números reales.pptx

Republica Bolivariana de Venezuela
Ministerio del Poder Popular para la Educación
Universidad Politécnica Territorial Andrés Eloy Blanco
Barquisimeto – Edo- Lara
Nombre y Apellido: Ángela Rojas
CI: 30894974
Trayecto Inicial - Informática
Sección: IN0104
¿Que son los conjuntos?
Un conjunto o colección lo forman unos elementos de la misma naturaleza, es
decir, elementos diferenciados entre si pero que poseen en común ciertas
propiedades o características, y que pueden tener entre ellos, o con los elementos
de otros conjuntos, ciertas relaciones.
un conjunto puede tener un número finito o infinito de elementos, en
matemáticas es común denotar a los elementos mediante letras minúsculas y a los
conjuntos por letras mayúsculas, así por ejemplo:
C= (a, b, c, d, e, f, g, h.)
Diversos conjuntos numéricos
En Matemáticas empleamos diversos conjuntos de números, los más elementales son:
N=(0,1,2,3,4,5,). El conjunto de los números naturales, o números que sirven para contar.
Z=(-5,-4,-3, -2, -1, 0, 1, 2, 3, 4, 5,...). El conjunto de los números enteros, o números que sirven para
designar cantidades enteras (positivas o negativas).
Q=(-7/2, -7/3,, -5/4-5/1, 0,, 2/133, 4/7). El conjunto de los números racionales, o números que
pueden ser expresados como un cociente entre dos enteros, fracción, p/q. Observen que algunos
números con infinitos decimales tal como el 2,33333... pertenece a este conjunto, puesto que:
2,33333... = 7/3. No obstante, en Q no se hallan algunos números como 1,4142136... (raíz cuadrada
de 2), o el 3,141592 (el número p) que poseen infinitos decimales pero no pueden expresarse en la
forma p/q. A estos números se les llama "números irracionales".
R=QU("números irracionales"). El conjunto de los números reales, formado
por la unión de Q y de todos los números irracionales. Este conjunto suele
denominarse recta real, pues los puntos de una recta pueden ponerse en
correspondencia con los infinitos números de R.
Números Reales
Los números reales son cualquier número que corresponda a un punto en la recta real y pueden
clasificarse en números naturales, enteros, racionales e irracionales.
En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y
podemos representarlos en la recta real.
Los números reales son todos los números que encontramos más frecuentemente dado que los
números complejos no se encuentran de manera accidental, sino que tienen que buscarse
expresamente.
Los números reales se representan mediante la letra R
Clasificación de los números reales
Números Naturales : N-1812345 Los números naturales es el primer conjunto de números
que aprendemos de pequeños. Este conjunto no tiene en cuenta el número cero (0) excepto que
se especifique lo contrario (cero neutral).
Números enteros: Los números enteros son todos los números naturales e
incluyen el cero (0) y todos los números negativos. -3,-2,-4,-10,1,2,3
Desigualdades matemática es una proposición de relación de orden existente entre dos expresiones
algebraicas conectadas a través de los signos:
desigual que *, mayor que >, menor que <, menor o igual que s, así como mayor o igual que è,
resultando ambas expresiones de valores distintos.
Por tanto, la relación de desigualdad establecida en una expresión de esta índole, se emplea para denotar
que dos objetos matemáticos expresan valores desiguales.
Desigualdad
Algo a notar en las expresiones de desigualdad matemática es que, aquellas que emplean:
mayor que >
menor que <
menor o igual que es <
mayor o igual que >
Estas son desigualdades que nos revelan en qué sentido la una desigualdad no es igual.
mayor que >
menor que <
Ahora bien, los casos de aquellas desigualdades formuladas como: Son desigualdades conocidas como
desigualdades “estrictas”.
Valor absoluto de un número entero es el número natural que
resulta al suprimir su signo, El valor absoluto lo escribiremos
entre barras verticales.
Valor absoluto
-5 = 5
Valor absoluto de un número real a, se escribe a , es el mismo número a cuando es positivo o cero, y
opuesto de a, si a es negativo.
Propiedades del valor absoluto
Desigualdades con valor absoluto
Una desigualdad con valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable
dentro.
La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4.
Así, x > -4 Y x < 4. El conjunto solución es
Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
La solución es la intersección de las soluciones de estos dos casos.
En otras palabras, para cualesquiera números reales a y b , si | a | < b , entonces a < b Y a > - b .
Desigualdades de valor absoluto (<):
La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4.
Así, x < -4 O x > 4. El conjunto solución es .
Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar.
Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva.
Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
En otras palabras, para cualesquiera números reales a y b , si | a | > b , entonces a > b O a < - b
Desigualdades de valor absoluto (>):
http://www.ehu.eus/juancarlos.gorostizoga/opoyo/conjuntos.htm#text=U
de%20otros%20conjuntos%2C%20ciertas%20relaciones.html
https://economipedia.com/definiciones/numeros-reales.html
https://www.superprof.es/diccionario/matematicos/aritmetico/valor-absoluto.html
https://economipedia.com/definiciones/desigualdad-matematica.html
1 de 9

