SlideShare a Scribd company logo
1 of 141
Genetic Ophthalmic Disorders
Normal Structure of the Eye
Color Blindness
• Color blindness is a color vision deficiency that
  makes it difficult to impossible to perceive
  differences between some colors.
(The inability to identify colors in a normal way)
Pathophysiology
• Colorblindness mainly affects males because
  the genes for red and green cones are on the
  X chromosome
• Males have only one copy of this
  chromosome.
• Females, on the other hand, have a second X
  chromosome that serves as a backup if
  something goes wrong with the first.
• The male children of a carrier parent (mother)
  have a 50% probability of being color blind.
  These odds don't change even if the father is
  color vision defective.
Types
• Red-green color blindness
  This combines four different types of color blindness.
 Protanomaly and protanopia are caused by defective
  or even missing L-cones (long-wavelengths).
 Deuteranomaly or deuteranopia are in opposite
  defective or missing M-cones (medium-wavelengths)
• Blue cone monochromacy
  As this type of monochromacy is caused by a
  complete absence of L- and M-cones, blue cone
  monochromacy is encoded at the same place as red-
  green color blindness on the X chromosome.
• Blue-yellow color blindness
  Caused by defective or missing S-cones (short-
  wavelength). These photopigments are encoded
  in genes which reside on chromosome 7, an
  autosomal chromosome. This is why blue-yellow
  color blindness occures at the same rate on both
  sexes.
• Rod monochromacy
  Total loss of color vision and is also known as
    complete achromatopsia.
•    In this case the retina does not have any cone cells
    at all.
•    It is known to be an autosomal recessive disease and
    can be provoked by different circumstances.
•    Recent studies show that it can be encoded on
    chromosome 2 as well as on chromosome 8.
•   Earlier studies assigned chromosome 14 to rod
    monochromacy but this could not be reconstructed.
Cause
• Color vision deficiency or color blindness is caused when
  the cone cells are unable to distinguish among the different
  light wavelengths and therefore misfire, causing the brain
  to misinterpret certain colors.
• Mutations in the following genes results in defects in color
  vision : CNGA3, CNGB3, GNAT2, OPN1LW, OPN1MW, and
  OPN1SW.
 More specifically:
• OPN1LW mutations impact cells that are designed to pick
  up the red end of the light spectrum
• OPN1MW mutations impact cells that detect the midrange
  colors of the light spectrum, such as yellow and green.
• OPN1SW mutations impact cells that detect the lower
  range of the light spectrum, such as indigo and violet
Signs and Symptoms
Symptoms vary from person to person, but may
  include:
• Trouble seeing colors and the brightness of colors
  in the usual way
• Inability to tell the difference between shades of
  the same or similar colors

Often, the symptoms may be so mild that some people do not know they are
   color blind. A parent may notice signs of color blindness when a child is
   learning his or her colors.
Rapid, side-to-side eye movements (nystagmus) and other symptoms may
   occur in severe cases.
Diagnosis
The Ishihara test
• This comprises of a picture made of many dots
  with an image/s that the normal eye can
  detect or the color blind can detect
Treatment
• There is no cure for colorblindness
• Some patients are given light filtering lenses
  to help them distinguish colors.
• Gene therapy is now being tested and has
  been successful in treating two adult monkeys
  that were colorblind from birth
• The aim is to target the gene expression using
  normal cells
Glaucoma
Dictionary.com defines glaucoma as
abnormally high fluid pressure in the eye, most
commonly caused either by blockage of the channel
through which aqueous humor drains or by pressure
of the iris against the lens
Pathophysiology
• The major risk factor for glaucoma is the increase
  of intraocular pressure (also known as ocular
  hypertension)
• Intraocular pressure is a function of production of
  liquid aqueous humor by the ciliary processes of
  the eye, and its drainage through the trabecular
  meshwork.
• Aqueous humor flows from the ciliary processes
  into the posterior chamber, bounded posteriorly
  by the lens and the zonules of Zinn, and
  anteriorly by the iris.
• It then flows through the pupil of the iris into
  the anterior chamber, bounded posteriorly by
  the iris and anteriorly by the cornea.
• From here the trabecular meshwork drains
  aqueous humor via Schlemm's canal into
  scleral plexuses and general blood circulation
Types of Glaucoma
There are several types of glaucoma, but there are two
  main two types:
• Open-Angle Glaucoma
   “Open-angle” means that the angle where the iris meets
  the cornea is as wide and open as it should be. Open-
  angle glaucoma is also called primary or chronic
  glaucoma. It is the most common type of glaucoma

• This type is caused by the slow clogging of the drainage
  canals, resulting in increased eye pressure and has a wide
  and open angle between the iris and cornea
• Develops slowly and is a lifelong condition
Angle- Closure Glaucoma
• It is also called acute glaucoma or narrow-angle glaucoma
  and is a less common form of glaucoma.
• Unlike open-angle glaucoma, angle-closure glaucoma is a
  result of the angle between the iris and cornea closing.
• Caused by blocked drainage canals, resulting in a sudden
  rise in intraocular pressure
• Has a closed or narrow angle between the iris and cornea
• Develops very quickly
• Has symptoms and damage that are usually very noticeable
  and thus demands immediate medical attention
Gene Affected
• Myocilin was the first gene known to cause
  glaucoma and was discovered in 1995.
• This gene on chromosome 1 makes a protein
  that is secreted in the trabecular meshwork
  (drainage angle) of the eye. It is most likely
  that mutant Myocilin protein causes glaucoma
  by damaging the trabecular meshwork,
  thereby impairing outflow of aqueous fluid
  from the eye.
Cause
• Several groups have shown that some
  individuals carry two mutations; one each in
  Myocilin and CYP1B1(causes congenital
  glaucoma)
• Congenital glaucoma is caused by 2 mutations
  in CYP1B1.
• The glaucoma associated with Myocilin AND
  CYP1B1 is more aggressive, with an earlier
  onset than Myocilin alone.
Signs and symptoms
Primary open-angle glaucoma signs and symptoms include:
• Gradual loss of peripheral vision, usually in both eyes
• Tunnel vision in the advanced stages

Acute angle-closure glaucoma signs and symptoms include:
• Severe eye pain
• Nausea and vomiting (accompanying the severe eye pain)
• Sudden onset of visual disturbance, often in low light
• Blurred vision
• Halos around lights
• Reddening of the eye
Diagnosis
There are many ways to diagnose glaucoma:
• Measuring intraocular pressure
   Tonometry is a simple, painless procedure that measures the intraocular pressure, after numbing the
    eyes with drops. It is usually the initial screening test for glaucoma.

•    Test for optic nerve damage
    To check the fibers of the optic nerve, the doctor uses instruments to look directly through the pupil
     to the back of your eye. This can reveal slight changes that may indicate the beginnings of
     glaucoma.

•   Measuring cornea thickness (pachymetry)
    The eyes are numbed for this test, which determines the thickness of each cornea, an important
    factor in diagnosing glaucoma. If the corneas are thick, the eye-pressure reading may read higher
    than normal even though the patient may not have glaucoma. Similarly, people with thin corneas
    can have normal pressure readings and still have glaucoma.

•   Other tests
    To distinguish between open-angle glaucoma and angle-closure glaucoma, your eye doctor may use
    a technique called gonioscopy in which a special lens is placed on your eye to inspect the drainage
    angle. Another test, tonography, can measure how quickly fluid drains from your eye.
Treatment
The aim of treatment for glaucoma is to reduce intraocular pressure. Listed below are
   some of the treatment available:
 Prostaglandin-like compounds. These eyedrops increase the outflow of aqueous
   humor. E.g. latanoprost (Xalatan) and bimatoprost (Lumigan)
 Beta blockers. These reduce the production of aqueous humor. E.g. timolol
   (Betimol, Timoptic), betaxolol (Betoptic) and metipranolol (Optipranolol)

 Alpha-agonists. These reduce the production of aqueous humor and increase
  drainage. E.g. apraclonidine (Iopidine) and brimonidine (Alphagan)

 Carbonic anhydrase inhibitors. These also reduce the production of aqueous
  humor. E.g. dorzolamide (Trusopt) and brinzolamide (Azopt)

 Miotic or cholinergic agents. These also increase the outflow of aqueous humor.
  E.g. pilocarpine (Isopto Carpine) and carbachol (Isopto Carbachol)

 Epinephrine compounds. These compounds, such as dipivefrin (Propine), also
  increase the outflow of aqueous humor.
• Surgery
Surgeries used to treat glaucoma include:
• Laser surgery. In the last couple of decades, a procedure
  called trabeculoplasty has had an increased role in treating
  open-angle glaucoma. After giving an anesthetic
  eyedrop, the doctor uses a high-energy laser beam to open
  clogged drainage canals and help aqueous humor drain
  more easily from the eye.
• Filtering surgery. If eyedrops and laser surgery aren't
  effective in controlling your eye pressure, you may need an
  operation called a filtering procedure, usually in the form of
  a trabeculectomy
• Drainage implants. Another type of operation, called
  drainage implant surgery, may be an option for people with
  secondary glaucoma or for children with glaucoma. The eye
  surgeon inserts a small silicone tube into the eye to help
  drain aqueous humor.
Gene Therapy
• In recent studies, researchers found that both viral and nonviral
  vector gene delivery systems have been used to target specific
  tissues involved in the pathogenesis of glaucoma.
• These tissues include the trabecular meshwork, ciliary body, ciliary
  epithelium, Müller cells, and retinal ganglion cells.
• Recent studies in large animal models have demonstrated effective
  long-term gene expression in the trabecular meshwork following
  intracameral delivery of adeno-associated viral vectors and lentiviral
  vectors with limited effect on surrounding ocular tissues.
• Other promising studies have focused on vector-mediated
  expression of neurotrophic factors and have demonstrated a
  neuroprotective effect following intravitreal delivery of vectors in
  glaucomatous animal models.
Nystagmus
 Nystagmus can be defined as involuntary, rapid
  movements of the eye. Movemements can be either:
• Side to side (horizontal nystagmus)
• Up and down (vertical nystagmus)
• Rotary (rotary or torsional nystagmus)

 Nystagmus is also known as dancing eyes
• When affected by nystagmus, either one or
  both of the eyes can move in a circular
  motion, up and down, or from side to side
• Dysfunction in the inner ear or the part of the
  brain that controls eye movements can cause
  nystagmus to develop, which has a variety of
  causes.
• Nystagmus occurs often in infants.
Types
 Congenital nystagmus is present at birth. With this condition, the
  eyes move together as they oscillate (swing like a pendulum). Most
  other types of infantile nystagmus are also classified as forms of
  strabismus, which means the eyes don't necessarily work together
  at all times.
 Manifest nystagmus is present at all times
 Latent nystagmus occurs when one eye is covered.
 Manifest-latent nystagmus is continually present, but worsens
  when one eye is covered.
 Acquired nystagmus can be caused by a disease (multiple sclerosis,
  brain tumor, diabetic neuropathy), an accident (head injury), or a
  neurological problem (side effect of a medication).

