crick Institute, Yale, and others

3. Take advantage of new initiatives in
   integrative biomedical systems science from
   the UK Research Council, EU and others
   around the world

4. Improve collaboration with industry, create
   business and commercial opportunities,
   promote UCL IP licensing

5. Plan for the next stages of activity in
   computational life and medical sciences at
   UCL
•  Why	
  Personalised	
  Medicine?	
  	
  

•  The	
  Virtual	
  Physiological	
  Human	
  (VPH)	
  ini-a-ve	
  

•  VPH	
  Simula-on	
  Case	
  Study	
  –	
  towards	
  personalised	
  
   drug	
  design	
  

•  Infrastructure	
  suppor-ng	
  drug	
  discovery	
  –	
  Improving	
  
   the	
  odds	
  of	
  the	
  Medical	
  LoMery	
  

•  Conclusions	
  
Conclusions	
  
 •  Medicine	
  today	
  is	
  a	
  driver	
  of	
  ICT	
  innova-on	
  and	
  vice	
  versa.	
  
    Data-­‐intensive	
  projects,	
  and	
  more	
  future	
  projects	
  will	
  be.	
  
      –  biomedicine	
  community	
  is	
  starving	
  for	
  storage;	
  	
  
      –  network	
  bandwidth	
  now	
  limi-ng:	
  a	
  faster	
  network	
  is	
  needed	
  for	
  
         data	
  movement.	
  

 •  Advanced	
  IT	
  allows	
  us	
  to	
  analyse	
  pa-ents	
  all	
  the	
  way	
  up	
  
    from	
  their	
  own	
  DNA	
  sequences	
  

 •  A	
  personalised	
  approach	
  is	
  expected	
  to	
  lead	
  to	
  improved	
  	
  
      –    health	
  outcomes	
  	
  
      –    drugs/treatments	
  
      –    disease	
  preven-on	
  
      –    evidence-­‐based	
  decision-­‐making	
  
      –    lifestyle	
  choices	
  for	
  global	
  ci-zens	
  
Thank	
  you	
  for	
  your	
  aden3on!	
  
                                       Nour	
  Shublaq,	
  PhD  	
  
              CREST               University	
  College	
  London,	
  UK	
  
                                          n.shublaq@ucl.ac.uk	
  
              CREST

              CREST
              CREST
epcc|cresta
Visual Identity Designs

More Related Content

What's hot

Industry Program In For Sci
Industry Program In For SciIndustry Program In For Sci
Industry Program In For Scibiinoida
 
I NTRODUCTION.doc
I NTRODUCTION.docI NTRODUCTION.doc
I NTRODUCTION.docbutest
 
Bioinformatics Meets Information Retrieval: State of the Art and a Case Study
Bioinformatics Meets Information Retrieval: State of the Art and a Case StudyBioinformatics Meets Information Retrieval: State of the Art and a Case Study
Bioinformatics Meets Information Retrieval: State of the Art and a Case StudyEloisa Vargiu
 
An Immune Algorithm for Protein Structure Prediction on Lattice Models
An Immune Algorithm for Protein Structure Prediction on Lattice ModelsAn Immune Algorithm for Protein Structure Prediction on Lattice Models
An Immune Algorithm for Protein Structure Prediction on Lattice ModelsMario Pavone
 
Michelangelo Ceci – Tecniche di data-mining per la caratterizzazione di entit...
Michelangelo Ceci – Tecniche di data-mining per la caratterizzazione di entit...Michelangelo Ceci – Tecniche di data-mining per la caratterizzazione di entit...
Michelangelo Ceci – Tecniche di data-mining per la caratterizzazione di entit...eventi-ITBbari
 

What's hot (8)

Industry Program In For Sci
Industry Program In For SciIndustry Program In For Sci
Industry Program In For Sci
 
Brief introduction to Bioinformatics
Brief introduction to BioinformaticsBrief introduction to Bioinformatics
Brief introduction to Bioinformatics
 
I NTRODUCTION.doc
I NTRODUCTION.docI NTRODUCTION.doc
I NTRODUCTION.doc
 
Medical nanobiosensors: A tutorial review
Medical nanobiosensors: A tutorial reviewMedical nanobiosensors: A tutorial review
Medical nanobiosensors: A tutorial review
 
