Introdução ao desenvolvimento de
agentes inteligentes com Jason
por
Nécio de Lima Veras
Objetivo
Estes slides objetivam fornecer uma introdução
ao desenvolvimento de agentes inteligentes
usando um interpretador...
Agenda
● Arquitetura BDI
● AgentSpeak(L)
● Jason
Arquitetura de agente BDI
● É uma das mais importantes arquiteturas de
agentes deliberativos;
● É baseada em um modelo cog...
Arquitetura de agente BDI
● A arquitetura está relacionada com o
entendimento do raciocínio prático;
● O raciocínio prátic...
Exemplo de raciocínio lógico
O que fazer depois de ter terminado um curso superior?
Quais opções tenho em função do conhec...
Exemplo de raciocínio lógico
Existirão grupos de alternativas (estados
do mundo) que irão motivar o agente.
Chamamos isso ...
Intenções
● Dados os grupos de opções (desejos) então deve-se optar por uma
e se comprometer por ela, ou seja, será transf...
Intenções e o raciocínio prático
●
Intenções guiam como o raciocínio será atingido (means-ends)
– “Tentar entrar em um pro...
A arquitetura BDI
Diagrama esquemático
da arquitetura BDI
Revisor de crenças:
Pode determinar um novo conjunto de crenças
...
Um agente BDI em pseudocódigo
Pode-se ainda associar prioridade para cada uma
das intenções, indicando grau de importância.
Agenda
● Arquitetura BDI
● AgentSpeak(L)
● Jason
Noções gerais
● Proposta inicialmente por Anand S. Rao
(1996) no trabalho AgentSpeak(L): BDI agents
speak out in a logical...
Noções gerais
● Projetada para programação de agentes BDI na
forma reactive planning systems;
● Esses sistemas...
– ...est...
Noções gerais
● Existem dois tipos de objetivos:
– De realização (!)
– De teste (?)
● Ambos são predicados, porém com oper...
Noções gerais
● Os planos são ações básicas que um agente
executa no ambiente;
● Um plano é formado por:
– Um evento ativa...
Noções gerais
● Exemplo de plano:
Um concerto a ser realizado pelo artista A
no local V corresponde a adição de uma
crença...
Sintaxe abstrata
ag: é um agente especificado por um
conjunto de crenças bs e um conjunto de
planos ps
ct: é o contexto do...
Um interpretador abstrato para
AgentSpeak(L)
● Precisa...
– ...ter acesso à base de crença e à biblioteca de
planos;
– ......
Ciclo de raciocínio de um programa
agente em AgentSpeak(L)
Um pequeno exemplo de uso...
● Robôs Coletores de Lixo em Marte
– SMA com dois robôs coletando lixo no planeta
Marte;
– O ...
Percepção: r1 coleta lixo
Caso ele esteja checando
slots então deve realizar
a seq. de ações:
parar de checar;
coletar o l...
Agenda
● AgentSpeak(L)
● Arquitetura BDI
● Jason
Jason ….
● ...é um interpretador para uma versão estendida da
linguagem AgentSpeak(L);
● ...implementa uma semântica opera...
Ciclo de raciocínio do Jason
Os DEZ passos do processo de
raciocínio
1. Percepção do ambiente
2. Atualização da base de crença
3. Recepção de comunicaç...
Os DEZ passos do processo de
raciocínio
6. Recuperação de todos os planos relevantes
7. Determinação dos planos aplicáveis...
AgentSpeak + Jason
● Crenças:
– Representada por literais de lógica de primeira ordem;
– Descreve o que o agente sabe sobr...
Tipos dos termos reconhecidos
AgentSpeak + Jason
● Alterações na base de crença:
– Por percepções [source(percept)] - automático;
– Pelas intenções [sou...
AgentSpeak + Jason
● O operador not (negação como falha):
– É true se o interpretador falhar para derivar o
argumento;
– E...
AgentSpeak + Jason
● Objetivos (! = realização e ? = teste):
● Exemplo: !write(book).
● Novos objetivos são adicionados:
–...
AgentSpeak + Jason
– Por comunicações (outros exemplos)
.send(tom,unachieve,write(book)); // sent by Bob
// removes goal w...
AgentSpeak + Jason
● Eventos:
– Ocorrem como consequências das mudanças no
agente (crenças ou objetivos);
– Tipos:
+b (bel...
AgentSpeak + Jason
● Uma biblioteca de planos de um agente é formada
por:
– Planos iniciais definidos pelo programador;
– ...
