âNgulos slides

1.482 visualizações

Publicada em

0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
1.482
No SlideShare
0
A partir de incorporações
0
Número de incorporações
7
Ações
Compartilhamentos
0
Downloads
41
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

âNgulos slides

  1. 1. GEOMETRIA<br />TEMA: ÂNGULOS<br />
  2. 2. O conceito de Ângulo<br />Ângulo é a reunião de dois segmentos de reta orientados (ou duas semi-retas orientadas) a partir de um ponto comum.<br />A intersecção entre os dois segmentos (ou semi-retas) é denominada vértice do ângulo e os lados do ângulo são os dois segmentos (ou semi-retas). <br /> v Lados <br /> Vértice<br />
  3. 3. Podem ser usadas três letras, por exemplo ABC para representar um ângulo, sendo que a letra do meio B representa o vértice, a primeira letra A representa um ponto do primeiro segmento de reta (ou semi-reta) e a terceira letra C representa um ponto do segundo segmento de reta (ou semi-reta).<br />
  4. 4. Segmentos de reta e semi-reta<br />Lembramos que um segmento de reta orientado AB é um segmento de reta que tem início em A e final em B.<br /> A B<br />Uma semi-reta orientada AB é a parte de uma reta que tem início em A, passa por B e se prolonga indefinidamente.<br /> A B<br />
  5. 5. O Transferidor<br />Para obter a medida aproximada de um ângulo traçado em um papel, utilizamos um instrumento denominado transferidor, que contém um segmento de reta em sua base e um semicírculo na parte superior marcado com unidades de 0 a 180. Alguns transferidores possuem a escala de 0 a 180 marcada em ambos os sentidos do arco para a medida do ângulo sem muito esforço.<br />
  6. 6. Para medir um ângulo, coloque o centro do transferidor (ponto 0) no vértice do ângulo, alinhe o segmento de reta OA (ou OE) com um dos lados do ângulo e o outro lado do ângulo determinará a medida do ângulo, como mostra a figura.<br />
  7. 7. Na figura acima, podemos ler diretamente as medidas dos seguintes ângulos: <br />
  8. 8. Ângulos geometricamente iguais ou congruentes<br />Dois ângulos são congruentes se, sobrepostos um sobre o outro, todos os seus elementos coincidem.<br /> Na figura ABC e DEF são ângulos congruentes.<br />B Ξ E <br /> O símbolo Ξ lê-se <br /> “ é coincidente com”.<br />
  9. 9. Com relação às suas medidas, os ângulos podem ser classificados como: reto, agudo, obtuso, raso.<br />Ângulo agudo – medida maior que 0 graus e menor que 90 graus. <br />Ângulo reto – medida 90 graus. <br />
  10. 10. Ângulo obtuso – medida maior que 90 graus e menor que 180 graus.<br />Ângulo raso – medida 180 graus.<br />
  11. 11. Pares de ângulos<br />Ângulos adjacentes – têm um lado comum que os separa.<br />AÔB e BÔC são ângulos adjacentes.<br />Ângulos verticalmente opostos – têm o vértice em comum.<br />AÔB e CÔD são ângulos opostos pelo vértice. <br />AÔD e BÔC são ângulos opostos pelo vértice.<br />
  12. 12. Ângulos complementares – são ângulos cuja soma das amplitudes é 90 graus.<br /> a + b = 90⁰<br />a<br />b<br />• Ângulos suplementares – são ângulos cuja soma das amplitudes é 180 graus.<br /> c<br /> c + d = 180⁰ <br /> d<br />

×