Bioinformatics Meets Information Retrieval: State of the Art and a Case Study
Bioinformatics Meets Information Retrieval: State of the Art and a Case StudyBioinformatics Meets Information Retrieval: State of the Art and a Case Study
Bioinformatics Meets Information Retrieval: State of the Art and a Case Study
 
An Immune Algorithm for Protein Structure Prediction on Lattice Models
An Immune Algorithm for Protein Structure Prediction on Lattice ModelsAn Immune Algorithm for Protein Structure Prediction on Lattice Models
An Immune Algorithm for Protein Structure Prediction on Lattice Models
 
Michelangelo Ceci – Tecniche di data-mining per la caratterizzazione di entit...
Michelangelo Ceci – Tecniche di data-mining per la caratterizzazione di entit...Michelangelo Ceci – Tecniche di data-mining per la caratterizzazione di entit...
Michelangelo Ceci – Tecniche di data-mining per la caratterizzazione di entit...
 
Dr. David Gutman: Development and Validation of Radiology Descriptors in Gliomas
Dr. David Gutman: Development and Validation of Radiology Descriptors in GliomasDr. David Gutman: Development and Validation of Radiology Descriptors in Gliomas
Dr. David Gutman: Development and Validation of Radiology Descriptors in Gliomas
 

Viewers also liked

Vph2012 20 sept12_shublaq_final
Vph2012 20 sept12_shublaq_finalVph2012 20 sept12_shublaq_final
Vph2012 20 sept12_shublaq_finalNour Shublaq
 
Mie2012 27 aug12_shublaq
Mie2012 27 aug12_shublaqMie2012 27 aug12_shublaq
Mie2012 27 aug12_shublaqNour Shublaq
 
Finding beta testers (pop 1989 2 d)
Finding beta testers (pop 1989 2 d)Finding beta testers (pop 1989 2 d)
Finding beta testers (pop 1989 2 d)Sarah Bevan
 
Universal Design for Evaluation: Designing Evaluations to Include People with...
Universal Design for Evaluation: Designing Evaluations to Include People with...Universal Design for Evaluation: Designing Evaluations to Include People with...
Universal Design for Evaluation: Designing Evaluations to Include People with...Washington Evaluators
 
Integrating Interaction Design Evaluation into Product Design
Integrating Interaction Design Evaluation into Product DesignIntegrating Interaction Design Evaluation into Product Design
Integrating Interaction Design Evaluation into Product DesignYingjie Chen
 
Digital Human Modelling (DHM)
Digital Human Modelling (DHM)Digital Human Modelling (DHM)
Digital Human Modelling (DHM)Kanika Gupta
 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheLeslie Samuel
 

Viewers also liked (8)

Vph2012 20 sept12_shublaq_final
Vph2012 20 sept12_shublaq_finalVph2012 20 sept12_shublaq_final
Vph2012 20 sept12_shublaq_final
 
Mie2012 27 aug12_shublaq
Mie2012 27 aug12_shublaqMie2012 27 aug12_shublaq
Mie2012 27 aug12_shublaq
 
Finding beta testers (pop 1989 2 d)
Finding beta testers (pop 1989 2 d)Finding beta testers (pop 1989 2 d)
Finding beta testers (pop 1989 2 d)
 
Sherub Dorji CV
Sherub Dorji CVSherub Dorji CV
Sherub Dorji CV
 
Universal Design for Evaluation: Designing Evaluations to Include People with...
Universal Design for Evaluation: Designing Evaluations to Include People with...Universal Design for Evaluation: Designing Evaluations to Include People with...
Universal Design for Evaluation: Designing Evaluations to Include People with...
 
Integrating Interaction Design Evaluation into Product Design
Integrating Interaction Design Evaluation into Product DesignIntegrating Interaction Design Evaluation into Product Design
Integrating Interaction Design Evaluation into Product Design
 
Digital Human Modelling (DHM)
Digital Human Modelling (DHM)Digital Human Modelling (DHM)
Digital Human Modelling (DHM)
 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your Niche
 

Similar to Personalised Medicine and VPH Simulations

Mie2012 27 aug12-shublaq
Mie2012 27 aug12-shublaqMie2012 27 aug12-shublaq
Mie2012 27 aug12-shublaqINBIOMEDvision
 