 Hyperventilation, a flashing light in front of one eye, nicotine and even vibrations
   have been known to cause nystagmus in rare cases. Some acquired nystagmuses
   can be treated with medications or surgeries.
Cause
Mutations in the FRMD7 gene cause X-linked
 infantile nystagmus.
The FRMD7 gene provides instructions for making
 a protein whose exact function is unknown.
This protein is found mostly in areas of the brain
 that control eye movement and in the light-
 sensitive tissue at the back of the eye (retina).
Research suggests that FRMD7 gene mutations
 cause nystagmus by disrupting the development
 of certain nerve cells in the brain and retina.
Signs and sypmtoms
 To and fro movements of the eyes are observed by
  other people and the patient himself is unaware about
  the eye movements as the objects being viewed do not
  seem to move.
 If nystagmus is developed during childhood, the child
  has tends to nod his head depending upon the type
  and direction of nystagmus. In cases of acquired adult
  nystagmus, the environment appears to oscillate
  horizontally, vertically or torsionally.
 Blurred and unstable vision is a frequent complaint
 For a better vision, abnormal head posturing, may be
  resorted to by patients suffering from nystagmus
Diagnosis
o One way to observe nystagmus is by spinning
  an individual around for about 30 seconds,
  stopping, and then having them try to stare at
  an object. If nystagmus is present, the eyes
  will first move slowly in one direction, then
  move rapidly in the opposite direction.
Other tests that may be used to diagnose
    nystagmus are:
•   Eye-movement recordings — to verify the type of
    nystagmus and determine the details of the
    movements;
•   Ear exam;
•   Neurologic exam;
•   Computerized tomography (CT) — X-rays of the
    brain;
•   Magnetic resonance imaging (MRI) — magnetic
    and radio waves used to make images of the
    brain.
Treatment
• Since the discovery of the gene (FRMD7) that
  causes nystagmus, the drugs memantine and
  gabapentin were used to reduce acquired
  nystagmus.
• They also help people with congenital (also
  known as infantile or early onset) nystagmus.
• Wearing of contact lenses have been known to
  help improve vision even more since the lenses
  move along with the eye movements
• A clinical trial of using gene therapy has restored
  the vision of three young adults in 2008
Retinitis Pigmentosa
• Retinitis pigmentosa (RP) refers to a group of
  inherited disorders that slowly lead to
  blindness due to abnormalities of the
  photoreceptors (primarily the rods) in the
  retina
• It is commonly known as night blindness
Pathophysiology
• The retina lines the interior surface of the back of the eye
  and is made up of several layers
• One layer contains two types of photoreceptor cells
  referred to as the rods and cones.
• The cones are responsible for sharp, central vision and
  color vision and are primarily located in a small area of the
  retina called the fovea.
• The area surrounding the fovea contains the rods, which
  are necessary for peripheral vision and night vision
  (scotopic vision). The number of rods increases in the
  periphery.
• The rod and cone photoreceptors convert light into
  electrical impulses and send the message to the brain via
  the optic nerve.
• Another layer of the retina is called the retinal pigmented
  epithelium (RPE).
• In RP, the photoreceptors (primarily the rods)
  begin to deteriorate and lose their ability to
  function.
• Because the rods are primarily affected, it
  becomes harder to see in dim light, thus
  causing a loss of night vision.
• As the condition worsens, peripheral vision
  disappears, which results in tunnel vision. The
  ability to see color is eventually lost.
• In the late stages of the disease, there is only a
  small area of central vision remaining.
  Ultimately, this too is lost.
Cause
 This disorder has many modes of inheritance
  and is caused by over 100 mutations
 In the non-sex-linked, or autosomal, form, it
  can either be a dominant or recessive trait.
 In the sex-linked form, called x-linked
  recessive, it is a recessive trait.
 This x-linked form is more severe than the
  autosomal forms.
Researchers found a mutation in a gene called
 MAK (male germ cell associated kinase).
 This gene had not previously been associated
 with eye disease in humans.
 However, examining tissue from donated eyes
 showed that MAK protein was located in the
 parts of the retina that are affected by the
 disease.
Signs and sypltoms
o Decreased vision at night or in low light
o Loss of side (peripheral) vision
o Loss of central vision (in advanced cases)
diagnosis
• Tests to evaluate the retina:
• Color vision
• Examination of the retina by ophthalmoscopy after the
  pupils have been dilated
• Fluorescein angiography
• Intraocular pressure
• Measurement of the electrical activity in the retina
  (electroretinogram)
• Pupil reflex response
• Refraction test
• Retinal photography
• Side vision test (visual field test)
• Slit lamp examination
• Visual acuity
Treatment
• Researchers generated induced pluripotent
  stem cells (iPSCs) from the patient's own skin
  cells and coaxed these immature cells to
  develop into retinal tissue.
• Analyzing this tissue showed that the gene
  mutation caused the loss of the MAK protein
  in the retina.
• Currently, synthetic treatment nor surgery has
  been developed to treat this condition
RETINOSCHISIS
• Retinoschisis is a disease of the nerve tissue in the
  eye. It affects the retinal cells in the macula (the
  central fixation point of vision at the back of the eye).
  Retinoschisis is technically a form of macular
  degeneration.
• Retinoschisis is a genetic eye disease that affects the
  vision of men who inherit the disease from their
  mothers.
• This condition frequently starts during childhood and
  is officially called Juvenile X-linked Retinoschisis.
TYPES

• There are two forms of this disorder. The most
  common is an acquired form that affects both men
  and women. It usually occurs in middle age or
  beyond, although it can occur earlier, and it is
  sometimes known as senile retinoschisis.
• The other form is present at birth (congenital) and
  affects mostly boys and young men. It is known as
  juvenile, X-linked retinoschisis.
Symptoms


• Decreased vision
• Loss of peripheral vision
• The symptoms described above may not
  necessarily mean that you have retinoschisis.
  However, if you experience one or more of
  these symptoms, contact your eye doctor for a
  complete exam.
Diagnosis
• The electroretinogram (ERG) is an important test used
  in assessing the function of the nerve tissue (retina) in
  the back of the eye.
• The eye is stimulated with light after either dark or
  light adaptation.
• Contact lenses, embedded with an electrode, are worn
  by the patient.
• The reaction of the eye is recorded and evaluated.
• This test expresses photoreceptor activity and the
  overall response of the external layer of the retina, and
  is a very important tool in diagnosis.
Juvenile Retinoschisis
                                        •   A genetic disorder of the X-
                                            Chromosome can lead to juvenile
                                            retinoschisis.
                                        •   It is caused due to a defective
                                            gene(RS1). This gene produces an
                                            amino acid that can affect the
                                            photoreceptors (light sensitive
                                            pigments) in the eye.
                                        •   Juvenile Retinoschisis can bring
                                            physical changes in the retina
                                            (sometimes, the retina may be split
                                            into two) which can impair vision
                                            permanently.
                                        •   This means that this disorder can be
                                            primarily among boys (since boys
Fundus photograph of juvenile               have only X-Chromosome).
retinoschisis demonstrating stellate    •   Sometimes, there is a possibility of
spokelike appearance with microcysts.       this disorder even among girls (due
                                            to the presence of two defective
                                            genes).
Causes

• The gene responsible for X-linked juvenile
  retinoschisis, XLRS1, is located on band Xp22. XLRS1
  encodes a 224 amino acid protein retinoschisin that
  is expressed in photoreceptor and bipolar cells.
• Retinoschisin is a secreted protein that is involved in
  cellular adhesion and cell-cell interactions within the
  inner nuclear layer as well as synaptic connection
  between photoreceptors and bipolar cells.
Pathophysiology

• Using positional cloning, Sauer and associates
  identified XLRS1, the gene responsible for X-
  linked juvenile retinoschisis.
• Defective or absent retinoschisin may reduce
  adhesion of the retinal layers, resulting in the
  creation of schisis cavities.
Medical care
• No treatment is available to halt the natural
  progression of schisis formation in patients
  with X-linked juvenile retinoschisis (XJR).
Drugs to treat retinoschisis
• The use of topical dorzolamide and oral
  acetazolamide in reducing cystic spaces and foveal
  thickness with a concomitant increase in visual acuity
  has been reported.
• Both are diuretics
• MOA: both decrease aqueous secretion due to lack
  of bicarbonate or inhibit carbonic anhydrase.
• Acetazolamide is also useful in treating seizures
Gene Therapy
• Currently, gene therapy research on an Rs1h-
  deficient mouse model of human retinoschisis
  has shown restoration of expression of
  retinoschisin protein in photoreceptors and
  normal ERG configuration. Gene therapy may
  be a viable therapeutic option in the future.
• University of Florida scientists used a healthy human gene to
  prevent blindness in mice with a form of an incurable eye
  disease that strikes boys.


• Writing in the August issue of Molecular Therapy, scientists
  from the UF Genetics Institute describe how they successfully
  used gene therapy in mice to treat retinoschisis, a rare genetic
  disorder that is passed from mothers, who retain their
  sight, to their sons.
• In a healthy eye, retinal cells secrete a protein called
  retinoschisin, or RS1, which acts like glue to connect the layers
  of the retina. Without it, the layers separate and tiny cysts
  form, devastating the vision and often leading to blindness in
  about 1 of every 5,000 boys.


• UF researchers injected a healthy version of the human RS1
  gene to the sub-retinal space of the right eyes of 15-day-old
  male mice, which, like boys with the disease, don't have the
  healthy gene to maintain the retina. In terms of disease
  development, the condition in the mice was roughly
  equivalent to retinoschisis in a 10-year-old boy.
• Six months later, researchers looked at the interior of the eyes
  with a laser ophthalmoscope and found cyst formation was
  clearly evident in the untreated eyes, but the treated eyes
  appeared healthy.
• The eye's photoreceptor cells - the rods and cones that help
  the brain process light and color - were spared from the
  disease and the connections between the layers of the retinas
  were intact.
• In addition, the protein appears capable of moving within the
  retina to its target sites and the beneficial changes appear to
  be long lasting, researchers said. Especially encouraging were
  signs the treatment may be able to repair retinal damage.
• We've been very successful in curing a disease in
  mice that has a direct copy in humans," said
  Hauswirth. "It may take two to five years before we
  try this in human patients because of the need for
  safety studies, but we feel based on success so
  far, we will be able to provide formal evidence for
  safety that will allow us to get treatment into the
  clinic."
• "We now have proof of principle that gene therapy
  can basically prevent retinoschisis," said Stephen
  Rose, Ph.D., chief research officer for the Maryland-
  based Foundation Fighting Blindness.
  "Furthermore, this therapy apparently demonstrates
  that even if disease has begun, there is a healing that
  takes place. That raises hope for suffering patients
  that we may be able to offer something that can
  improve the quality of their lives."
Strabismus
Strabismus also known as heterotropia, is a
 condition in which the eyes are not properly
 aligned with each other.
 It typically involves a lack of coordination
 between the extraocular muscles, which
 prevents bringing the gaze of each eye to the
 same point in space and preventing proper
 binocular vision, which may adversely affect
 depth perception.
Common among children.
Pathophysiology
• Strabismus is caused by a lack of coordination between
  the muscles in the eyes. This can happen due to:
• Problems, imbalances, or injuries of the muscles that
  move the eyes
• Uncorrected refractive errors (ie, the need for glasses)
• Nervous system disorders that affect vision, such as:
   – Problems or injury of the nerves that control the eye
     muscles
   – Tumor in or near the eye or brain
   – Stroke or bleeding in the brain
   – Increased pressure in the brain
   – Myasthenia Gravis
• Strabismus can be caused when the cranial nerves III
  (oculomotor), IV (trochlear) or VI (abducens) have a
  lesion. A strabismus caused by a lesion in either of
  these nerves results in the lack of innervation to eye
  muscles and results in a change of eye position.
• Brain Damage
• Injury to eye muscles
• Hormone problems, such as:
   – Diabetes
   – Thyroid disease
• Vision loss in one eye (one blind eye will often turn in
  or out)
• In some cases it may be genetic.
Genetics
• Genetics suggest that these disorders can
  result from errors in the development of
  ocular motor neurons and, in particular, in the
  appropriate guidance and/or targeting of
  axons to extraocular muscles.
• Althought much research is not done, one
  study show that the disorder result from
  mutations in genes necessary for the normal
  development and connectivity of brainstem
  ocular moto neurons, including
  PHOX2A, SALL4, KIF21A, ROBO3, and
  HOXA1, and it is now refered to as “congenital
  cranial dysinnervation disorders,” or CCDD.
Treatment
• If strabismus is minor and detected early, can often be
  corrected with use of an eyepatch on the dominant eye
  and/or vision therapy, the use of eyepatches is unlikely to
  change the angle of strabismus
• Advanced strabismus is usually treated with a combination
  of eyeglasses or prisms, vision therapy, and surgery,
  depending on the underlying reason for the misalignment.
  Surgery does not change the vision; it attempts to align the
  eyes by shortening, lengthening, or changing the position
  of one or more of the extraocular eye muscles

• Strabismus due to genetics- No available therapy
Long-term goals to advance
          the field:
• Long-term goals to advance the field:
  Incomitant:
  1. Functional studies of molecular etiologies with eventual
  translation to treatment

• Comitant:
  1. Linkage, GWAS meta-analysis, replication, identification
  of causal variants
  2. Functional studies of variants / associated genes to
  understand molecular etiologies
  3. Improved treatment and outcome prediction through
  accurate genetic characterization in advance of
  intervention
Stargardt disease
• Stargardt disease, or fundus
  flavimaculatus, is an inherited
  juvenile macular degeneration that
  causes progressive vision loss usually
  to the point of legal blindness. It is
  caused by a mutation of a gene.
• The progression usually starts
  between the ages of six and twelve
  years old and plateaus shortly after
  rapid reduction in visual acuity.
Pathopsyiology
It is caused by mutations in a gene called ABCA4
   also known as Atp binding cassette transporter in
   the visual phototransduction cycle.
Researchers do not yet understand why a change in
   the ABCA4 gene causes Stargardt disease, but it is
   thought that this gene abnormality leads to an
   accumulation of a material called lipofuscin that
   may be toxic to the retinal pigment epithelium,
   the cells needed to sustain vision.
Symptoms
Symptoms appear befor the age of 20 and usually
  include:
• wavy vision
• blind spots
• Blurriness
• impaired color vision
• difficulty adapting to dim lighting
• Yellow spots on the retina
• The centre of the retina, called the macula, has a shiny
  appearance called a beaten bronze appearence.
Genetics
It can be associated with several different genes:

• STGD1: The most common form of Stargardt disease is the
  recessive form caused by mutations in the ABCA4 gene. It
  can also be associated with CNGB3.

• STGD3: There is also a rare dominant form of Stargardt
  disease caused by mutations in the ELOVL4 gene.

• STGD4: Associated with PROM1.

