Atualizámos a nossa política de privacidade. Clique aqui para ver os detalhes. Toque aqui para ver os detalhes.
Ative o seu período de avaliaçõo gratuito de 30 dias para desbloquear leituras ilimitadas.
Ative o seu teste gratuito de 30 dias para continuar a ler.
Baixar para ler offline
Goal: explain the nature of the work of an analytics team to a manager, and enable people on those teams to explain what a data science team needs to a manager.
It seems as if every organization wants to enable analytical-decision making and embed analytics into operational processes. What can you do with analytics? It looks like anything is possible. What can you really do? Probably a lot less than you expect. Why is this? Vendors promise easy-to-use analytics tools and services but they rarely deliver. The products may be easy but the work is still hard.
Using analytics to solve problems depends on many factors beyond the math: people, processes, the skills of the analyst, the technology used, the data. Technology is the easy part. Figuring out what to do and how to do it is a lot harder. Despite this, fancy new tools get all the attention and budget.
People and data are the truly hard parts. People, because many believe that data is absolute rather than relative, and that analytic models produce an answer rather than a range of answers with varying degrees of truth, accuracy and applicability. Data, because managing data for analytics is a nuanced, detail-oriented and seemingly dull task left to back-office IT.
If your goal is to build a repeatable analytics capability rather than a one-off analytics project then you will need to address the parts that are rarely mentioned. This talk will explain some of the unseen and little-discussed aspects involved when building and deploying analytics.
Goal: explain the nature of the work of an analytics team to a manager, and enable people on those teams to explain what a data science team needs to a manager.
It seems as if every organization wants to enable analytical-decision making and embed analytics into operational processes. What can you do with analytics? It looks like anything is possible. What can you really do? Probably a lot less than you expect. Why is this? Vendors promise easy-to-use analytics tools and services but they rarely deliver. The products may be easy but the work is still hard.
Using analytics to solve problems depends on many factors beyond the math: people, processes, the skills of the analyst, the technology used, the data. Technology is the easy part. Figuring out what to do and how to do it is a lot harder. Despite this, fancy new tools get all the attention and budget.
People and data are the truly hard parts. People, because many believe that data is absolute rather than relative, and that analytic models produce an answer rather than a range of answers with varying degrees of truth, accuracy and applicability. Data, because managing data for analytics is a nuanced, detail-oriented and seemingly dull task left to back-office IT.
If your goal is to build a repeatable analytics capability rather than a one-off analytics project then you will need to address the parts that are rarely mentioned. This talk will explain some of the unseen and little-discussed aspects involved when building and deploying analytics.
Parece que você já adicionou este slide ao painel
Você recortou seu primeiro slide!
Recortar slides é uma maneira fácil de colecionar slides importantes para acessar mais tarde. Agora, personalize o nome do seu painel de recortes.A família SlideShare acabou de crescer. Desfrute do acesso a milhões de ebooks, áudiolivros, revistas e muito mais a partir do Scribd.
Cancele a qualquer momento.Leitura ilimitada
Aprenda de forma mais rápida e inteligente com os maiores especialistas
Transferências ilimitadas
Faça transferências para ler em qualquer lugar e em movimento
Também terá acesso gratuito ao Scribd!
Acesso instantâneo a milhões de e-books, audiolivros, revistas, podcasts e muito mais.
Leia e ouça offline com qualquer dispositivo.
Acesso gratuito a serviços premium como Tuneln, Mubi e muito mais.
Atualizámos a nossa política de privacidade de modo a estarmos em conformidade com os regulamentos de privacidade em constante mutação a nível mundial e para lhe fornecer uma visão sobre as formas limitadas de utilização dos seus dados.
Pode ler os detalhes abaixo. Ao aceitar, está a concordar com a política de privacidade atualizada.
Obrigado!