AgentSpeak + Jason
● Exemplo de um plano inicialmente definido:
+!prepare(Something) : number_of_people(N) &
stock(Somethi...
Jason
● Ações internas do agente:
– Jason traz um gama de comportamento pré-
programados inerentes aos agentes;
– São iden...
Exemplos de Projetos
● Um bingo composto por dois
programas agentes:
– Um proprietário
– Um jogador
– O ambiente é a “Mesa...
Referências
● Wooldridge, M . An Introduction to MultiAgent Systems.
British: Willey (2002).
● Bordini, R. H., Vieira, R. ...
Próximos SlideShares
Carregando em…5
×

Agentes inteligentes com jason

2.017 visualizações

Publicada em

1 comentário
1 gostou
Estatísticas
Notas
Sem downloads
Visualizações
Visualizações totais
2.017
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
61
Comentários
1
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Agentes inteligentes com jason

  1. 1. Introdução ao desenvolvimento de agentes inteligentes com Jason por Nécio de Lima Veras
  2. 2. Objetivo Estes slides objetivam fornecer uma introdução ao desenvolvimento de agentes inteligentes usando um interpretador baseado em Java (Jason) para uma versão estendida da linguagem AgentSpeak(L).
  3. 3. Agenda ● Arquitetura BDI ● AgentSpeak(L) ● Jason
  4. 4. Arquitetura de agente BDI ● É uma das mais importantes arquiteturas de agentes deliberativos; ● É baseada em um modelo cognitivo fundamentado em três atitudes mentais: – Beliefs – Desires– Intentions (B-D-I) ● Toda a fundamentação filosófica advém dos trabalhos: – Daniel C. Dennett. The Intentional Stance (1987) – Michael E. Bratman. Intentions, Plans and Practical Reason (1987)
  5. 5. Arquitetura de agente BDI ● A arquitetura está relacionada com o entendimento do raciocínio prático; ● O raciocínio prático envolve dois importantes processos: – Decidir qual objetivo queremos atingir (deliberação); e – Como iremos atingir esse objetivo (means-ends). ● Exemplo...
  6. 6. Exemplo de raciocínio lógico O que fazer depois de ter terminado um curso superior? Quais opções tenho em função do conhecimento que possuo? Esse conhecimento é a sua CRENÇA.
  7. 7. Exemplo de raciocínio lógico Existirão grupos de alternativas (estados do mundo) que irão motivar o agente. Chamamos isso de DESEJOS.
  8. 8. Intenções ● Dados os grupos de opções (desejos) então deve-se optar por uma e se comprometer por ela, ou seja, será transformado em intenção. – Elas alimentarão o raciocínio lógico futuro do agente. – O agente deverá designar tempo e esforço para realizar a sua intenção. ● Exemplo de intenção: Ingressar na academia. ● Possíveis ações: – Inscrever-se em programas de mestrado; – Persistir! – Detectadas falhas (não aceitação em várias universidades) então seria racional aumentar as horas de estudo; – No entanto, persistir em muitas falhas é irracional. ● Assim, uma intenção está relacionada com crenças sobre o futuro.
  9. 9. Intenções e o raciocínio prático ● Intenções guiam como o raciocínio será atingido (means-ends) – “Tentar entrar em um programa de mestrado e, caso não consiga, tentar em outra universidade”; ● Intenções restringem deliberações futuras – “Ações conflitantes com minha intenção não devem ser investidas, como por exemplo, ser rico e ser universitário”; ● Intenções persistem – “Não se pode desistir de uma intenção sem uma boa razão para isso. Caso contrário, jamais uma intenção será atingida”; ● Intenções influenciam crenças sobre as quais os futuros raciocínios práticos serão baseados – “Se a intenção é tornar-se um acadêmico, então deve-se acreditar que em breve isso será verdade. Se, simultaneamente, acredita-se que nunca será um acadêmico então o agente está sendo irracional”.
  10. 10. A arquitetura BDI Diagrama esquemático da arquitetura BDI Revisor de crenças: Pode determinar um novo conjunto de crenças Determina o conjunto de opções disponíveis para os desejos do agente Representa o processo de deliberação
  11. 11. Um agente BDI em pseudocódigo Pode-se ainda associar prioridade para cada uma das intenções, indicando grau de importância.