• The classification "STGD2" is no longer used.
Stem Cell Research
• Stem cell research claims the ability to
  generate healthy RPE cells from human
  embryonic stem cells. The idea is to replace
  the genetically diseased RPE cells with healthy
  replacements. In theory, the healthy RPE cells
  should prevent loss of the
  photoreceptors, thereby preserving vision.
• The layer of cells just beneath the retina ,is
  called the retinal pigment epithelium (RPE)
Embryonic stem cell trials for
     macular degeneration: a
        preliminary report
                        By
Steven D Schwartz, Jean-Pierre Hubschman, Gad
  Heilwell, Valentina Franco-Cardenas, Carolyn K
        Pan, Rosaleen M Ostrick, Edmund
 Mickunas, Roger Gay, Irina Klimanskaya, Robert
                       Lanza

      Published OnlineJanuary 23, 2012
Findings

• Controlled hESC( human embryonic stem
• cells ) differentiation resulted in greater than 99%
  pure RPE. The cells displayed typical RPE behaviour
  and integrated into the host RPE layer forming
  mature quiescent monolayers after transplantation
  in animals.
• The stage of differentiation substantially affected
  attachment and survival of the cells in vitro after
  clinical formulation. Lightly pigmented cells attached
  and spread in a substantially greater proportion
  (>90%) than more darkly pigmented cells after
  culture.
• After surgery, structural evidence confirmed
  cells had attached and continued to persist
  during our study. We did not identify signs of
  hyperproliferation, abnormal growth, or
  immune mediated transplant rejection in
  either patient during the first 4 months.
• Although there is little agreement between
  investigators on visual endpoints in patients
  with low vision, it is encouraging that during
  the observation period neither patient lost
  vision.
• Best corrected visual acuity improved from
  hand motions to 20/800 (and improved from
  0 to 5 letters on the Early Treatment Diabetic
  Retinopathy Study [ETDRS] visual acuity chart)
  in the study eye of the patient with Stargardt’s
  macular dystrophy, and vision also seemed to
  improve in the patient with dry age-related
  macular degeneration
Interpretation

• The hESC-derived RPE cells showed no signs
  of hyperproliferation, tumorigenicity, ectopic
  tissue formation, or apparent rejection after
  4 months. The future therapeutic goal will be
  to treat patients earlier in the disease
  processes, potentially increasing the
  likelihood of photoreceptor and central visual
  rescue.
CONGENITAL CATARACT

• A congenital cataract is a clouding of the lens
  of the eye that is present at birth.
• The lens of the eye is normally clear.
• It focuses light that comes into the eye onto
  the retina.
PATHOPHYSIOLOGY
• The lens forms during the invagination of surface ectoderm
  overlying the optic vesicle. The embryonic nucleus develops
  by the sixth week of gestation. Surrounding the embryonic
  nucleus is the fetal nucleus.
• At birth, the embryonic and fetal nuclei make up most of
  the lens. Postnatally, cortical lens fibers are laid down from
  the conversion of anterior lens epithelium into cortical lens
  fibers.
• The Y sutures are an important landmark because they
  identify the extent of the fetal nucleus. Lens material
  peripheral to the Y sutures is lens cortex, whereas lens
  material within and including the Y sutures is nuclear. At
  the slit lamp, the anterior Y suture is oriented upright, and
  the posterior Y suture is inverted.
• Any insult
  (eg, infectious, traumatic, metabolic) to the
  nuclear or lenticular fibers may result in an
  opacity (cataract) of the clear lenticular
  media. The location and pattern of this
  opacification may be used to determine the
  timing of the insult as well as the etiology.
• Cataracts clouding the eye's natural lens
  usually are associated with aging processes.
  But congenital cataracts occur in newborn
  babies for many reasons that can include
  inherited tendencies, infection, metabolic
  problems, diabetes, trauma, inflammation or
  drug reactions
SIGNS AND SYMPTOMS
• Cloudiness of the lens that looks like a white
  spot in an otherwise normally dark pupil --
  often obvious at birth without special viewing
  equipment
• Failure of an infant to show visual awareness
  of the world around him or her (if cataracts
  present in both eyes)
• Nystagmus (unusual rapid eye movements)
DIAGNOSIS

• A complete eye examination by an
  ophthalmologist will readily diagnose
  congenital cataract.
TREATMENT

• In some cases, congenital cataracts are mild
  and do not affect vision, and these cases
  require no treatment.
• Moderate to severe cataracts that affect vision
  will require cataract removal surgery, followed
  by placement of an artificial intraocular lens
  (IOL). Patching to force the child to use the
  weaker eye may be required to prevent
  amblyopia
CONGENITAL CATARACT AND
         INHERITANCE
• Congenital cataract, although uncommon,
  accounts for about 10% of childhood
  blindness. The cataract is usually seen as an
  isolated abnormality but may occur in
  association with other ocular developmental
  or systemic abnormalities.
• About 50% of bilateral cases have a genetic
  basis.
• Congenital cataract is both clinically and
  genetically heterogeneous; isolated congenital
  cataract is usually inherited as an autosomal
  dominant trait although autosomal recessive
  and X linked inheritance are seen less
  commonly.
• Most progress has been made in identifying
  the genes causing autosomal dominant
  congenital cataract.
APPROACHES AND CAUSATIVE
         MUTATIONS
Two main approaches have been used to
identify the causative mutations.
1. In large families linkage analysis has been used
   to identify the chromosomal locus followed by
   screening of positional candidate genes; most
   genes have been identified using this strategy.
2. A second approach has been to screen DNA
   from large panels of patients with inherited
   cataract for mutation in the many candidate
   genes available.
FINGINGS
• The α, β, and γ-crystallins are stable water
  soluble proteins which are highly expressed in
  the lens; they account for about 90% of total
  lens protein, have a key role in lens
  transparency, and thus represent excellent
  candidate genes for inherited cataract.
• α-Crystallin is made up of two polypeptides
  αA and αB encoded by the CRYAA gene on
  chromosome 21q22.3 and CRYAB gene on
  11q22–q22.3, respectively.
• In addition to its structural role α-crystallin
  also functions as a molecular chaperone
  within the lens and other tissues.
• Mutations in both CRYAA and CRYAB have
  been identified in families with ADCC and in
  one family with a missense mutation in CRYAB
  affected individuals had both cataract and an
  associated desmin related myopathy
  presumably caused by impaired chaperone
  function of the mutant protein.
• A nonsense mutation in CRYAA has also
  recently been reported in a consanguineous
  family with autosomal recessive cataract.
• The γ-crystallin gene cluster on chromosome
  2q33–35 encompasses genes γA to D but only γC
  (CRYGC) and γD(CRYGD) are highly expressed in
  the human lens.
• Missense mutations in both genes have been
  identified in families with ADCC exhibiting a range
  of different phenotypes.
• Two different missense mutations within CRYGD
  (R36S and R58H) are associated with a crystalline-
  like cataract and functional studies suggest that
  this may be due to reduced solubility and
  increased likelihood of crystallisation of the
  mutant protein.
• The β-crystallin family encompasses four
  acidic (A) and three basic (B) forms encoded
  by genes on chromosomes 2, 17, and 22.
• Four mutations have been reported in the β-
  crystallin genes.
• Two different splice site mutations have been
  reported in the CRYBA1 gene on chromosome
  17q11.2 associated with nuclear and
  pulverulent phenotypes and a CRYBB1
  nonsense mutation has been reported in a
  family with pulverulent cataract.
• A missense mutation in CRYBB2 (Q155X) has
  been identified in three unrelated families
  with ADCC; interestingly, the phenotype in
  each family is very different despite the
  identical mutation indicating that other
  modifier genes are likely to influence the
  cataract phenotype.
• Such modifier gene influences have recently
  been identified in a recessive murine cataract
  and it is likely that similar gene-gene
  interactions will be identified in human
  cataract.
• At least 15 different mutations in the crystallin
  genes have now been implicated in human
  cataract associated with a diverse range of
  phenotypes.
• It is still unclear what proportion of inherited
  cataract is associated with crystallin gene
  mutations as few studies have involved
  systematic screening of all crystallin genes in a
  large patient population.
GENE THERAPY?
• The identification of the genetic mutations
  underlying congenital cataract and subsequent
  functional studies will improve our understanding
  of normal lens development and the mechanisms
  of cataractogenesis.
• This information, although important, is unlikely
  to lead to any major clinical advance in the
  prevention of or management of congenital
  cataract as the cataracts in this young age group
  are usually present from birth.
What is Anophthalmia?
• Anophthalmia, also known as anophthalmos is
  the congenital absence of one or both eyes.
• It is a medical term that describes the lack of eye
  of occular tissue and globe from the eye.
• Anophthalmia and microphthalmia are often
  used interchangeably.
• Microphthalmia is a disorder in which one or
  both eyes are abnormally small, while
  anophthalmia is the absence of one or both eyes.
Pathophysiology

• Anophthalmia occurs when the
  neuroectoderm of the primary optic vesicle
  fails to develop properly from the anterior
  neural plate of the neural tube during
  embryological development.

• The more commonly seen microphthalmia can
  result from a problem in development of the
  globe at any stage of growth of the optic
  vesicle.
• Proper growth of the orbital region is
  dependent on the presence of an eye, which
  stimulates growth of the orbit and proper
  formation of the lids and the ocular fornices.

• Commonly, a child born with anophthalmia
  has a small orbit with narrow palpebral fissure
  and shrunken fornices.
SIGNS AND SYMPTOMS

• Small orbital rim and the entry
• Reduced size of the orbit bone or the eye
  socket
• The eye muscles are usually lacking.
• Tear glands and ducts may be missing.
• Optic foramen is small and/or maldeveloped
• The shortening of the eyelids in all directions
• The contraction of the orbicularis muscle.
• Eyeball is completely absent in primary
  anophthalmia.
• Eyeball is very small and malformed in
  microphthalmia.
• Due to anopthalmia a small bony orbit called
  hemifacial hypoplasia is formed which does
  not allow a prosthesis to be fit.
LINKING CAUSE AND THE DISEASE
• The development of the eye is highly complex
  and it is determined by sequential and
  coordinated expression of eye development
  genes within the developing tissues.
• Although some individuals with anophthalmia
  or microphthalmia have relatives with other
  eye malformations, the frequent lack of clear
  Mendelian inheritance in these conditions has
  made identifying the genes for eye
  development very challenging.
• However, using a variety of techniques, some
  genes involved in anophthalmia or
  microphthalmia have now been identified.
• These include genes principally involved in
  ocular development, such as
1. CHX10
2. SOX2
3. OTX2
4. PAX6
5. SIX6and STRA6
Sox2 GENE
• The most genetic based cause for
  anophthalmia is caused by the Sox2 gene.
• Sox2 anophthalmia syndrome is caused by a
  mutation in the Sox2 gene that does not allow
  it to produce the Sox2 protein that regulates
  the activity of other genes by binding to
  certain regions of DNA.
• Without this Sox2 protein, the activity of
  genes that is impotant for the development of
  the eye is disrupted.
• Sox2 anophthalmia syndrome is an autosomal
  dominant inheritance, but the majority of
  patients who suffer from Sox2 anophthalmia
  are the first in their family history to have this
  mutation.
• In certain cases, one parent will possess the
  mutated gene only in their egg or sperm cell
  and the offspring will inherit it through that.
  This is called germline mosaicism.
• There are at least 33 mutations in the Sox2
  gene that have been known to cause
  anophthalmia.
• Some of these gene mutations will cause the
  Sox2 protein not to be formed, while other
  mutations will yield a non-functional version
  of this protein.
OTHER INFLUENCIAL GENES
• Other important genes causes anophthalmia
  include OTX2, CHX10 and RAX.
• Each of these genes are an important in
  retinal expression. Mutations in these genes
  can cause a failure of retinal differentiation.
• OTX2 is dominantly inherited and varies in
  severity. It has also been linked with
  microphthalmia.
• BMP4 is also linked in anophthalmia is also a
  cause of myopia, microphthalmia and is
  dominantly inherited. BMP4 interacts with
  Sonic Hedgehog pathway and can cause
  anophthalmia.
• CHX10 is involve in development of the eye.
  Many of which are involved in the
  development of substructures within the eye.
• Genes that are involved in eye and brain
  development including SOX2, OTX2, and PAX6.
• Several syndromic genes are involved in
  developing other organs in addition to the
  eye, including CHD7, the gene for CHARGE
  syndrome and PTCH, the gene for Gorlin
  syndrome.
• There is a complex interplay between the
  different eye development gene
  pathways, which allows their expression to be
  finely regulated and begins to explain why
  there is such an overlap of the phenotypes
  associated with mutations of each gene.
• STRA6 gene which is responsible for
  transporting vitamin A into the cells.
OTHER FACTORS
1. Environmental Influence

• Many environmental conditions have also
  been known to cause anophthalmia. The
  strongest support for environmental causes
  has been studies where children have had
  gestational-acquired infections.
• These infections are typically viral. A few
  known viruses that can cause anophthalmia
  are toxiplasmosis, rubella, and certain strands
  of the flu virus.
• Other known environmental conditions that have
  lead to anophthalmia are maternal vitamin A
  deficiency, exposure to X-rays during gestation,
  solvent misuse, and exposure to thalidomide.

2. Chromosome 14

• An interstitial deletion of chromosome 14 has
  been known to occasionally be the source of
  anophthalmia. The deletion of this region of
  chromosome has also been associated with
  patients having a small tongue, and high arched
  palate, developmental and growth retardation,
  undescended testes with a micropenis, and
  hypothyroidism.
• The region that has been deleted is region
  q22.1-q22.3. This confirms that region 22 on
  chromosome 14 influences the development
  of the eye.
DIAGNOSIS
1. Prenatal Diagnosis
• Ultrasounds can be used to diagnose
  anophthalmia during gestation. Due to the
  resolution of the ultrasound, however, it is
  hard to diagnose it until the second trimester.
  The earliest to detect anophthalmia this way is
  approximately 20 weeks.
• 3D and 4D ultrasounds have proven to be
  more accurate at viewing the fetus's eyes
  during pregnancy and are another alternative
  to the standard ultrasound.
• Amniocentesis, it is possible to diagnose
   prenatally with amniocentesis, but it may not
   show a correct negative result.
• Amniocentesis can only diagnose
  anophthalmia when there is a chromosomal
  abnormality. Chromosomal abnormalities are
  only a minority of cases of anophthalmia.
2. Postnatal Diagnosis
• MRIs and CTs can be used to scan the brain
  and orbits. Clinicians use this to assess the
  internal structures of the globe, the optic
  nerve and extraocular muscles, and brain
  anatomy.
• Examination, physicians, specifically
  opthamologists, can examine the child and
  give a correct diagnosis. Some will do
  molecular genetics tests to see if the cause is
  linked with gene mutations.
TREATMENT
1. Prosthetic eye
• Currently, there is not a treatment option for
  regaining vision by developing a new eye.
• However, cosmetic options so the absence of
  the eye is not as noticeable.
• Typically, the child will need to go to
  prosthetic specialist to have conformers fitted
  into the eye. Conformers are made of clear
  plastic and are fitted into the socket to
  promote socket growth and expansion.
• As the child's face grows and develops, the
  conformer will need to be changed. Expander
  may also be needed in anophthalmia to
  expand the socket that is present.