Recomendados

numeros reales alfredo.pptx por
numeros reales alfredo.pptxnumeros reales alfredo.pptx
numeros reales alfredo.pptxtareasuptaeb
7 visualizações9 slides
Conjuntos numéricos por
Conjuntos numéricos Conjuntos numéricos
Conjuntos numéricos MarisabelAcua
152 visualizações11 slides
Numeros reales por
Numeros realesNumeros reales
Numeros realesyoselinramos9
39 visualizações11 slides
Presentacion (marielis) por
Presentacion (marielis)Presentacion (marielis)
Presentacion (marielis)MarielisGimnez
18 visualizações10 slides
Conjunto numérico, unidad II por
Conjunto numérico, unidad IIConjunto numérico, unidad II
Conjunto numérico, unidad IILorennyColmenares
74 visualizações10 slides
Conjuntos de numeros por
Conjuntos de numerosConjuntos de numeros
Conjuntos de numerospaolagomez229
20 visualizações7 slides

Mais conteúdo relacionado

Similar a números reales.pptx

Conjunto numerico, lorenny colmenares por
Conjunto numerico, lorenny colmenaresConjunto numerico, lorenny colmenares
Conjunto numerico, lorenny colmenaresLorennyColmenares
71 visualizações9 slides
Matematica por
MatematicaMatematica
MatematicaAleidys4
7 visualizações10 slides
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf por
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdfOPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdfyaniratorcates1
9 visualizações13 slides
Unidad II Números Reales y Plano Numérico por
Unidad II Números Reales y Plano Numérico Unidad II Números Reales y Plano Numérico
Unidad II Números Reales y Plano Numérico EmilyBuitrago
12 visualizações8 slides
presentacion-Matematica.pdf por
presentacion-Matematica.pdfpresentacion-Matematica.pdf
presentacion-Matematica.pdfElianaMora11
3 visualizações11 slides
matematicas uptaeb 00133.ppsx por
matematicas uptaeb 00133.ppsxmatematicas uptaeb 00133.ppsx
matematicas uptaeb 00133.ppsxYelimarf
6 visualizações7 slides

Similar a números reales.pptx(20)