  12. 12. Agenda ● Arquitetura BDI ● AgentSpeak(L) ● Jason
  13. 13. Noções gerais ● Proposta inicialmente por Anand S. Rao (1996) no trabalho AgentSpeak(L): BDI agents speak out in a logical computable language; ● Inspirada na arquitetura BDI (fiel à proposta filosófica); ● Sintaxe elegante; ● Extensão natural do paradigma de programação lógica (como o Prolog);
  14. 14. Noções gerais ● Projetada para programação de agentes BDI na forma reactive planning systems; ● Esses sistemas... – ...estão permanentemente em execução; – ...reagem a eventos que aconteçam no ambiente; – ...executam planos depositados em uma biblioteca; ● É constituída por: – Átomo de crença (predicado de primeira ordem); – Literais de crença (átomos ou suas negações); – Base de crença (coleção de átomos).
  15. 15. Noções gerais ● Existem dois tipos de objetivos: – De realização (!) – De teste (?) ● Ambos são predicados, porém com operadores prefixados; ● Na prática, indicam a execução de subplanos; ● Os eventos ativadores (triggers events) podem iniciar a execução de um plano; ● Um evento pode ser de dois tipos: – Interno: gerado por um plano que precisa de um subobjetivo; – Externo: gerado por atualizações de crenças vindas do ambiente; ● Os E.A. estão relacionados com adição ('+') ou remoção ('-') de atitudes mentais;
  16. 16. Noções gerais ● Os planos são ações básicas que um agente executa no ambiente; ● Um plano é formado por: – Um evento ativador (denota o propósito do plano); – Uma conjunção de literais (representa o contexto); – Sequência de ações ou subobjetivos;
  17. 17. Noções gerais ● Exemplo de plano: Um concerto a ser realizado pelo artista A no local V corresponde a adição de uma crença concert(A,V) como conseqüência da percepção do ambiente. Caso o agente goste do artista A então ele irá reservar ingressos para essa combinação. Ao adotar o objetivo de reservar , se o telefone não estiver ocupado, então o agente irá executar o plano indicado pela ligação para o local do evento seguindo por um protocolo de compra “...” e finalizado pela escolha dos acentos para o concerto do artista.
  18. 18. Sintaxe abstrata ag: é um agente especificado por um conjunto de crenças bs e um conjunto de planos ps ct: é o contexto do plano h: é uma seqüência de ações, objetivos ou atualizações de crenças at: são fórmulas atômicas da linguagem, que são predicados onde p é um símbolo predicativo, ou seja, p: é um plano te: é o evento ativador te: adição/remoção de crenças da base de crenças do agente (+at e -at) te: adição/remoção de objetivos (+g e -g); u: corresponde a atualização da base de crenças g: são os objetivos e podem ser de realização (!at) ou de teste (?at); Onde:
  19. 19. Um interpretador abstrato para AgentSpeak(L) ● Precisa... – ...ter acesso à base de crença e à biblioteca de planos; – ...gerenciar o conjunto de eventos e intenções; ● Seu funcionamento requer três funções de seleção para selecionar... – ...um evento; – ...um plano aplicável; – ...uma intenção. ● Devem ser flexíveis ao projetista.
  20. 20. Ciclo de raciocínio de um programa agente em AgentSpeak(L)
  21. 21. Um pequeno exemplo de uso... ● Robôs Coletores de Lixo em Marte – SMA com dois robôs coletando lixo no planeta Marte; – O Robô 1 (r1) procura por lixos e, ao encontrar, leva até a posição do Robô 2 (r2); – O Robô 2 está posicionado ao lado do incinerador e, ao receber o lixo, ele coloca no incinerador; – Os lixos são colocados aleatoriamente no ambiente;
  22. 22. Percepção: r1 coleta lixo Caso ele esteja checando slots então deve realizar a seq. de ações: parar de checar; coletar o lixo continuar a checar. O agente pretende realizar o plano take e como o contexto é vazio (true) ele é sempre aplicável. O plano envolve realizar: ensure_pick(S) go(L) drop(S)
  23. 23. Agenda ● AgentSpeak(L) ● Arquitetura BDI ● Jason
  24. 24. Jason …. ● ...é um interpretador para uma versão estendida da linguagem AgentSpeak(L); ● ...implementa uma semântica operacional da linguagem; ● ...provê uma plataforma para desenvolvimento de sistemas multi-agentes; ● ...possui muitos recursos de customização de agentes; ● ...é livre!!! o/ => http://jason.sourceforge.net/ ● ...é implementado em Java; ● ...desenvolvido por Jomi F. Hübner (UFSC) e Rafael H. Bordini (PUCRS).