Integrating evidence based medicine and em rs
Integrating evidence based medicine and em rsIntegrating evidence based medicine and em rs
Integrating evidence based medicine and em rsTrimed Media Group
 
Friend harvard 2013-01-30
Friend harvard 2013-01-30Friend harvard 2013-01-30
Friend harvard 2013-01-30Sage Base
 
Stephen Friend MIT 2011-10-20
Stephen Friend MIT 2011-10-20Stephen Friend MIT 2011-10-20
Stephen Friend MIT 2011-10-20Sage Base
 
Friend NAS 2013-01-10
Friend NAS 2013-01-10Friend NAS 2013-01-10
Friend NAS 2013-01-10Sage Base
 
INBIOMEDvision Workshop at MIE 2011. Victoria López
INBIOMEDvision Workshop at MIE 2011. Victoria LópezINBIOMEDvision Workshop at MIE 2011. Victoria López
INBIOMEDvision Workshop at MIE 2011. Victoria LópezINBIOMEDvision
 
"Bridging the Gap between Bioinformatics and Medical Informatics"
"Bridging the Gap between Bioinformatics and Medical Informatics""Bridging the Gap between Bioinformatics and Medical Informatics"
"Bridging the Gap between Bioinformatics and Medical Informatics"INBIOMEDvision
 
Gen epio immem_griffiths
Gen epio immem_griffithsGen epio immem_griffiths
Gen epio immem_griffithsIRIDA_community
 
IRIDA's Genomic epidemiology application ontology (GenEpiO): Genomic, clinica...
IRIDA's Genomic epidemiology application ontology (GenEpiO): Genomic, clinica...IRIDA's Genomic epidemiology application ontology (GenEpiO): Genomic, clinica...
IRIDA's Genomic epidemiology application ontology (GenEpiO): Genomic, clinica...Emma Griffiths
 
Bioinformatics
BioinformaticsBioinformatics
BioinformaticsJTADrexel
 
Big Data
Big DataBig Data
Big DataSURFnet
 
Revolutionizing medicine in the 21st century through systems approaches
Revolutionizing medicine in the 21st century through systems approachesRevolutionizing medicine in the 21st century through systems approaches
Revolutionizing medicine in the 21st century through systems approachesInstitute for Systems Biology
 
VPH in Future Healthcare. Where Will We Be in 10 Years from Now?
VPH in Future Healthcare. Where Will We Be in 10 Years from Now?VPH in Future Healthcare. Where Will We Be in 10 Years from Now?
VPH in Future Healthcare. Where Will We Be in 10 Years from Now?Plan de Calidad para el SNS
 

Similar to Personalised Medicine and VPH Simulations (20)

Mie2012 27 aug12-shublaq
Mie2012 27 aug12-shublaqMie2012 27 aug12-shublaq
Mie2012 27 aug12-shublaq
 
Interdisciplinarity and complexity as opportunities for research innovation i...
Interdisciplinarity and complexity as opportunities for research innovation i...Interdisciplinarity and complexity as opportunities for research innovation i...
Interdisciplinarity and complexity as opportunities for research innovation i...
 
Integrating evidence based medicine and em rs
Integrating evidence based medicine and em rsIntegrating evidence based medicine and em rs
Integrating evidence based medicine and em rs
 
Friend harvard 2013-01-30
Friend harvard 2013-01-30Friend harvard 2013-01-30
Friend harvard 2013-01-30
 
Stephen Friend MIT 2011-10-20
Stephen Friend MIT 2011-10-20Stephen Friend MIT 2011-10-20
Stephen Friend MIT 2011-10-20
 
IBES Health and biomedical informatics
IBES  Health and biomedical informaticsIBES  Health and biomedical informatics
IBES Health and biomedical informatics
 
Friend NAS 2013-01-10
Friend NAS 2013-01-10Friend NAS 2013-01-10
Friend NAS 2013-01-10
 
INBIOMEDvision Workshop at MIE 2011. Victoria López
INBIOMEDvision Workshop at MIE 2011. Victoria LópezINBIOMEDvision Workshop at MIE 2011. Victoria López
INBIOMEDvision Workshop at MIE 2011. Victoria López
 
"Bridging the Gap between Bioinformatics and Medical Informatics"
"Bridging the Gap between Bioinformatics and Medical Informatics""Bridging the Gap between Bioinformatics and Medical Informatics"
"Bridging the Gap between Bioinformatics and Medical Informatics"
 