Conjunto numerico, lorenny colmenares por LorennyColmenares
Conjunto numerico, lorenny colmenaresConjunto numerico, lorenny colmenares
Conjunto numerico, lorenny colmenares
LorennyColmenares71 visualizações
Matematica por Aleidys4
MatematicaMatematica
Matematica
Aleidys47 visualizações
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf por yaniratorcates1
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdfOPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
OPERACIONES DE CONJUNTOS MATEMATICA PAHOLA Y YANIRA.pdf
yaniratorcates19 visualizações
Unidad II Números Reales y Plano Numérico por EmilyBuitrago
Unidad II Números Reales y Plano Numérico Unidad II Números Reales y Plano Numérico
Unidad II Números Reales y Plano Numérico
EmilyBuitrago12 visualizações
presentacion-Matematica.pdf por ElianaMora11
presentacion-Matematica.pdfpresentacion-Matematica.pdf
presentacion-Matematica.pdf
ElianaMora113 visualizações
matematicas uptaeb 00133.ppsx por Yelimarf
matematicas uptaeb 00133.ppsxmatematicas uptaeb 00133.ppsx
matematicas uptaeb 00133.ppsx
Yelimarf6 visualizações
Presentación.pptx por Abril Amaro
Presentación.pptxPresentación.pptx
Presentación.pptx
Abril Amaro2 visualizações
conjuntos de numeros por MntsEnmanuel
conjuntos de numerosconjuntos de numeros
conjuntos de numeros
MntsEnmanuel6 visualizações
presentación de matemáticas Nr 2 por BrayanVAsquez27
presentación de matemáticas Nr 2presentación de matemáticas Nr 2
presentación de matemáticas Nr 2
BrayanVAsquez2711 visualizações
PRESENTACIÓN DE MATEMATICA UNIDAD 2 por marianaalexandraarri
PRESENTACIÓN DE MATEMATICA UNIDAD 2PRESENTACIÓN DE MATEMATICA UNIDAD 2
PRESENTACIÓN DE MATEMATICA UNIDAD 2
marianaalexandraarri44 visualizações
Presentación de Matemáticas Nr 2 por DELEChan
Presentación de Matemáticas Nr 2Presentación de Matemáticas Nr 2
Presentación de Matemáticas Nr 2
DELEChan31 visualizações
Números reales y plano numérico.pptx por FabiolaPerez100
Números reales y plano numérico.pptxNúmeros reales y plano numérico.pptx
Números reales y plano numérico.pptx
FabiolaPerez1005 visualizações
trabajo yoleida.ppt por JoseMartinez598067
trabajo yoleida.ppttrabajo yoleida.ppt
trabajo yoleida.ppt
JoseMartinez59806712 visualizações
Números Reales por SabrinaQuerales
Números RealesNúmeros Reales
Números Reales
SabrinaQuerales17 visualizações
Numeros reales por yariannyescobar
Numeros realesNumeros reales
Numeros reales
yariannyescobar11 visualizações
Numeros reales y_plano_numerico por Yoselin Sivira
Numeros reales y_plano_numericoNumeros reales y_plano_numerico
Numeros reales y_plano_numerico
Yoselin Sivira12 visualizações

Último

Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf por
Semana de Gestion Escolar Final 2023  GE  Ccesa007.pdfSemana de Gestion Escolar Final 2023  GE  Ccesa007.pdf
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdfDemetrio Ccesa Rayme
219 visualizações26 slides
infografia 1.pptx por
infografia  1.pptxinfografia  1.pptx
infografia 1.pptxramirezasesor10
31 visualizações1 slide
Inteligencia Artificial en las aulas por
Inteligencia Artificial en las aulasInteligencia Artificial en las aulas
Inteligencia Artificial en las aulasLorena Fernández
97 visualizações21 slides
Misión en favor de los necesitados por
Misión en favor de los necesitadosMisión en favor de los necesitados
Misión en favor de los necesitadoshttps://gramadal.wordpress.com/
418 visualizações16 slides
Muestra Anual de Literatura Clásica y Latín.pptx por
Muestra Anual de Literatura Clásica y Latín.pptxMuestra Anual de Literatura Clásica y Latín.pptx
Muestra Anual de Literatura Clásica y Latín.pptxMaría Roxana
110 visualizações19 slides
semana 2 .pdf por
semana 2 .pdfsemana 2 .pdf
semana 2 .pdfValdezsalvadorMayleM
87 visualizações6 slides