  25. 25. Ciclo de raciocínio do Jason
  26. 26. Os DEZ passos do processo de raciocínio 1. Percepção do ambiente 2. Atualização da base de crença 3. Recepção de comunicação vindo de outros agentes 4. Seleção de mensagens “socialmente” aceitáveis 5. Seleção de um evento
  27. 27. Os DEZ passos do processo de raciocínio 6. Recuperação de todos os planos relevantes 7. Determinação dos planos aplicáveis 8. Seleção de um dos planos aplicáveis 9. Seleção de uma intenção para execução futura 10. Execução de um passo da intenção
  28. 28. AgentSpeak + Jason ● Crenças: – Representada por literais de lógica de primeira ordem; – Descreve o que o agente sabe sobre o ambiente; – Expressa a crença do agente e não a verdade pura; – Exemplo de uma base de crença do agente Tom: red(box1) [source(percept)]. tall (bob). friend(bob,alice) [source(bob)]. lier(alice) [source(self),source(bob)]. ~lier(bob) [source(self)]. Anotações
  29. 29. Tipos dos termos reconhecidos
  30. 30. AgentSpeak + Jason ● Alterações na base de crença: – Por percepções [source(percept)] - automático; – Pelas intenções [source(self)] ● Exemplos: +lier(alice); // adds lier(alice)[source(self)] -lier(john); // removes lier(john)[source(self)] – Por comunicações [source(bob)] ● Exemplo: .send(tom,tell,lier(alice)); // sent by bob // adds lier(alice)[source(bob)] in Tom's BB
  31. 31. AgentSpeak + Jason ● O operador not (negação como falha): – É true se o interpretador falhar para derivar o argumento; – Exemplo: not likes(john, music). ● O operador ~ (negação forte): – É true se o agente tem uma crença explícita que o argumento é falso; – Exemplo: ~likes(john,music).
  32. 32. AgentSpeak + Jason ● Objetivos (! = realização e ? = teste): ● Exemplo: !write(book). ● Novos objetivos são adicionados: – Por intenções !write(book); ?publisher(P); – Por comunicações .send(tom,achieve,write(book)); // sent by Bob // adds new goal write(book)[source(bob)] for Tom
  33. 33. AgentSpeak + Jason – Por comunicações (outros exemplos) .send(tom,unachieve,write(book)); // sent by Bob // removes goal write(book)[source(bob)] for Tom .send(tom,askOne,published(P),Answer); // sent by Bob // adds new goal ?publisher(P)[source(bob)] for Tom // the response of Tom will unify with Answer
  34. 34. AgentSpeak + Jason ● Eventos: – Ocorrem como consequências das mudanças no agente (crenças ou objetivos); – Tipos: +b (belief addition) -b (belief deletion) +!g (achievement-goal addition) -!g (achievement-goal deletion) +?g (test-goal addition) -?g (test-goal deletion) – O agente reage a evento por meio da execução de planos;
  35. 35. AgentSpeak + Jason ● Uma biblioteca de planos de um agente é formada por: – Planos iniciais definidos pelo programador; – Planos adicionados dinamicamente; ● .add_plan ● .remove_plan – Planos recebidos de outros agentes; ● tellHow messagens ● UntellHow ● Um plano possui a seguinte estrutura: triggering event : context <- body
  36. 36. AgentSpeak + Jason ● Exemplo de um plano inicialmente definido: +!prepare(Something) : number_of_people(N) & stock(Something,S) & S > N <- ... .
  37. 37. Jason ● Ações internas do agente: – Jason traz um gama de comportamento pré- programados inerentes aos agentes; – São identificados por um “.” precedendo seu nome; – Exemplos: ● .send ● .print ● .member ● .list – É possível criar as próprias ações internas;
  38. 38. Exemplos de Projetos ● Um bingo composto por dois programas agentes: – Um proprietário – Um jogador – O ambiente é a “Mesa de Bingo” ● Monica Guanabara: – “Uma agente” que realiza comunicações sobre a compra de assentos por meio de uma rede social; ● Ambos estão no github: www.github.com/necioveras
  39. 39. Referências ● Wooldridge, M . An Introduction to MultiAgent Systems. British: Willey (2002). ● Bordini, R. H., Vieira, R. Linguagens de Programação Orientadas a Agentes: uma introdução baseada em AgentSpeak(L). Revista de informática teórica e aplicada: Porto Alegre. Vol.10, n.1 (2003), p.7-38. ● Bordini, R., Hübner, J., Wooldridge, M. Programming multi- agent systems in AgentSpeak using Jason: Willey (2007).

×