• The conformer is changed every few weeks
  the first two years of life. After that, a painted
  prosthetic eye can be fitted for the child's
  socket.
1. Cosmetic Surgery
• If the proper actions are not taken to expand
   the orbit, many physical deformities can
   appear.
• It is important that if these deformities do
   appear, that surgery is not done until at least
   the first two years of life. Many people get
   eye surgery, such as upper eyelid ptosis
   surgery and lower eyelid tightening. These
   surgeries can restore the function of the
   surrounding structures like the eyelid in
   order to create the best appearance possible.
ANOPHTHALMIA AND GENE
           THERAPY
1. Scientists at University College
   Dublin, Ireland, have identified a genetic
   alteration which causes a child to be born
   with anophthalmia.
• According to the findings published in the
  current issue (December 2011) of Human
  Mutation, a child’s eyes will not develop fully
  in the womb if the child has alterations in
  both copies of its STRA6 gene which is
  responsible for transporting vitamin A into the
  cells.
• This new discovery means that scientists can
  now develop a genetic test for couples who
  may be carrying the altered gene and planning
  to have children.
• If identified, the couples can receive advice
  and counselling about the implications of
  carrying the gene alteration for their present
  and future children.
What is Microphthalmia?
• Microphthalmia is an eye abnormality that
  arises before birth. In this condition one or
  both eyeballs are abnormally small. In some
  affected individuals the eyeball may appear to
  be completely missing however, even in these
  cases some remaining eye tissue is generally
  present.
• Microphthalmia should be distinguished from
  another condition called anophthalmia, in
  which no eyeball forms at all.
Etiology
• Microphthalmia in newborns is sometimes associated with fetal
  alcohol syndrome or infections during pregnancy particularly
  herpes simplex virus, rubella and cytomegalovirus (CMV) but
  the evidence is inconclusive.
• Genetic causes of microphthalmia include chromosomal
  abnormalities (trisomy 13 (Patau syndrome), Triploid
  Syndrome and Wolf-Hirschhorn Syndrome) or monogenetic
  Mendelian disorders.
• The latter maybe autosomal dominant, autosomal recessive or
  X linked. Genes that have been implicated in microphthamia
  include many transcription and regulatory factors.
Prevalence

• Between 3.2% and 11.2% of blind children
  have microphthalmia.
• A national study of all live births in Scotland
  over a 16-year period showed a prevalence of
  19 per 100,000 .
Changes in genes that are associated with
           Microphthalmia.
Pathophysiology
• Anophthalmia and Microphthalmia may result from growth arrest of
  the optic vesicles.
• Anophthalmia occurs with faulty neuroectodermal development in
  the primary optic vesicle from the anterior neural plate.
• Microphthalmos can result from disruption of any stage of optic
  vesicle growth. Microphthalmia is sometimes associated with an
  orbital cyst.
• The development of the orbital bones, eyelids and fornices depends
  largely on the presence of volume within the orbit(a growing globe
  in the normal state) .
• The cyst associated with microphthalmos may stimulate adequate
  growth.
• In addition to visual system impairment, disfigurement of the
  midface, orbit and eyelid may occur without treatment. Also the
  patient may be unable to wear a prosthetic eye.
Pathophysiology Cont’ue
• Orbital hypoplasia is most commonly related to
  congenital Microphthalmos.
• A clear inheritance pattern has not been
  established, most cases are sporadic or idiopathic
  in nature.
• However, prepartum maternal infections and
  exposures to toxins have been implicated.
• Microphthalmia may also occur as part of more
  extensive craniofacial malformations.
• Orbital hypoplasia is sometimes a result of
  enucleation early in life for trauma or
  retinoblastoma.
Signs/symptoms
• The signs and symptoms of Microphthalmia with linear
  skin defects syndrome vary widely, even among
  affected individuals within the same family.
• In addition to the characteristic eye problems and skin
  markings this condition can cause abnormalities in the
  brain, heart and genitourinary system.
• A hole in the muscle that separates the abdomen from
  the chest cavity (the diaphragm) which is called a
  diaphragmatic hernia may occur in people with this
  disorder.
• Affected individuals may also have short stature and
  fingernails and toenails that do not grow normally (nail
  dystrophy).
Diagnosis/testing
• The diagnosis of Microphthalmia is based on clinical
  examination and imaging studies including:
• A-scan ultrasonography to measure total axial length;
• B-scan ultrasonography to evaluate the internal
  structures of the globe.
• CT scan or MRI of the brain and orbits to evaluate the
  size and internal structures of the globe, the optic nerve
  and extraocular muscles.
• Evaluation for other malformations, assessment of
  hearing, chromosome analysis, family history and
  parental eye examinations may help establish the
  underlying cause.
Diagnosis Cont’ue
• Molecular genetic testing for mutations in
  genes associated with Micropthalmia is
  clinically available for SIX3, HESX1, BCOR,
  SHH, PAX6, RAX, CHD7 (CHARGE
  syndrome), IKBKG (incontinentia pigmenti),
  NDP (Norrie disease), SOX2(SOX2-related eye
  disorders), POMT1 (Walker-Warburg
  syndrome), and SIX6.
• Molecular genetic testing for isolated
  (nonsyndromic) Micropthalmia is available on
  a research basis only.
Treatment
• Large cysts causing microphthalmia should be
  aspirated or removed surgically. There is no
  known cure for anophthalmia or
  microphthalmia.
• For anophthalmia a prosthetic eye can be fitted
  which may involve surgery.
• Treatment for microphthalmia depends on the
  complexity of eye involvement.
Gene Therapy.

Retinal stem cells isolated from
the ciliary epithelium of the adult
ciliary body proliferate and form
neurospheres in culture.
Immuno-labeled with the
progenitor cell marker, nestin
(green).
Molecular patterning
across the dorso-
ventral axis of the
embryonic eye. Tbx5
gene expression (blue)
is restricted to retinal
progenitor cells in the
dorsal peripheral
region of the
developing optic cup.
Transplanted
photoreceptor
precursor cells
integrate and develop
into mature
photoreceptor cells
(green) that form
functional connections
with the host retina
(blue) and improve
visual function .
Transplanted cone
photoreceptor (yellow)
within the outer nuclear
layer (magenta) of a
recipient retina.
•
                              References
    http://vision.about.com/od/eyediseasesandconditions/g/Color_Blindness.htm
•   http://www.genomenewsnetwork.org/articles/2004/05/28/optics.php
•   http://www.brighthub.com/science/genetics/articles/28771.aspx
•   http://journals.lww.com/co-
    ophthalmology/Abstract/2011/03000/Gene_therapy_for_glaucoma.2.aspx
•   en.wikipedia.org/wiki/Strabismus
•   http://www.nature.com/pr/journal/v59/n3/abs/pr200667a.html
•   http://www.nei.nih.gov/strategicplanning/genetics1.asp
•   http://www.thirdage.com/hc/c/strabismus
•   http://en.wikipedia.org/wiki/Stargardt_disease
•   http://www.mdsupport.org/library/stargardt2.html
•   http://www.lifenews.com/2012/01/24/first-report-on-embryonic-stem-cells-in-
    patients-results-tbd/
•   http://www.livestrong.com/article/257857-what-are-the-causes-of-nystagmus/
•   http://www.geteyesmart.org/eyesmart/diseases/nystagmus-diagnosis.cfm
•   http://www.sciencedaily.com/releases/2008/04/080427194726.htm

More Related Content

What's hot

Binocular Single Vision Tests
Binocular Single Vision TestsBinocular Single Vision Tests
Binocular Single Vision TestsRabia Ammer
 
Introduction to binocular single vision (BSV)
Introduction to binocular single vision (BSV)Introduction to binocular single vision (BSV)
Introduction to binocular single vision (BSV)Anis Suzanna Mohamad
 
Amblyopia
AmblyopiaAmblyopia
AmblyopiaNedhina
 
RGP Fitting
RGP Fitting RGP Fitting
RGP Fitting emlctvla
 
Tear film and dynamics
Tear film and dynamics Tear film and dynamics
Tear film and dynamics SSSIHMS-PG
 
Ocular wound healing
Ocular wound healingOcular wound healing
Ocular wound healingBemnettereda
 
Ocular motility test
Ocular motility testOcular motility test
Ocular motility testAzizul Islam
 
anomalous retinal correspondence
anomalous retinal correspondenceanomalous retinal correspondence
anomalous retinal correspondenceRajeshwori
 
Hirschberg and krimsky test.pptx
Hirschberg and krimsky test.pptxHirschberg and krimsky test.pptx
Hirschberg and krimsky test.pptxjyotishah48
 
RGP Complications
RGP ComplicationsRGP Complications
RGP ComplicationsHira Dahal
 
ARC: abnormal retinal correspondence, eccentric fixation
ARC: abnormal retinal correspondence, eccentric fixationARC: abnormal retinal correspondence, eccentric fixation
ARC: abnormal retinal correspondence, eccentric fixationaditi Jain
 

What's hot (20)

Cosmetic contact lenses
Cosmetic contact lensesCosmetic contact lenses
Cosmetic contact lenses
 
Binocular Single Vision Tests
Binocular Single Vision TestsBinocular Single Vision Tests
Binocular Single Vision Tests
 
Introduction to binocular single vision (BSV)
Introduction to binocular single vision (BSV)Introduction to binocular single vision (BSV)
Introduction to binocular single vision (BSV)
 
Amblyopia
AmblyopiaAmblyopia
Amblyopia
 
Evaluation of ptosis
Evaluation of ptosis Evaluation of ptosis
Evaluation of ptosis
 
RGP Fitting
RGP Fitting RGP Fitting
RGP Fitting
 
Tear film and dynamics
Tear film and dynamics Tear film and dynamics
Tear film and dynamics
 
Ocular wound healing
Ocular wound healingOcular wound healing
Ocular wound healing
 
Ocular motility test
Ocular motility testOcular motility test
Ocular motility test
 
anomalous retinal correspondence
anomalous retinal correspondenceanomalous retinal correspondence
anomalous retinal correspondence
 
Binocular vision
Binocular visionBinocular vision
Binocular vision
 
Hirschberg and krimsky test.pptx
Hirschberg and krimsky test.pptxHirschberg and krimsky test.pptx
Hirschberg and krimsky test.pptx
 
RGP Complications
RGP ComplicationsRGP Complications
RGP Complications
 
ARC: abnormal retinal correspondence, eccentric fixation
ARC: abnormal retinal correspondence, eccentric fixationARC: abnormal retinal correspondence, eccentric fixation
ARC: abnormal retinal correspondence, eccentric fixation
 
purkinje images
purkinje images purkinje images
purkinje images
 
Dynamic retinoscopy
Dynamic retinoscopyDynamic retinoscopy
Dynamic retinoscopy
 
The Aqueous Humour
The Aqueous HumourThe Aqueous Humour
The Aqueous Humour
 
Automated perimetry
Automated perimetryAutomated perimetry
Automated perimetry
 
Aniseikonia
AniseikoniaAniseikonia
Aniseikonia
 
Accommodative esotropia
Accommodative esotropiaAccommodative esotropia
Accommodative esotropia
 

Viewers also liked

Genetics - Ophthalmology
Genetics - OphthalmologyGenetics - Ophthalmology
Genetics - OphthalmologyAhmed Omara
 
Ocular - Microbiolgy
Ocular - MicrobiolgyOcular - Microbiolgy
Ocular - MicrobiolgyAhmed Omara
 
Ocular Pathology
Ocular PathologyOcular Pathology
Ocular PathologyAhmed Omara
 
Diseases of the eye
Diseases of the eyeDiseases of the eye
Diseases of the eyeraj kumar
 
Ocular pharmacology
Ocular pharmacologyOcular pharmacology
Ocular pharmacologyAhmed Omara
 
DISORDERS OF THE VITREOUS AND RETINAL DETACHMENT
DISORDERS OF THE VITREOUS AND RETINAL DETACHMENTDISORDERS OF THE VITREOUS AND RETINAL DETACHMENT
DISORDERS OF THE VITREOUS AND RETINAL DETACHMENTHossein Mirzaie
 
Iris/Retina Identification System
Iris/Retina Identification SystemIris/Retina Identification System
Iris/Retina Identification SystemNIMITA NELSON
 
Patient information leaflet
Patient information leafletPatient information leaflet
Patient information leafletAkshaya M
 
Clinical presentation
Clinical presentationClinical presentation
Clinical presentationabubaker77
 
Oct angiography topcon leaflet may 2015
Oct angiography topcon leaflet  may 2015Oct angiography topcon leaflet  may 2015
Oct angiography topcon leaflet may 2015DCMedical
 