Último(20)

Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf por Demetrio Ccesa Rayme
Semana de Gestion Escolar Final 2023  GE  Ccesa007.pdfSemana de Gestion Escolar Final 2023  GE  Ccesa007.pdf
Semana de Gestion Escolar Final 2023 GE Ccesa007.pdf
Demetrio Ccesa Rayme219 visualizações
infografia 1.pptx por ramirezasesor10
infografia  1.pptxinfografia  1.pptx
infografia 1.pptx
ramirezasesor1031 visualizações
Inteligencia Artificial en las aulas por Lorena Fernández
Inteligencia Artificial en las aulasInteligencia Artificial en las aulas
Inteligencia Artificial en las aulas
Lorena Fernández97 visualizações
Muestra Anual de Literatura Clásica y Latín.pptx por María Roxana
Muestra Anual de Literatura Clásica y Latín.pptxMuestra Anual de Literatura Clásica y Latín.pptx
Muestra Anual de Literatura Clásica y Latín.pptx
María Roxana110 visualizações
DEPORTES DE RAQUETA .pdf por Miguel Lopez Marin
DEPORTES DE RAQUETA .pdfDEPORTES DE RAQUETA .pdf
DEPORTES DE RAQUETA .pdf
Miguel Lopez Marin26 visualizações
Aprendiendo a leer :Ma me mi mo mu..pdf por camiloandres593920
Aprendiendo a leer :Ma me mi mo mu..pdfAprendiendo a leer :Ma me mi mo mu..pdf
Aprendiendo a leer :Ma me mi mo mu..pdf
camiloandres59392034 visualizações
Perspectivas teóricas y modelos por darianavalera54
Perspectivas teóricas y modelos Perspectivas teóricas y modelos
Perspectivas teóricas y modelos
darianavalera5427 visualizações
receta.pdf por carmenhuallpa45
receta.pdfreceta.pdf
receta.pdf
carmenhuallpa45147 visualizações
Concepto de determinación de necesidades.pdf por LauraJuarez87
Concepto de determinación de necesidades.pdfConcepto de determinación de necesidades.pdf
Concepto de determinación de necesidades.pdf
LauraJuarez8764 visualizações
expresion algebraica.pdf por WilkerlySoto
expresion algebraica.pdfexpresion algebraica.pdf
expresion algebraica.pdf
WilkerlySoto25 visualizações
ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen Cordero por Heyssen J. Cordero Maraví
ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen CorderoESCUELA SABÁTICA MISIONERA | By Pr. Heyssen Cordero
ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen Cordero
Heyssen J. Cordero Maraví44 visualizações
Estrategias y Recursos en el Aula Ccesa.pdf por Demetrio Ccesa Rayme
Estrategias y Recursos en el Aula  Ccesa.pdfEstrategias y Recursos en el Aula  Ccesa.pdf
Estrategias y Recursos en el Aula Ccesa.pdf
Demetrio Ccesa Rayme285 visualizações
Infografia María Fuenmayor S _20231126_070624_0000.pdf por mariafuenmayor20
Infografia María Fuenmayor S _20231126_070624_0000.pdfInfografia María Fuenmayor S _20231126_070624_0000.pdf
Infografia María Fuenmayor S _20231126_070624_0000.pdf
mariafuenmayor2033 visualizações
Misión en favor de los poderosos.pdf por AlejandrinoHalire
Misión en favor de los poderosos.pdfMisión en favor de los poderosos.pdf
Misión en favor de los poderosos.pdf
AlejandrinoHalire65 visualizações