Basic of bioinformatics
Basic of bioinformaticsBasic of bioinformatics
Basic of bioinformatics
 
Gen epio immem_griffiths
Gen epio immem_griffithsGen epio immem_griffiths
Gen epio immem_griffiths
 
IRIDA's Genomic epidemiology application ontology (GenEpiO): Genomic, clinica...
IRIDA's Genomic epidemiology application ontology (GenEpiO): Genomic, clinica...IRIDA's Genomic epidemiology application ontology (GenEpiO): Genomic, clinica...
IRIDA's Genomic epidemiology application ontology (GenEpiO): Genomic, clinica...
 
HIKM 2012 presentation fjms
HIKM 2012 presentation fjmsHIKM 2012 presentation fjms
HIKM 2012 presentation fjms
 
Rise of e patient fjms
Rise of e patient fjmsRise of e patient fjms
Rise of e patient fjms
 
Impact of the human genome project on medical advancement in India.
Impact of the human genome project on medical advancement in India.Impact of the human genome project on medical advancement in India.
Impact of the human genome project on medical advancement in India.
 
Bioinformatics
BioinformaticsBioinformatics
Bioinformatics
 
Big Data
Big DataBig Data
Big Data
 
Revolutionizing medicine in the 21st century through systems approaches
Revolutionizing medicine in the 21st century through systems approachesRevolutionizing medicine in the 21st century through systems approaches
Revolutionizing medicine in the 21st century through systems approaches
 
VPH in Future Healthcare. Where Will We Be in 10 Years from Now?
VPH in Future Healthcare. Where Will We Be in 10 Years from Now?VPH in Future Healthcare. Where Will We Be in 10 Years from Now?
VPH in Future Healthcare. Where Will We Be in 10 Years from Now?
 
Personalised and Participatory Medicine Workshop15 may 2012
Personalised and Participatory Medicine Workshop15 may 2012Personalised and Participatory Medicine Workshop15 may 2012
Personalised and Participatory Medicine Workshop15 may 2012
 