ARMD Management-Recent Advances
ARMD Management-Recent AdvancesARMD Management-Recent Advances
ARMD Management-Recent AdvancesAmreen Deshmukh
 
Top 10 Eye Related Problems
Top 10 Eye Related ProblemsTop 10 Eye Related Problems
Top 10 Eye Related Problemssean21
 
Oct angiography
Oct angiographyOct angiography
Oct angiographyDCMedical
 
INNOVATION IN RETINAL IMAGING: OPPORTUNITIES & CHALLENGES - History of OCT-A
INNOVATION IN RETINAL IMAGING: OPPORTUNITIES & CHALLENGES - History of OCT-AINNOVATION IN RETINAL IMAGING: OPPORTUNITIES & CHALLENGES - History of OCT-A
INNOVATION IN RETINAL IMAGING: OPPORTUNITIES & CHALLENGES - History of OCT-AHealthegy
 
03 oct angiografia
03 oct angiografia03 oct angiografia
03 oct angiografiaficheroisv
 

Viewers also liked (20)

Genetics - Ophthalmology
Genetics - OphthalmologyGenetics - Ophthalmology
Genetics - Ophthalmology
 
Ocular - Microbiolgy
Ocular - MicrobiolgyOcular - Microbiolgy
Ocular - Microbiolgy
 
Ocular Pathology
Ocular PathologyOcular Pathology
Ocular Pathology
 
Ophthalmology ppt
Ophthalmology pptOphthalmology ppt
Ophthalmology ppt
 
Diseases of the eye
Diseases of the eyeDiseases of the eye
Diseases of the eye
 
Ocular pharmacology
Ocular pharmacologyOcular pharmacology
Ocular pharmacology
 
Immunology
ImmunologyImmunology
Immunology
 
DISORDERS OF THE VITREOUS AND RETINAL DETACHMENT
DISORDERS OF THE VITREOUS AND RETINAL DETACHMENTDISORDERS OF THE VITREOUS AND RETINAL DETACHMENT
DISORDERS OF THE VITREOUS AND RETINAL DETACHMENT
 
Abnormal equine ophthalmic disorders
Abnormal equine ophthalmic disordersAbnormal equine ophthalmic disorders
Abnormal equine ophthalmic disorders
 
Ocular Biology
Ocular BiologyOcular Biology
Ocular Biology
 
Ophthalmic diseases
Ophthalmic diseasesOphthalmic diseases
Ophthalmic diseases
 
Iris/Retina Identification System
Iris/Retina Identification SystemIris/Retina Identification System
Iris/Retina Identification System
 
Patient information leaflet
Patient information leafletPatient information leaflet
Patient information leaflet
 
Clinical presentation
Clinical presentationClinical presentation
Clinical presentation
 
Oct angiography topcon leaflet may 2015
Oct angiography topcon leaflet  may 2015Oct angiography topcon leaflet  may 2015
Oct angiography topcon leaflet may 2015
 
ARMD Management-Recent Advances
ARMD Management-Recent AdvancesARMD Management-Recent Advances
ARMD Management-Recent Advances
 
Top 10 Eye Related Problems
Top 10 Eye Related ProblemsTop 10 Eye Related Problems
Top 10 Eye Related Problems
 
Oct angiography
Oct angiographyOct angiography
Oct angiography
 
INNOVATION IN RETINAL IMAGING: OPPORTUNITIES & CHALLENGES - History of OCT-A
INNOVATION IN RETINAL IMAGING: OPPORTUNITIES & CHALLENGES - History of OCT-AINNOVATION IN RETINAL IMAGING: OPPORTUNITIES & CHALLENGES - History of OCT-A
INNOVATION IN RETINAL IMAGING: OPPORTUNITIES & CHALLENGES - History of OCT-A
 
03 oct angiografia
03 oct angiografia03 oct angiografia
03 oct angiografia
 

Similar to Genetic Eye Disorders: Causes and Treatments for Color Blindness and Glaucoma

Similar to Genetic Eye Disorders: Causes and Treatments for Color Blindness and Glaucoma (20)

Presentation (8).pptx
Presentation (8).pptxPresentation (8).pptx
Presentation (8).pptx
 
Glaucoma
GlaucomaGlaucoma
Glaucoma
 
Glaucoma
GlaucomaGlaucoma
Glaucoma
 
Glaucoma
GlaucomaGlaucoma
Glaucoma
 
GLAUCOMA.pdf
GLAUCOMA.pdfGLAUCOMA.pdf
GLAUCOMA.pdf
 
Glaucoma
GlaucomaGlaucoma
Glaucoma
 
Glaucoma.pptx
Glaucoma.pptxGlaucoma.pptx
Glaucoma.pptx
 
Glaucoma and Treatment of Glaucoma
Glaucoma and Treatment of Glaucoma Glaucoma and Treatment of Glaucoma
Glaucoma and Treatment of Glaucoma
 
GLAUCOMA of human eye for certificate nurses
GLAUCOMA of human eye for certificate nursesGLAUCOMA of human eye for certificate nurses
GLAUCOMA of human eye for certificate nurses
 
Glaucoma
GlaucomaGlaucoma
Glaucoma
 
Glaucoma
GlaucomaGlaucoma
Glaucoma
 
Glaucoma
GlaucomaGlaucoma
Glaucoma
 
Glaucoma-Presentation new.pptx
Glaucoma-Presentation new.pptxGlaucoma-Presentation new.pptx
Glaucoma-Presentation new.pptx
 
Glaucoma
GlaucomaGlaucoma
Glaucoma
 
Glaucoma awareness
Glaucoma awarenessGlaucoma awareness
Glaucoma awareness
 
Glaucoma diska
Glaucoma diskaGlaucoma diska
Glaucoma diska
 
POAG.pptx
POAG.pptxPOAG.pptx
POAG.pptx
 
Glaucoma
Glaucoma Glaucoma
Glaucoma
 
Pilocarpine use in glaucoma
Pilocarpine use in glaucomaPilocarpine use in glaucoma
Pilocarpine use in glaucoma
 
Glaucoma RCSI
Glaucoma RCSIGlaucoma RCSI
Glaucoma RCSI
 

More from Ameenah

guyana forest exploration
guyana forest exploration guyana forest exploration
guyana forest exploration Ameenah
 
amino acids
amino acidsamino acids
amino acidsAmeenah
 
abortion ppt
abortion pptabortion ppt
abortion pptAmeenah
 
Iron deficiency anemia.
Iron deficiency anemia.Iron deficiency anemia.
Iron deficiency anemia.Ameenah
 
Thalassemia.
Thalassemia.Thalassemia.
Thalassemia.Ameenah
 
Solar energy
Solar energySolar energy
Solar energyAmeenah
 
breast and prostate cancer.
breast and prostate cancer.breast and prostate cancer.
breast and prostate cancer.Ameenah
 
Drug degradation
Drug degradationDrug degradation
Drug degradationAmeenah
 
Pharmacology eye disorders
Pharmacology eye disordersPharmacology eye disorders
Pharmacology eye disordersAmeenah
 

More from Ameenah (10)

guyana forest exploration
guyana forest exploration guyana forest exploration
guyana forest exploration
 
amino acids
amino acidsamino acids
amino acids
 
abortion ppt
abortion pptabortion ppt
abortion ppt
 
Iron deficiency anemia.
Iron deficiency anemia.Iron deficiency anemia.
Iron deficiency anemia.
 
Thalassemia.
Thalassemia.Thalassemia.
Thalassemia.
 
Solar energy
Solar energySolar energy
Solar energy
 
breast and prostate cancer.
breast and prostate cancer.breast and prostate cancer.
breast and prostate cancer.
 
Voltmeter
VoltmeterVoltmeter
Voltmeter
 
Drug degradation
Drug degradationDrug degradation
Drug degradation
 
Pharmacology eye disorders
Pharmacology eye disordersPharmacology eye disorders
Pharmacology eye disorders
 

Recently uploaded

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 

Recently uploaded (20)

ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 

Genetic Eye Disorders: Causes and Treatments for Color Blindness and Glaucoma

  • 3. Color Blindness • Color blindness is a color vision deficiency that makes it difficult to impossible to perceive differences between some colors. (The inability to identify colors in a normal way)
  • 4. Pathophysiology • Colorblindness mainly affects males because the genes for red and green cones are on the X chromosome • Males have only one copy of this chromosome. • Females, on the other hand, have a second X chromosome that serves as a backup if something goes wrong with the first.
  • 5. • The male children of a carrier parent (mother) have a 50% probability of being color blind. These odds don't change even if the father is color vision defective.
  • 6. Types • Red-green color blindness This combines four different types of color blindness.  Protanomaly and protanopia are caused by defective or even missing L-cones (long-wavelengths).  Deuteranomaly or deuteranopia are in opposite defective or missing M-cones (medium-wavelengths)
  • 7. • Blue cone monochromacy As this type of monochromacy is caused by a complete absence of L- and M-cones, blue cone monochromacy is encoded at the same place as red- green color blindness on the X chromosome. • Blue-yellow color blindness Caused by defective or missing S-cones (short- wavelength). These photopigments are encoded in genes which reside on chromosome 7, an autosomal chromosome. This is why blue-yellow color blindness occures at the same rate on both sexes.
  • 8. • Rod monochromacy Total loss of color vision and is also known as complete achromatopsia. • In this case the retina does not have any cone cells at all. • It is known to be an autosomal recessive disease and can be provoked by different circumstances. • Recent studies show that it can be encoded on chromosome 2 as well as on chromosome 8. • Earlier studies assigned chromosome 14 to rod monochromacy but this could not be reconstructed.
  • 9. Cause • Color vision deficiency or color blindness is caused when the cone cells are unable to distinguish among the different light wavelengths and therefore misfire, causing the brain to misinterpret certain colors. • Mutations in the following genes results in defects in color vision : CNGA3, CNGB3, GNAT2, OPN1LW, OPN1MW, and OPN1SW. More specifically: • OPN1LW mutations impact cells that are designed to pick up the red end of the light spectrum • OPN1MW mutations impact cells that detect the midrange colors of the light spectrum, such as yellow and green. • OPN1SW mutations impact cells that detect the lower range of the light spectrum, such as indigo and violet
  • 10. Signs and Symptoms Symptoms vary from person to person, but may include: • Trouble seeing colors and the brightness of colors in the usual way • Inability to tell the difference between shades of the same or similar colors Often, the symptoms may be so mild that some people do not know they are color blind. A parent may notice signs of color blindness when a child is learning his or her colors. Rapid, side-to-side eye movements (nystagmus) and other symptoms may occur in severe cases.
  • 11. Diagnosis The Ishihara test • This comprises of a picture made of many dots with an image/s that the normal eye can detect or the color blind can detect
  • 12. Treatment • There is no cure for colorblindness • Some patients are given light filtering lenses to help them distinguish colors. • Gene therapy is now being tested and has been successful in treating two adult monkeys that were colorblind from birth • The aim is to target the gene expression using normal cells
  • 13. Glaucoma Dictionary.com defines glaucoma as abnormally high fluid pressure in the eye, most commonly caused either by blockage of the channel through which aqueous humor drains or by pressure of the iris against the lens
  • 14. Pathophysiology • The major risk factor for glaucoma is the increase of intraocular pressure (also known as ocular hypertension) • Intraocular pressure is a function of production of liquid aqueous humor by the ciliary processes of the eye, and its drainage through the trabecular meshwork. • Aqueous humor flows from the ciliary processes into the posterior chamber, bounded posteriorly by the lens and the zonules of Zinn, and anteriorly by the iris.
  • 15. • It then flows through the pupil of the iris into the anterior chamber, bounded posteriorly by the iris and anteriorly by the cornea. • From here the trabecular meshwork drains aqueous humor via Schlemm's canal into scleral plexuses and general blood circulation
  • 16. Types of Glaucoma There are several types of glaucoma, but there are two main two types: • Open-Angle Glaucoma “Open-angle” means that the angle where the iris meets the cornea is as wide and open as it should be. Open- angle glaucoma is also called primary or chronic glaucoma. It is the most common type of glaucoma • This type is caused by the slow clogging of the drainage canals, resulting in increased eye pressure and has a wide and open angle between the iris and cornea • Develops slowly and is a lifelong condition
  • 17. Angle- Closure Glaucoma • It is also called acute glaucoma or narrow-angle glaucoma and is a less common form of glaucoma. • Unlike open-angle glaucoma, angle-closure glaucoma is a result of the angle between the iris and cornea closing. • Caused by blocked drainage canals, resulting in a sudden rise in intraocular pressure • Has a closed or narrow angle between the iris and cornea • Develops very quickly • Has symptoms and damage that are usually very noticeable and thus demands immediate medical attention
  • 18.
  • 19. Gene Affected • Myocilin was the first gene known to cause glaucoma and was discovered in 1995. • This gene on chromosome 1 makes a protein that is secreted in the trabecular meshwork (drainage angle) of the eye. It is most likely that mutant Myocilin protein causes glaucoma by damaging the trabecular meshwork, thereby impairing outflow of aqueous fluid from the eye.
  • 20. Cause • Several groups have shown that some individuals carry two mutations; one each in Myocilin and CYP1B1(causes congenital glaucoma) • Congenital glaucoma is caused by 2 mutations in CYP1B1. • The glaucoma associated with Myocilin AND CYP1B1 is more aggressive, with an earlier onset than Myocilin alone.
  • 21. Signs and symptoms Primary open-angle glaucoma signs and symptoms include: • Gradual loss of peripheral vision, usually in both eyes • Tunnel vision in the advanced stages Acute angle-closure glaucoma signs and symptoms include: • Severe eye pain • Nausea and vomiting (accompanying the severe eye pain) • Sudden onset of visual disturbance, often in low light • Blurred vision • Halos around lights • Reddening of the eye
  • 22. Diagnosis There are many ways to diagnose glaucoma: • Measuring intraocular pressure Tonometry is a simple, painless procedure that measures the intraocular pressure, after numbing the eyes with drops. It is usually the initial screening test for glaucoma. • Test for optic nerve damage To check the fibers of the optic nerve, the doctor uses instruments to look directly through the pupil to the back of your eye. This can reveal slight changes that may indicate the beginnings of glaucoma. • Measuring cornea thickness (pachymetry) The eyes are numbed for this test, which determines the thickness of each cornea, an important factor in diagnosing glaucoma. If the corneas are thick, the eye-pressure reading may read higher than normal even though the patient may not have glaucoma. Similarly, people with thin corneas can have normal pressure readings and still have glaucoma. • Other tests To distinguish between open-angle glaucoma and angle-closure glaucoma, your eye doctor may use a technique called gonioscopy in which a special lens is placed on your eye to inspect the drainage angle. Another test, tonography, can measure how quickly fluid drains from your eye.
  • 23. Treatment The aim of treatment for glaucoma is to reduce intraocular pressure. Listed below are some of the treatment available:  Prostaglandin-like compounds. These eyedrops increase the outflow of aqueous humor. E.g. latanoprost (Xalatan) and bimatoprost (Lumigan)  Beta blockers. These reduce the production of aqueous humor. E.g. timolol (Betimol, Timoptic), betaxolol (Betoptic) and metipranolol (Optipranolol)  Alpha-agonists. These reduce the production of aqueous humor and increase drainage. E.g. apraclonidine (Iopidine) and brimonidine (Alphagan)  Carbonic anhydrase inhibitors. These also reduce the production of aqueous humor. E.g. dorzolamide (Trusopt) and brinzolamide (Azopt)  Miotic or cholinergic agents. These also increase the outflow of aqueous humor. E.g. pilocarpine (Isopto Carpine) and carbachol (Isopto Carbachol)  Epinephrine compounds. These compounds, such as dipivefrin (Propine), also increase the outflow of aqueous humor.
  • 24. • Surgery Surgeries used to treat glaucoma include: • Laser surgery. In the last couple of decades, a procedure called trabeculoplasty has had an increased role in treating open-angle glaucoma. After giving an anesthetic eyedrop, the doctor uses a high-energy laser beam to open clogged drainage canals and help aqueous humor drain more easily from the eye. • Filtering surgery. If eyedrops and laser surgery aren't effective in controlling your eye pressure, you may need an operation called a filtering procedure, usually in the form of a trabeculectomy • Drainage implants. Another type of operation, called drainage implant surgery, may be an option for people with secondary glaucoma or for children with glaucoma. The eye surgeon inserts a small silicone tube into the eye to help drain aqueous humor.
  • 25. Gene Therapy • In recent studies, researchers found that both viral and nonviral vector gene delivery systems have been used to target specific tissues involved in the pathogenesis of glaucoma. • These tissues include the trabecular meshwork, ciliary body, ciliary epithelium, Müller cells, and retinal ganglion cells. • Recent studies in large animal models have demonstrated effective long-term gene expression in the trabecular meshwork following intracameral delivery of adeno-associated viral vectors and lentiviral vectors with limited effect on surrounding ocular tissues. • Other promising studies have focused on vector-mediated expression of neurotrophic factors and have demonstrated a neuroprotective effect following intravitreal delivery of vectors in glaucomatous animal models.
  • 27.  Nystagmus can be defined as involuntary, rapid movements of the eye. Movemements can be either: • Side to side (horizontal nystagmus) • Up and down (vertical nystagmus) • Rotary (rotary or torsional nystagmus)  Nystagmus is also known as dancing eyes
  • 28. • When affected by nystagmus, either one or both of the eyes can move in a circular motion, up and down, or from side to side • Dysfunction in the inner ear or the part of the brain that controls eye movements can cause nystagmus to develop, which has a variety of causes. • Nystagmus occurs often in infants.
  • 29. Types  Congenital nystagmus is present at birth. With this condition, the eyes move together as they oscillate (swing like a pendulum). Most other types of infantile nystagmus are also classified as forms of strabismus, which means the eyes don't necessarily work together at all times.  Manifest nystagmus is present at all times  Latent nystagmus occurs when one eye is covered.  Manifest-latent nystagmus is continually present, but worsens when one eye is covered.  Acquired nystagmus can be caused by a disease (multiple sclerosis, brain tumor, diabetic neuropathy), an accident (head injury), or a neurological problem (side effect of a medication).  Hyperventilation, a flashing light in front of one eye, nicotine and even vibrations have been known to cause nystagmus in rare cases. Some acquired nystagmuses can be treated with medications or surgeries.
  • 30. Cause Mutations in the FRMD7 gene cause X-linked infantile nystagmus. The FRMD7 gene provides instructions for making a protein whose exact function is unknown. This protein is found mostly in areas of the brain that control eye movement and in the light- sensitive tissue at the back of the eye (retina). Research suggests that FRMD7 gene mutations cause nystagmus by disrupting the development of certain nerve cells in the brain and retina.
  • 31. Signs and sypmtoms  To and fro movements of the eyes are observed by other people and the patient himself is unaware about the eye movements as the objects being viewed do not seem to move.  If nystagmus is developed during childhood, the child has tends to nod his head depending upon the type and direction of nystagmus. In cases of acquired adult nystagmus, the environment appears to oscillate horizontally, vertically or torsionally.  Blurred and unstable vision is a frequent complaint  For a better vision, abnormal head posturing, may be resorted to by patients suffering from nystagmus
  • 32. Diagnosis o One way to observe nystagmus is by spinning an individual around for about 30 seconds, stopping, and then having them try to stare at an object. If nystagmus is present, the eyes will first move slowly in one direction, then move rapidly in the opposite direction.
  • 33. Other tests that may be used to diagnose nystagmus are: • Eye-movement recordings — to verify the type of nystagmus and determine the details of the movements; • Ear exam; • Neurologic exam; • Computerized tomography (CT) — X-rays of the brain; • Magnetic resonance imaging (MRI) — magnetic and radio waves used to make images of the brain.
  • 34. Treatment • Since the discovery of the gene (FRMD7) that causes nystagmus, the drugs memantine and gabapentin were used to reduce acquired nystagmus. • They also help people with congenital (also known as infantile or early onset) nystagmus. • Wearing of contact lenses have been known to help improve vision even more since the lenses move along with the eye movements • A clinical trial of using gene therapy has restored the vision of three young adults in 2008
  • 36. • Retinitis pigmentosa (RP) refers to a group of inherited disorders that slowly lead to blindness due to abnormalities of the photoreceptors (primarily the rods) in the retina • It is commonly known as night blindness
  • 37. Pathophysiology • The retina lines the interior surface of the back of the eye and is made up of several layers • One layer contains two types of photoreceptor cells referred to as the rods and cones. • The cones are responsible for sharp, central vision and color vision and are primarily located in a small area of the retina called the fovea. • The area surrounding the fovea contains the rods, which are necessary for peripheral vision and night vision (scotopic vision). The number of rods increases in the periphery. • The rod and cone photoreceptors convert light into electrical impulses and send the message to the brain via the optic nerve. • Another layer of the retina is called the retinal pigmented epithelium (RPE).
  • 38. • In RP, the photoreceptors (primarily the rods) begin to deteriorate and lose their ability to function. • Because the rods are primarily affected, it becomes harder to see in dim light, thus causing a loss of night vision. • As the condition worsens, peripheral vision disappears, which results in tunnel vision. The ability to see color is eventually lost. • In the late stages of the disease, there is only a small area of central vision remaining. Ultimately, this too is lost.
  • 39. Cause  This disorder has many modes of inheritance and is caused by over 100 mutations  In the non-sex-linked, or autosomal, form, it can either be a dominant or recessive trait.  In the sex-linked form, called x-linked recessive, it is a recessive trait.  This x-linked form is more severe than the autosomal forms.
  • 40. Researchers found a mutation in a gene called MAK (male germ cell associated kinase).  This gene had not previously been associated with eye disease in humans.  However, examining tissue from donated eyes showed that MAK protein was located in the parts of the retina that are affected by the disease.
  • 41. Signs and sypltoms o Decreased vision at night or in low light o Loss of side (peripheral) vision o Loss of central vision (in advanced cases)
  • 42.
  • 43. diagnosis • Tests to evaluate the retina: • Color vision • Examination of the retina by ophthalmoscopy after the pupils have been dilated • Fluorescein angiography • Intraocular pressure • Measurement of the electrical activity in the retina (electroretinogram) • Pupil reflex response • Refraction test • Retinal photography • Side vision test (visual field test) • Slit lamp examination • Visual acuity
  • 44. Treatment • Researchers generated induced pluripotent stem cells (iPSCs) from the patient's own skin cells and coaxed these immature cells to develop into retinal tissue. • Analyzing this tissue showed that the gene mutation caused the loss of the MAK protein in the retina.
  • 45. • Currently, synthetic treatment nor surgery has been developed to treat this condition
  • 47. • Retinoschisis is a disease of the nerve tissue in the eye. It affects the retinal cells in the macula (the central fixation point of vision at the back of the eye). Retinoschisis is technically a form of macular degeneration. • Retinoschisis is a genetic eye disease that affects the vision of men who inherit the disease from their mothers. • This condition frequently starts during childhood and is officially called Juvenile X-linked Retinoschisis.