números reales.pptx

  • 1. Republica Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universidad Politécnica Territorial Andrés Eloy Blanco Barquisimeto – Edo- Lara Nombre y Apellido: Ángela Rojas CI: 30894974 Trayecto Inicial - Informática Sección: IN0104
  • 2. ¿Que son los conjuntos? Un conjunto o colección lo forman unos elementos de la misma naturaleza, es decir, elementos diferenciados entre si pero que poseen en común ciertas propiedades o características, y que pueden tener entre ellos, o con los elementos de otros conjuntos, ciertas relaciones. un conjunto puede tener un número finito o infinito de elementos, en matemáticas es común denotar a los elementos mediante letras minúsculas y a los conjuntos por letras mayúsculas, así por ejemplo: C= (a, b, c, d, e, f, g, h.)
  • 3. Diversos conjuntos numéricos En Matemáticas empleamos diversos conjuntos de números, los más elementales son: N=(0,1,2,3,4,5,). El conjunto de los números naturales, o números que sirven para contar. Z=(-5,-4,-3, -2, -1, 0, 1, 2, 3, 4, 5,...). El conjunto de los números enteros, o números que sirven para designar cantidades enteras (positivas o negativas). Q=(-7/2, -7/3,, -5/4-5/1, 0,, 2/133, 4/7). El conjunto de los números racionales, o números que pueden ser expresados como un cociente entre dos enteros, fracción, p/q. Observen que algunos números con infinitos decimales tal como el 2,33333... pertenece a este conjunto, puesto que: 2,33333... = 7/3. No obstante, en Q no se hallan algunos números como 1,4142136... (raíz cuadrada de 2), o el 3,141592 (el número p) que poseen infinitos decimales pero no pueden expresarse en la forma p/q. A estos números se les llama "números irracionales". R=QU("números irracionales"). El conjunto de los números reales, formado por la unión de Q y de todos los números irracionales. Este conjunto suele denominarse recta real, pues los puntos de una recta pueden ponerse en correspondencia con los infinitos números de R.
  • 4. Números Reales Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en números naturales, enteros, racionales e irracionales. En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos representarlos en la recta real. Los números reales son todos los números que encontramos más frecuentemente dado que los números complejos no se encuentran de manera accidental, sino que tienen que buscarse expresamente. Los números reales se representan mediante la letra R Clasificación de los números reales Números Naturales : N-1812345 Los números naturales es el primer conjunto de números que aprendemos de pequeños. Este conjunto no tiene en cuenta el número cero (0) excepto que se especifique lo contrario (cero neutral). Números enteros: Los números enteros son todos los números naturales e incluyen el cero (0) y todos los números negativos. -3,-2,-4,-10,1,2,3
  • 5. Desigualdades matemática es una proposición de relación de orden existente entre dos expresiones algebraicas conectadas a través de los signos: desigual que *, mayor que >, menor que <, menor o igual que s, así como mayor o igual que è, resultando ambas expresiones de valores distintos. Por tanto, la relación de desigualdad establecida en una expresión de esta índole, se emplea para denotar que dos objetos matemáticos expresan valores desiguales. Desigualdad Algo a notar en las expresiones de desigualdad matemática es que, aquellas que emplean: mayor que > menor que < menor o igual que es < mayor o igual que > Estas son desigualdades que nos revelan en qué sentido la una desigualdad no es igual. mayor que > menor que < Ahora bien, los casos de aquellas desigualdades formuladas como: Son desigualdades conocidas como desigualdades “estrictas”.
  • 6. Valor absoluto de un número entero es el número natural que resulta al suprimir su signo, El valor absoluto lo escribiremos entre barras verticales. Valor absoluto -5 = 5 Valor absoluto de un número real a, se escribe a , es el mismo número a cuando es positivo o cero, y opuesto de a, si a es negativo. Propiedades del valor absoluto
  • 7. Desigualdades con valor absoluto Una desigualdad con valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cualesquiera números reales a y b , si | a | < b , entonces a < b Y a > - b . Desigualdades de valor absoluto (<):
  • 8. La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4. Así, x < -4 O x > 4. El conjunto solución es . Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. En otras palabras, para cualesquiera números reales a y b , si | a | > b , entonces a > b O a < - b Desigualdades de valor absoluto (>):