Personalised Medicine and VPH Simulations

  • 1. Towards  Personal   Health  Records,   Transla3onal   Research,  and  a   Truly  IT  Revolu3on   of  Medicine   Nour  Shublaq,  PhD   Centre  for  Computa-onal  Science   University  College  London,  UK   n.shublaq@ucl.ac.uk   From Drug Discovery Informatics to Personalised Therapeutics – Oct 2012, Vienna
  • 2. Overview   •  Why  Personalised  Medicine?     •  The  Virtual  Physiological  Human  (VPH)  ini-a-ve   •  VPH  Simula-on  Case  Study  –  towards  personalised   drug  design   •  Infrastructure  suppor-ng  drug  discovery  –  Improving   the  odds  of  the  Medical  LoMery   •  Conclusions  
  • 3. Human  Genome  Project   30,000 3000 Sequencing of the human genome was 10 profoundly important science that led 2 to fundamental shifts in our understanding of biology. 30,000 – 40,000 protein coding genes in the human genome and not more than 100,000 previously thought. Thousands of DNA variants have now been associated with traits/diseases. Human Genome Project, International HapMap Project, and Genome wide association studies (GWAS) in the last decade Genomic   Mol.  Profiles   Structure  
  • 4. New  Sequencers   1 Human Genome in: 5 years (2001) 2 years (2004) 4 days (Jan 2008) 16 Hours (Oct 2008) 3 Hours (Nov 2009) 6 minutes (Now!) Cost of whole genome sequencing expected to drop to $100 in a few years 4
  • 6. Challenges  ahead   Biological  challenges   Societal  challenges   –  Do  we  understand  biology  and   –  Privacy   diseases  enough  to  develop   –  How  to  prevent  inequali-es  in   reliable  computa-onal  models?   access  to  health  care?   –  How  to  integrate  growing   –  Health  care  economics   knowledge  into  models?   –  Implementa-on  in  health  care   –  How  to  prevent  adverse   ICT  Challenges   effects/misuse?   –  Data  quality   –  Data  management   –  Data  security   –  User  interfaces  
  • 7. 1 Genotype-­phenotype  resources   Complex  disease   networks   Molecular-­level  models   (GWAS,  PPI,  …)   Disease  gene   Oinding   &  sema ing     ntic   2 in Disease   web   Developments   Text  m susceptibility   System-­level  models   (organ  networks,…)   Phenotypic   variation   Pharmacogenomics   Clinical  phenotypes   (EHR,  multi-­scale   physiological  models…)   Exposome   3 Translational  Systems  Biology   (drugs,  diet,  environmental   chemicals,…)   Nour Shublaq et al. (2012) – under review
  • 8. •  Why  Personalised  Medicine?     •  The  Virtual  Physiological  Human  (VPH)  ini-a-ve   •  VPH  Simula-on  Case  Study  –  towards  personalised   drug  design   •  Infrastructure  suppor-ng  drug  discovery  –  Improving   the  odds  of  the  Medical  LoMery   •  Conclusions  
  • 9. What  is  the  VPH?     •  The Virtual Physiological Human is a methodological and technological Organism descriptive, integrative and Organ predictive, framework that is Tissue intended to enable the investigation of the human body as a single Cell complex system Organelle Interaction Protein •  Aims Cell •  Enable collaborative Signals investigation of the human Transcript body across all relevant scales Gene •  Introduce multiscale Molecule methodologies into medical €207M initiative and clinical research in EU-FP7
  • 10. The  challenge:  organs  to  proteins     Environment   → Medical informatics Organism   Organ  system   → Personalised medicine Heart Lungs Diaphragm Knee Colon Liver Eye Organ   x 1million 20 generations Cardiac sheets Acinus Osteon Lymph node Liver lobule Nephron Tissue   Cell   Network   Protein   Gene   Atom  
  • 11. •  Why  Personalised  Medicine?     •  The  Virtual  Physiological  Human  (VPH)  ini-a-ve   •  VPH  Simula-on  Case  Study  –  towards  personalised   drug  design   •  Infrastructure  suppor-ng  drug  discovery  –  Improving   the  odds  of  the  Medical  LoMery   •  Conclusions  
  • 12. Drug  Selec3on  and  Drug  Design       Assessment  of  the  binding  of  small  molecules  to  proteins   key  to  both  drug  discovery  and  treatment  selec-on     Techniques  applicable  to  one  area  can  also  be  used  in   another     Quan-fying  drug  –  protein  binding  strength  requires   atomis-cally  detailed  models     Time  to  comple-on  key  in  both  drug  discovery  and          clinical  applica-ons  
  • 13. WIREs Syst Biol Med, Aug 2012 Chem Biol Drug Des special theme, Jan 2013 Epub Jul 2012