  • 48. TYPES • There are two forms of this disorder. The most common is an acquired form that affects both men and women. It usually occurs in middle age or beyond, although it can occur earlier, and it is sometimes known as senile retinoschisis. • The other form is present at birth (congenital) and affects mostly boys and young men. It is known as juvenile, X-linked retinoschisis.
  • 49. Symptoms • Decreased vision • Loss of peripheral vision • The symptoms described above may not necessarily mean that you have retinoschisis. However, if you experience one or more of these symptoms, contact your eye doctor for a complete exam.
  • 50. Diagnosis • The electroretinogram (ERG) is an important test used in assessing the function of the nerve tissue (retina) in the back of the eye. • The eye is stimulated with light after either dark or light adaptation. • Contact lenses, embedded with an electrode, are worn by the patient. • The reaction of the eye is recorded and evaluated. • This test expresses photoreceptor activity and the overall response of the external layer of the retina, and is a very important tool in diagnosis.
  • 51. Juvenile Retinoschisis • A genetic disorder of the X- Chromosome can lead to juvenile retinoschisis. • It is caused due to a defective gene(RS1). This gene produces an amino acid that can affect the photoreceptors (light sensitive pigments) in the eye. • Juvenile Retinoschisis can bring physical changes in the retina (sometimes, the retina may be split into two) which can impair vision permanently. • This means that this disorder can be primarily among boys (since boys Fundus photograph of juvenile have only X-Chromosome). retinoschisis demonstrating stellate • Sometimes, there is a possibility of spokelike appearance with microcysts. this disorder even among girls (due to the presence of two defective genes).
  • 52. Causes • The gene responsible for X-linked juvenile retinoschisis, XLRS1, is located on band Xp22. XLRS1 encodes a 224 amino acid protein retinoschisin that is expressed in photoreceptor and bipolar cells. • Retinoschisin is a secreted protein that is involved in cellular adhesion and cell-cell interactions within the inner nuclear layer as well as synaptic connection between photoreceptors and bipolar cells.
  • 53. Pathophysiology • Using positional cloning, Sauer and associates identified XLRS1, the gene responsible for X- linked juvenile retinoschisis. • Defective or absent retinoschisin may reduce adhesion of the retinal layers, resulting in the creation of schisis cavities.
  • 54. Medical care • No treatment is available to halt the natural progression of schisis formation in patients with X-linked juvenile retinoschisis (XJR).
  • 55. Drugs to treat retinoschisis • The use of topical dorzolamide and oral acetazolamide in reducing cystic spaces and foveal thickness with a concomitant increase in visual acuity has been reported. • Both are diuretics • MOA: both decrease aqueous secretion due to lack of bicarbonate or inhibit carbonic anhydrase. • Acetazolamide is also useful in treating seizures
  • 56. Gene Therapy • Currently, gene therapy research on an Rs1h- deficient mouse model of human retinoschisis has shown restoration of expression of retinoschisin protein in photoreceptors and normal ERG configuration. Gene therapy may be a viable therapeutic option in the future.
  • 57. • University of Florida scientists used a healthy human gene to prevent blindness in mice with a form of an incurable eye disease that strikes boys. • Writing in the August issue of Molecular Therapy, scientists from the UF Genetics Institute describe how they successfully used gene therapy in mice to treat retinoschisis, a rare genetic disorder that is passed from mothers, who retain their sight, to their sons.
  • 58. • In a healthy eye, retinal cells secrete a protein called retinoschisin, or RS1, which acts like glue to connect the layers of the retina. Without it, the layers separate and tiny cysts form, devastating the vision and often leading to blindness in about 1 of every 5,000 boys. • UF researchers injected a healthy version of the human RS1 gene to the sub-retinal space of the right eyes of 15-day-old male mice, which, like boys with the disease, don't have the healthy gene to maintain the retina. In terms of disease development, the condition in the mice was roughly equivalent to retinoschisis in a 10-year-old boy.
  • 59. • Six months later, researchers looked at the interior of the eyes with a laser ophthalmoscope and found cyst formation was clearly evident in the untreated eyes, but the treated eyes appeared healthy. • The eye's photoreceptor cells - the rods and cones that help the brain process light and color - were spared from the disease and the connections between the layers of the retinas were intact. • In addition, the protein appears capable of moving within the retina to its target sites and the beneficial changes appear to be long lasting, researchers said. Especially encouraging were signs the treatment may be able to repair retinal damage.
  • 60. • We've been very successful in curing a disease in mice that has a direct copy in humans," said Hauswirth. "It may take two to five years before we try this in human patients because of the need for safety studies, but we feel based on success so far, we will be able to provide formal evidence for safety that will allow us to get treatment into the clinic."
  • 61. • "We now have proof of principle that gene therapy can basically prevent retinoschisis," said Stephen Rose, Ph.D., chief research officer for the Maryland- based Foundation Fighting Blindness. "Furthermore, this therapy apparently demonstrates that even if disease has begun, there is a healing that takes place. That raises hope for suffering patients that we may be able to offer something that can improve the quality of their lives."
  • 63. Strabismus also known as heterotropia, is a condition in which the eyes are not properly aligned with each other.  It typically involves a lack of coordination between the extraocular muscles, which prevents bringing the gaze of each eye to the same point in space and preventing proper binocular vision, which may adversely affect depth perception. Common among children.
  • 64.
  • 65. Pathophysiology • Strabismus is caused by a lack of coordination between the muscles in the eyes. This can happen due to: • Problems, imbalances, or injuries of the muscles that move the eyes • Uncorrected refractive errors (ie, the need for glasses) • Nervous system disorders that affect vision, such as: – Problems or injury of the nerves that control the eye muscles – Tumor in or near the eye or brain – Stroke or bleeding in the brain – Increased pressure in the brain – Myasthenia Gravis
  • 66. • Strabismus can be caused when the cranial nerves III (oculomotor), IV (trochlear) or VI (abducens) have a lesion. A strabismus caused by a lesion in either of these nerves results in the lack of innervation to eye muscles and results in a change of eye position. • Brain Damage • Injury to eye muscles • Hormone problems, such as: – Diabetes – Thyroid disease • Vision loss in one eye (one blind eye will often turn in or out) • In some cases it may be genetic.
  • 67. Genetics • Genetics suggest that these disorders can result from errors in the development of ocular motor neurons and, in particular, in the appropriate guidance and/or targeting of axons to extraocular muscles.
  • 68. • Althought much research is not done, one study show that the disorder result from mutations in genes necessary for the normal development and connectivity of brainstem ocular moto neurons, including PHOX2A, SALL4, KIF21A, ROBO3, and HOXA1, and it is now refered to as “congenital cranial dysinnervation disorders,” or CCDD.
  • 69.
  • 70. Treatment • If strabismus is minor and detected early, can often be corrected with use of an eyepatch on the dominant eye and/or vision therapy, the use of eyepatches is unlikely to change the angle of strabismus • Advanced strabismus is usually treated with a combination of eyeglasses or prisms, vision therapy, and surgery, depending on the underlying reason for the misalignment. Surgery does not change the vision; it attempts to align the eyes by shortening, lengthening, or changing the position of one or more of the extraocular eye muscles • Strabismus due to genetics- No available therapy
  • 71. Long-term goals to advance the field: • Long-term goals to advance the field: Incomitant: 1. Functional studies of molecular etiologies with eventual translation to treatment • Comitant: 1. Linkage, GWAS meta-analysis, replication, identification of causal variants 2. Functional studies of variants / associated genes to understand molecular etiologies 3. Improved treatment and outcome prediction through accurate genetic characterization in advance of intervention
  • 73. • Stargardt disease, or fundus flavimaculatus, is an inherited juvenile macular degeneration that causes progressive vision loss usually to the point of legal blindness. It is caused by a mutation of a gene. • The progression usually starts between the ages of six and twelve years old and plateaus shortly after rapid reduction in visual acuity.
  • 74. Pathopsyiology It is caused by mutations in a gene called ABCA4 also known as Atp binding cassette transporter in the visual phototransduction cycle. Researchers do not yet understand why a change in the ABCA4 gene causes Stargardt disease, but it is thought that this gene abnormality leads to an accumulation of a material called lipofuscin that may be toxic to the retinal pigment epithelium, the cells needed to sustain vision.
  • 75. Symptoms Symptoms appear befor the age of 20 and usually include: • wavy vision • blind spots • Blurriness • impaired color vision • difficulty adapting to dim lighting • Yellow spots on the retina • The centre of the retina, called the macula, has a shiny appearance called a beaten bronze appearence.
  • 76. Genetics It can be associated with several different genes: • STGD1: The most common form of Stargardt disease is the recessive form caused by mutations in the ABCA4 gene. It can also be associated with CNGB3. • STGD3: There is also a rare dominant form of Stargardt disease caused by mutations in the ELOVL4 gene. • STGD4: Associated with PROM1. • The classification "STGD2" is no longer used.
  • 77. Stem Cell Research • Stem cell research claims the ability to generate healthy RPE cells from human embryonic stem cells. The idea is to replace the genetically diseased RPE cells with healthy replacements. In theory, the healthy RPE cells should prevent loss of the photoreceptors, thereby preserving vision. • The layer of cells just beneath the retina ,is called the retinal pigment epithelium (RPE)
  • 78. Embryonic stem cell trials for macular degeneration: a preliminary report By Steven D Schwartz, Jean-Pierre Hubschman, Gad Heilwell, Valentina Franco-Cardenas, Carolyn K Pan, Rosaleen M Ostrick, Edmund Mickunas, Roger Gay, Irina Klimanskaya, Robert Lanza Published OnlineJanuary 23, 2012
  • 79. Findings • Controlled hESC( human embryonic stem • cells ) differentiation resulted in greater than 99% pure RPE. The cells displayed typical RPE behaviour and integrated into the host RPE layer forming mature quiescent monolayers after transplantation in animals. • The stage of differentiation substantially affected attachment and survival of the cells in vitro after clinical formulation. Lightly pigmented cells attached and spread in a substantially greater proportion (>90%) than more darkly pigmented cells after culture.
  • 80. • After surgery, structural evidence confirmed cells had attached and continued to persist during our study. We did not identify signs of hyperproliferation, abnormal growth, or immune mediated transplant rejection in either patient during the first 4 months. • Although there is little agreement between investigators on visual endpoints in patients with low vision, it is encouraging that during the observation period neither patient lost vision.
  • 81. • Best corrected visual acuity improved from hand motions to 20/800 (and improved from 0 to 5 letters on the Early Treatment Diabetic Retinopathy Study [ETDRS] visual acuity chart) in the study eye of the patient with Stargardt’s macular dystrophy, and vision also seemed to improve in the patient with dry age-related macular degeneration
  • 82. Interpretation • The hESC-derived RPE cells showed no signs of hyperproliferation, tumorigenicity, ectopic tissue formation, or apparent rejection after 4 months. The future therapeutic goal will be to treat patients earlier in the disease processes, potentially increasing the likelihood of photoreceptor and central visual rescue.
  • 83. CONGENITAL CATARACT • A congenital cataract is a clouding of the lens of the eye that is present at birth. • The lens of the eye is normally clear. • It focuses light that comes into the eye onto the retina.
  • 84. PATHOPHYSIOLOGY • The lens forms during the invagination of surface ectoderm overlying the optic vesicle. The embryonic nucleus develops by the sixth week of gestation. Surrounding the embryonic nucleus is the fetal nucleus. • At birth, the embryonic and fetal nuclei make up most of the lens. Postnatally, cortical lens fibers are laid down from the conversion of anterior lens epithelium into cortical lens fibers. • The Y sutures are an important landmark because they identify the extent of the fetal nucleus. Lens material peripheral to the Y sutures is lens cortex, whereas lens material within and including the Y sutures is nuclear. At the slit lamp, the anterior Y suture is oriented upright, and the posterior Y suture is inverted.
  • 85. • Any insult (eg, infectious, traumatic, metabolic) to the nuclear or lenticular fibers may result in an opacity (cataract) of the clear lenticular media. The location and pattern of this opacification may be used to determine the timing of the insult as well as the etiology. • Cataracts clouding the eye's natural lens usually are associated with aging processes. But congenital cataracts occur in newborn babies for many reasons that can include inherited tendencies, infection, metabolic problems, diabetes, trauma, inflammation or drug reactions
  • 86. SIGNS AND SYMPTOMS • Cloudiness of the lens that looks like a white spot in an otherwise normally dark pupil -- often obvious at birth without special viewing equipment • Failure of an infant to show visual awareness of the world around him or her (if cataracts present in both eyes) • Nystagmus (unusual rapid eye movements)
  • 87. DIAGNOSIS • A complete eye examination by an ophthalmologist will readily diagnose congenital cataract.
  • 88. TREATMENT • In some cases, congenital cataracts are mild and do not affect vision, and these cases require no treatment. • Moderate to severe cataracts that affect vision will require cataract removal surgery, followed by placement of an artificial intraocular lens (IOL). Patching to force the child to use the weaker eye may be required to prevent amblyopia
  • 89. CONGENITAL CATARACT AND INHERITANCE • Congenital cataract, although uncommon, accounts for about 10% of childhood blindness. The cataract is usually seen as an isolated abnormality but may occur in association with other ocular developmental or systemic abnormalities. • About 50% of bilateral cases have a genetic basis.
  • 90. • Congenital cataract is both clinically and genetically heterogeneous; isolated congenital cataract is usually inherited as an autosomal dominant trait although autosomal recessive and X linked inheritance are seen less commonly. • Most progress has been made in identifying the genes causing autosomal dominant congenital cataract.
  • 91. APPROACHES AND CAUSATIVE MUTATIONS Two main approaches have been used to identify the causative mutations. 1. In large families linkage analysis has been used to identify the chromosomal locus followed by screening of positional candidate genes; most genes have been identified using this strategy. 2. A second approach has been to screen DNA from large panels of patients with inherited cataract for mutation in the many candidate genes available.
  • 92. FINGINGS • The α, β, and γ-crystallins are stable water soluble proteins which are highly expressed in the lens; they account for about 90% of total lens protein, have a key role in lens transparency, and thus represent excellent candidate genes for inherited cataract. • α-Crystallin is made up of two polypeptides αA and αB encoded by the CRYAA gene on chromosome 21q22.3 and CRYAB gene on 11q22–q22.3, respectively.
  • 93. • In addition to its structural role α-crystallin also functions as a molecular chaperone within the lens and other tissues. • Mutations in both CRYAA and CRYAB have been identified in families with ADCC and in one family with a missense mutation in CRYAB affected individuals had both cataract and an associated desmin related myopathy presumably caused by impaired chaperone function of the mutant protein. • A nonsense mutation in CRYAA has also recently been reported in a consanguineous family with autosomal recessive cataract.
  • 94. • The γ-crystallin gene cluster on chromosome 2q33–35 encompasses genes γA to D but only γC (CRYGC) and γD(CRYGD) are highly expressed in the human lens. • Missense mutations in both genes have been identified in families with ADCC exhibiting a range of different phenotypes. • Two different missense mutations within CRYGD (R36S and R58H) are associated with a crystalline- like cataract and functional studies suggest that this may be due to reduced solubility and increased likelihood of crystallisation of the mutant protein.