  • 14. Pa3ent-­‐specific  HIV  Drug  Therapy     HIV-­‐1  Protease  is  a  common  target  for  HIV  drug  therapy   Monomer B Monomer A •  Enzyme  of  HIV  responsible  for  protein   101 - 199 1 - 99 matura-on   Flaps Glycine - 48, 148 •  Target  for  An--­‐retroviral  Inhibitors   •  Example  of  Structure  Assisted  Drug   Design   Saquinavir •  9  FDA  inhibitors  of  HIV-­‐1  protease   So  what’s  the  problem?   •  Emergence  of  drug  resistant   P2 Subsite Catalytic Aspartic muta-ons  in  protease   Acids - 25, 125 •  Render  drug  ineffec-ve   Leucine - 90, 190 C-terminal N-terminal •  Drug  resistant  mutants  have  emerged   for  all  FDA  inhibitors   EU FP6 ViroLab project and EU FP7 CHAIN project
  • 15. Clinical  SeSng  –  HIV  drug  ranking   agtgttaccgtactcatcagactcgaggttcaccgta ctcatcagactcgaattcaccgtactcatcagactcg attcaccgtactcatcagactcgsattcaaacccttg gatcaagtgttaccgtactcatcagactcgsattcac cgtactcatcagactcgattcaccgtactcatcagac tcgsattcaccgtactcatcagactcgdsaddttcaa accgggtcacacaagg
  • 16. Too  many  muta-ons  to  interpret  by   a  clinician   Support  so]ware  is  used  to   interpret  genotypic  assays  from   pa-ents   Uses  both  in  vivo  and  in  vitro  data   Is  dependent  on   Size  and  accuracy  of  in  vivo   clinical  data  set   Amount  of  in  vitro  phenotypic   informa-on  available  -­‐  e.g.   binding  affinity  data   Patient sequence for which existing clinical decision support tools provide differing resistance assessments
  • 17. Simulator  for  Personalised  Drug  Ranking   BAC Simulator: a decision support software to assist clinicians for cancer treatment, and to reliably predicts patient-specific drug susceptibility. Array of available drugs BAC Simulator Variant of target from patient Ranking of drug binding The system could be used to rank proteins of different sequence with the same drug Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I, Sadiq SK, Coveney PV. J Am Chem Soc. 2008 Feb 27;130(8):2639-48. Epub 2008 Jan 29.
  • 18. High  Throughput  Automa3on   •  Needs a grid or grid- of-grids •  We calculate “many” binding affinities rapidly •  Do not need to manually launch each simulation Technological  environment  accesses   worldwide  Grid  resources  
  • 19. HIV-­‐1  Protease:     Mul3ple  Drug  Resistance   •  Simulate  5  clinically   relevant  variants  bound  to   inhibitor  lopinavir   •  Reproduce  experimental*   binding  affinity  ranking   •  Require  mul-ple   simula-ons  to  efficiently   explore  relevant  ensemble   of  structures   Sadiq et al. J Chem Inf Model 50(5), 890-905 * Ohtaka et al. Biochemistry 2003, 42 (46), 13659-13666
  • 20. HIV-­‐1  Protease:     Mul3ple  Drug  Resistance   •  Effect  of   muta-onal   combina-ons   superaddi-ve   •  50  replica   simula-ons   performed  for  each   data  point   •  Results  replicated   to  within  1.3  kcal/ mol    
  • 21. EGFR  muta3ons  for  lung  cancer   A750P •  Over  expression  of     Epidermal  Growth  Factor   L747-E749 del Receptor  (EGFR)  is   associated  with  cancer   L858R G719S •  Target  for  inhibitory  drugs   •  Important  muta3ons   include  dele3ons   •  Again  binding  affinity   calcula3ons  can  be  used  to   determine  muta3onal   effects   EGFR Tyrosine Kinase Domain
  • 22. •  Why  Personalised  Medicine?     •  The  Virtual  Physiological  Human  (VPH)  ini-a-ve   •  VPH  Simula-on  Case  Study  –  towards  personalised   drug  design   •  Infrastructure  suppor-ng  drug  discovery  –  Improving   the  odds  of  the  Medical  LoMery   •  Conclusions  
  • 23. E-­‐infrastructure     -­‐  Collec3on  of  pa3ent  data  &  storage   -­‐  Access  to  high  performance     compu3ng  infrastructure  to  perform     drug  response  simula3ons  based  on     the  characteris3cs  of  an  individual    
  • 24. IMENSE:  Individualised  Medicine   Simula3on  Environment   •  Central  integrated  repository  of  pa-ent  data  for  project  clinicians  &   researchers   –  Storage  of  and  audit  trail  of  computa-onal  results   –  Interfaces  for  data  collec-on,  edi-ng  and  display   –  Provides  a  data  environment  for  integra-on  of  mul--­‐scale  data  &   decision  support  environment  for  clinicians   •  Cri-cal  factors  for  Success  and  longevity   –  Use  Standards  and  Open  Source  solu-ons   –  Use  pre-­‐exis-ng  EU  FP6/FP7  solu-ons  and  interac-on  with  VPH-­‐ NoE  Toolkit   S. J. Zasada et al., “IMENSE: An e-Infrastructure Environment for Patient Specific Multiscale Modelling and Treatment, Journal of Computational Science, In Press, Available online 26 July 2011, ISSN 1877-7503, DOI: 10.1016/j.jocs. 2011.07.001.
  • 25.
  • 26.