  • 95. • The β-crystallin family encompasses four acidic (A) and three basic (B) forms encoded by genes on chromosomes 2, 17, and 22. • Four mutations have been reported in the β- crystallin genes. • Two different splice site mutations have been reported in the CRYBA1 gene on chromosome 17q11.2 associated with nuclear and pulverulent phenotypes and a CRYBB1 nonsense mutation has been reported in a family with pulverulent cataract.
  • 96. • A missense mutation in CRYBB2 (Q155X) has been identified in three unrelated families with ADCC; interestingly, the phenotype in each family is very different despite the identical mutation indicating that other modifier genes are likely to influence the cataract phenotype. • Such modifier gene influences have recently been identified in a recessive murine cataract and it is likely that similar gene-gene interactions will be identified in human cataract.
  • 97. • At least 15 different mutations in the crystallin genes have now been implicated in human cataract associated with a diverse range of phenotypes. • It is still unclear what proportion of inherited cataract is associated with crystallin gene mutations as few studies have involved systematic screening of all crystallin genes in a large patient population.
  • 98. GENE THERAPY? • The identification of the genetic mutations underlying congenital cataract and subsequent functional studies will improve our understanding of normal lens development and the mechanisms of cataractogenesis. • This information, although important, is unlikely to lead to any major clinical advance in the prevention of or management of congenital cataract as the cataracts in this young age group are usually present from birth.
  • 99. What is Anophthalmia? • Anophthalmia, also known as anophthalmos is the congenital absence of one or both eyes. • It is a medical term that describes the lack of eye of occular tissue and globe from the eye. • Anophthalmia and microphthalmia are often used interchangeably. • Microphthalmia is a disorder in which one or both eyes are abnormally small, while anophthalmia is the absence of one or both eyes.
  • 100. Pathophysiology • Anophthalmia occurs when the neuroectoderm of the primary optic vesicle fails to develop properly from the anterior neural plate of the neural tube during embryological development. • The more commonly seen microphthalmia can result from a problem in development of the globe at any stage of growth of the optic vesicle.
  • 101. • Proper growth of the orbital region is dependent on the presence of an eye, which stimulates growth of the orbit and proper formation of the lids and the ocular fornices. • Commonly, a child born with anophthalmia has a small orbit with narrow palpebral fissure and shrunken fornices.
  • 102. SIGNS AND SYMPTOMS • Small orbital rim and the entry • Reduced size of the orbit bone or the eye socket • The eye muscles are usually lacking. • Tear glands and ducts may be missing. • Optic foramen is small and/or maldeveloped
  • 103. • The shortening of the eyelids in all directions • The contraction of the orbicularis muscle. • Eyeball is completely absent in primary anophthalmia. • Eyeball is very small and malformed in microphthalmia. • Due to anopthalmia a small bony orbit called hemifacial hypoplasia is formed which does not allow a prosthesis to be fit.
  • 104. LINKING CAUSE AND THE DISEASE • The development of the eye is highly complex and it is determined by sequential and coordinated expression of eye development genes within the developing tissues. • Although some individuals with anophthalmia or microphthalmia have relatives with other eye malformations, the frequent lack of clear Mendelian inheritance in these conditions has made identifying the genes for eye development very challenging.
  • 105. • However, using a variety of techniques, some genes involved in anophthalmia or microphthalmia have now been identified. • These include genes principally involved in ocular development, such as 1. CHX10 2. SOX2 3. OTX2 4. PAX6 5. SIX6and STRA6
  • 106. Sox2 GENE • The most genetic based cause for anophthalmia is caused by the Sox2 gene. • Sox2 anophthalmia syndrome is caused by a mutation in the Sox2 gene that does not allow it to produce the Sox2 protein that regulates the activity of other genes by binding to certain regions of DNA. • Without this Sox2 protein, the activity of genes that is impotant for the development of the eye is disrupted.
  • 107. • Sox2 anophthalmia syndrome is an autosomal dominant inheritance, but the majority of patients who suffer from Sox2 anophthalmia are the first in their family history to have this mutation. • In certain cases, one parent will possess the mutated gene only in their egg or sperm cell and the offspring will inherit it through that. This is called germline mosaicism. • There are at least 33 mutations in the Sox2 gene that have been known to cause anophthalmia.
  • 108. • Some of these gene mutations will cause the Sox2 protein not to be formed, while other mutations will yield a non-functional version of this protein.
  • 109. OTHER INFLUENCIAL GENES • Other important genes causes anophthalmia include OTX2, CHX10 and RAX. • Each of these genes are an important in retinal expression. Mutations in these genes can cause a failure of retinal differentiation. • OTX2 is dominantly inherited and varies in severity. It has also been linked with microphthalmia.
  • 110. • BMP4 is also linked in anophthalmia is also a cause of myopia, microphthalmia and is dominantly inherited. BMP4 interacts with Sonic Hedgehog pathway and can cause anophthalmia. • CHX10 is involve in development of the eye. Many of which are involved in the development of substructures within the eye. • Genes that are involved in eye and brain development including SOX2, OTX2, and PAX6.
  • 111. • Several syndromic genes are involved in developing other organs in addition to the eye, including CHD7, the gene for CHARGE syndrome and PTCH, the gene for Gorlin syndrome. • There is a complex interplay between the different eye development gene pathways, which allows their expression to be finely regulated and begins to explain why there is such an overlap of the phenotypes associated with mutations of each gene.
  • 112. • STRA6 gene which is responsible for transporting vitamin A into the cells.
  • 113. OTHER FACTORS 1. Environmental Influence • Many environmental conditions have also been known to cause anophthalmia. The strongest support for environmental causes has been studies where children have had gestational-acquired infections. • These infections are typically viral. A few known viruses that can cause anophthalmia are toxiplasmosis, rubella, and certain strands of the flu virus.
  • 114. • Other known environmental conditions that have lead to anophthalmia are maternal vitamin A deficiency, exposure to X-rays during gestation, solvent misuse, and exposure to thalidomide. 2. Chromosome 14 • An interstitial deletion of chromosome 14 has been known to occasionally be the source of anophthalmia. The deletion of this region of chromosome has also been associated with patients having a small tongue, and high arched palate, developmental and growth retardation, undescended testes with a micropenis, and hypothyroidism.
  • 115. • The region that has been deleted is region q22.1-q22.3. This confirms that region 22 on chromosome 14 influences the development of the eye.
  • 116. DIAGNOSIS 1. Prenatal Diagnosis • Ultrasounds can be used to diagnose anophthalmia during gestation. Due to the resolution of the ultrasound, however, it is hard to diagnose it until the second trimester. The earliest to detect anophthalmia this way is approximately 20 weeks. • 3D and 4D ultrasounds have proven to be more accurate at viewing the fetus's eyes during pregnancy and are another alternative to the standard ultrasound.
  • 117. • Amniocentesis, it is possible to diagnose prenatally with amniocentesis, but it may not show a correct negative result. • Amniocentesis can only diagnose anophthalmia when there is a chromosomal abnormality. Chromosomal abnormalities are only a minority of cases of anophthalmia.
  • 118. 2. Postnatal Diagnosis • MRIs and CTs can be used to scan the brain and orbits. Clinicians use this to assess the internal structures of the globe, the optic nerve and extraocular muscles, and brain anatomy. • Examination, physicians, specifically opthamologists, can examine the child and give a correct diagnosis. Some will do molecular genetics tests to see if the cause is linked with gene mutations.
  • 119. TREATMENT 1. Prosthetic eye • Currently, there is not a treatment option for regaining vision by developing a new eye. • However, cosmetic options so the absence of the eye is not as noticeable. • Typically, the child will need to go to prosthetic specialist to have conformers fitted into the eye. Conformers are made of clear plastic and are fitted into the socket to promote socket growth and expansion.
  • 120. • As the child's face grows and develops, the conformer will need to be changed. Expander may also be needed in anophthalmia to expand the socket that is present. • The conformer is changed every few weeks the first two years of life. After that, a painted prosthetic eye can be fitted for the child's socket.
  • 121. 1. Cosmetic Surgery • If the proper actions are not taken to expand the orbit, many physical deformities can appear. • It is important that if these deformities do appear, that surgery is not done until at least the first two years of life. Many people get eye surgery, such as upper eyelid ptosis surgery and lower eyelid tightening. These surgeries can restore the function of the surrounding structures like the eyelid in order to create the best appearance possible.
  • 122. ANOPHTHALMIA AND GENE THERAPY 1. Scientists at University College Dublin, Ireland, have identified a genetic alteration which causes a child to be born with anophthalmia. • According to the findings published in the current issue (December 2011) of Human Mutation, a child’s eyes will not develop fully in the womb if the child has alterations in both copies of its STRA6 gene which is responsible for transporting vitamin A into the cells.
  • 123. • This new discovery means that scientists can now develop a genetic test for couples who may be carrying the altered gene and planning to have children. • If identified, the couples can receive advice and counselling about the implications of carrying the gene alteration for their present and future children.
  • 124. What is Microphthalmia? • Microphthalmia is an eye abnormality that arises before birth. In this condition one or both eyeballs are abnormally small. In some affected individuals the eyeball may appear to be completely missing however, even in these cases some remaining eye tissue is generally present. • Microphthalmia should be distinguished from another condition called anophthalmia, in which no eyeball forms at all.
  • 125. Etiology • Microphthalmia in newborns is sometimes associated with fetal alcohol syndrome or infections during pregnancy particularly herpes simplex virus, rubella and cytomegalovirus (CMV) but the evidence is inconclusive. • Genetic causes of microphthalmia include chromosomal abnormalities (trisomy 13 (Patau syndrome), Triploid Syndrome and Wolf-Hirschhorn Syndrome) or monogenetic Mendelian disorders. • The latter maybe autosomal dominant, autosomal recessive or X linked. Genes that have been implicated in microphthamia include many transcription and regulatory factors.
  • 126. Prevalence • Between 3.2% and 11.2% of blind children have microphthalmia. • A national study of all live births in Scotland over a 16-year period showed a prevalence of 19 per 100,000 .
  • 127. Changes in genes that are associated with Microphthalmia.
  • 128.
  • 129. Pathophysiology • Anophthalmia and Microphthalmia may result from growth arrest of the optic vesicles. • Anophthalmia occurs with faulty neuroectodermal development in the primary optic vesicle from the anterior neural plate. • Microphthalmos can result from disruption of any stage of optic vesicle growth. Microphthalmia is sometimes associated with an orbital cyst. • The development of the orbital bones, eyelids and fornices depends largely on the presence of volume within the orbit(a growing globe in the normal state) . • The cyst associated with microphthalmos may stimulate adequate growth. • In addition to visual system impairment, disfigurement of the midface, orbit and eyelid may occur without treatment. Also the patient may be unable to wear a prosthetic eye.
  • 130.
  • 131.
  • 132. Pathophysiology Cont’ue • Orbital hypoplasia is most commonly related to congenital Microphthalmos. • A clear inheritance pattern has not been established, most cases are sporadic or idiopathic in nature. • However, prepartum maternal infections and exposures to toxins have been implicated. • Microphthalmia may also occur as part of more extensive craniofacial malformations. • Orbital hypoplasia is sometimes a result of enucleation early in life for trauma or retinoblastoma.
  • 133. Signs/symptoms • The signs and symptoms of Microphthalmia with linear skin defects syndrome vary widely, even among affected individuals within the same family. • In addition to the characteristic eye problems and skin markings this condition can cause abnormalities in the brain, heart and genitourinary system. • A hole in the muscle that separates the abdomen from the chest cavity (the diaphragm) which is called a diaphragmatic hernia may occur in people with this disorder. • Affected individuals may also have short stature and fingernails and toenails that do not grow normally (nail dystrophy).
  • 134. Diagnosis/testing • The diagnosis of Microphthalmia is based on clinical examination and imaging studies including: • A-scan ultrasonography to measure total axial length; • B-scan ultrasonography to evaluate the internal structures of the globe. • CT scan or MRI of the brain and orbits to evaluate the size and internal structures of the globe, the optic nerve and extraocular muscles. • Evaluation for other malformations, assessment of hearing, chromosome analysis, family history and parental eye examinations may help establish the underlying cause.
  • 135. Diagnosis Cont’ue • Molecular genetic testing for mutations in genes associated with Micropthalmia is clinically available for SIX3, HESX1, BCOR, SHH, PAX6, RAX, CHD7 (CHARGE syndrome), IKBKG (incontinentia pigmenti), NDP (Norrie disease), SOX2(SOX2-related eye disorders), POMT1 (Walker-Warburg syndrome), and SIX6. • Molecular genetic testing for isolated (nonsyndromic) Micropthalmia is available on a research basis only.
  • 136. Treatment • Large cysts causing microphthalmia should be aspirated or removed surgically. There is no known cure for anophthalmia or microphthalmia. • For anophthalmia a prosthetic eye can be fitted which may involve surgery. • Treatment for microphthalmia depends on the complexity of eye involvement.
  • 137. Gene Therapy. Retinal stem cells isolated from the ciliary epithelium of the adult ciliary body proliferate and form neurospheres in culture. Immuno-labeled with the progenitor cell marker, nestin (green).
  • 138. Molecular patterning across the dorso- ventral axis of the embryonic eye. Tbx5 gene expression (blue) is restricted to retinal progenitor cells in the dorsal peripheral region of the developing optic cup.
  • 139. Transplanted photoreceptor precursor cells integrate and develop into mature photoreceptor cells (green) that form functional connections with the host retina (blue) and improve visual function .
  • 140. Transplanted cone photoreceptor (yellow) within the outer nuclear layer (magenta) of a recipient retina.
  • 141. References http://vision.about.com/od/eyediseasesandconditions/g/Color_Blindness.htm • http://www.genomenewsnetwork.org/articles/2004/05/28/optics.php • http://www.brighthub.com/science/genetics/articles/28771.aspx • http://journals.lww.com/co- ophthalmology/Abstract/2011/03000/Gene_therapy_for_glaucoma.2.aspx • en.wikipedia.org/wiki/Strabismus • http://www.nature.com/pr/journal/v59/n3/abs/pr200667a.html • http://www.nei.nih.gov/strategicplanning/genetics1.asp • http://www.thirdage.com/hc/c/strabismus • http://en.wikipedia.org/wiki/Stargardt_disease • http://www.mdsupport.org/library/stargardt2.html • http://www.lifenews.com/2012/01/24/first-report-on-embryonic-stem-cells-in- patients-results-tbd/ • http://www.livestrong.com/article/257857-what-are-the-causes-of-nystagmus/ • http://www.geteyesmart.org/eyesmart/diseases/nystagmus-diagnosis.cfm • http://www.sciencedaily.com/releases/2008/04/080427194726.htm

Editor's Notes

  1. in a comitant strabismus the sameangle of misalignment of the eyes is maintained in all directions of gaze. Incomitant- due to weakness of the eye muscles
  2. macular degeneration –loss vision due to damage to the retina
  3. Visual phototransduction is a process by which light is converted into electrical signals in the rod cells, cone cells and photosensitive ganglion cells of the retina of the eye.
  4. Stargardt disease has no impact on general health and longevity is normalNo cure
  5. Those identified from family studies include the following.
  6. FOR EXAMPLES.