  • 27. P-­‐Medicine     Disease Disease Disease Multi-scale therapy Modelling at the Modelling at the G S G M 1 2 G 0 Modelling at the predictions/disease molecular Level cellular Level N A tissue/organ evolution results Level •  Predic-ve  disease  modelling   •  Exploi-ng  the  individual  data  of  the  pa-ent     •  Op-miza-on   of   cancer   treatment   (Wilms   tumor,   breast   cancer   and   acute  lymphoblas-c  leukemia)   •  Scalable  for  any  disease,  as  long  as:   –  predic-ve  modeling  is  clinically  significant  in  one  or  more  levels   –  development  of  such  models  is  feasible   Led  by  a  clinical  oncologist    -­‐  Prof  Norbert  Graf!    €13M,  2011-­‐2013,  EU  FP7  
  • 28. VPH-­‐Share     HIV Heart Aneurisms Musculoskeletal VPH-­‐Share  will  provide  the  organisa>onal  fabric  realised  as  a  series  of  services,  offered   in  an  integrated  framework,  to  expose  and  to  manage  data,  informa>on  and  tools,  to   enable  the  composi>on  and  opera>on  of  new  VPH  workflows  and  to  facilitate   collabora>ons  between  the  members  of  the  VPH  community.   €11M,  2011-­‐2015,  EU  FP7  –  Promotes  cloud  technologies      
  • 29. IT  Future  of  Medicine   Up  to  €1B  EU  Future  Emerging  Technologies  Flagship  proposal   •  Exploit  unprecedented  amounts  of  detailed  biological  data   being  accumulated  for  individual  people   •  Harness  the  latest  developments  in  ICT   –  large  scale  data  integra-on  and  mining,  cloud  compu-ng,   high  performance  compu-ng,  advanced  modelling  and   simula-on,     –  all  brought  together  in  a  highly  flexible  plakorm.     •  Turn  this  informa-on  into  knowledge  that  assists  in  taking   medical,  clinical  and  lifestyle  decisions   hMp://www.ikom.eu        
  • 30. ITFoM Health care Industry & society Computational models of Innovation User needs biological systems: cells ICT organs & individuals Biotech Personalised medicine populations Pharma Public health Virtual patient Better drugs, disease prevention, evidence-based decision-making
  • 31. Use  Case:  Cancer  Treatment     Mutation Database The Cancer Model Drug Database X 31 Tumor sampling Genome Tumor stem cell extraction/ and Transcriptome expansion sequencing X X Modeling Drug treatment Drug Response recommendation Patient Specific Model
  • 32. ICT  Layers  of  ITFoM  
  • 33. Rela3on  to  EU  Infrastructures     European Sequencing and Genotyping Infrastructure ISBE Integrated Structural Biology Infrastructure Infrastructure for Systems Biology – Europe Partnership for Advanced Computing in Europe 33
  • 34. Computational Life and ife  and  Medical  Sciences   UCL  Computa3onal  L Medical Science (CLMS)  Network   hMp://www.clms.ucl.ac.uk           Management: UCL Partners: 14 NHS Supported by the Dean’s Committee Trusts and affiliated healthcare institutes/clinics Provost's Strategic Fund Steering Committee
  • 35. CLMS Goals 1. Maintain and expand UCL’s world-leading position in life and biomedical sciences 2. Improve collaboration with academic institutions: within UCL, with UCLP and the NHS, Francis Crick Institute, Yale, and others 3. Take advantage of new initiatives in integrative biomedical systems science from the UK Research Council, EU and others around the world 4. Improve collaboration with industry, create business and commercial opportunities, promote UCL IP licensing 5. Plan for the next stages of activity in computational life and medical sciences at UCL
  • 36. •  Why  Personalised  Medicine?     •  The  Virtual  Physiological  Human  (VPH)  ini-a-ve   •  VPH  Simula-on  Case  Study  –  towards  personalised   drug  design   •  Infrastructure  suppor-ng  drug  discovery  –  Improving   the  odds  of  the  Medical  LoMery   •  Conclusions  
  • 37. Conclusions   •  Medicine  today  is  a  driver  of  ICT  innova-on  and  vice  versa.   Data-­‐intensive  projects,  and  more  future  projects  will  be.   –  biomedicine  community  is  starving  for  storage;     –  network  bandwidth  now  limi-ng:  a  faster  network  is  needed  for   data  movement.   •  Advanced  IT  allows  us  to  analyse  pa-ents  all  the  way  up   from  their  own  DNA  sequences   •  A  personalised  approach  is  expected  to  lead  to  improved     –  health  outcomes     –  drugs/treatments   –  disease  preven-on   –  evidence-­‐based  decision-­‐making   –  lifestyle  choices  for  global  ci-zens  
  • 38. Thank  you  for  your  aden3on!   Nour  Shublaq,  PhD   CREST University  College  London,  UK   n.shublaq@ucl.ac.uk   CREST CREST CREST epcc|cresta Visual Identity Designs