Anúncio

LEAST-COST-&-RISK LIFECYCLE DELIVERED ENERGY SERVICES

Principal, AssetsforLife.net em Pearl Jam
27 de Aug de 2017
Anúncio

Mais conteúdo relacionado

Apresentações para você(19)

Similar a LEAST-COST-&-RISK LIFECYCLE DELIVERED ENERGY SERVICES(20)

Anúncio

Mais de Michael P Totten(20)

Anúncio

LEAST-COST-&-RISK LIFECYCLE DELIVERED ENERGY SERVICES

  1. SOLAR  RESOURCE  OF  LATIN  AMERICA   LEAST-­‐COST-­‐&-­‐RISK  LIFECYCLE     DELIVERED  ENERGY  SERVICES   Michael  P  To,en,  Senior  Fellow,  Rocky  Mountain  Ins:tute,  Nov.  12,  2014   Presenta:on  to  the  IDB  ENE  CSF  Energy  Training  Workshop     EPPs  +   +   Efficiency   Power   Plants  
  2. Summary  of  Key  Points   1.  Least-­‐Cost-­‐and-­‐Risk  Lifecycle  PorLolio  of  Delivered  Energy  Services  top  priority       2.  Risks  include  intrinsic  uncertain:es  and  surprises  –  climate  disrup:on  costs,  price   vola:li:es  of  fuel,  water,  pollu:on  and  emissions,  catastrophic  accident  fat-­‐tail   probabili:es,  destruc:on  of  ecosystem  services,  cultural  disrup:on   3.  End-­‐use  efficiency  gains  (Eta,  η)  vast  pool  capable  of  delivering  50  to  75%  of  new   energy  services  for  decades,  far  cheaper  than  any  supply  op:on  –  integrated   design  intelligence/knowledge  displacing  energy  resources  &  materials.   4.  Wind  power  now  cheapest  supply  op:on  in  countries  and  regions  with  wind   resources.   5.  Solar  Photovoltaics  (PV)  systems  now  equal  to  or  less  than  the  grid  electricity   from  other  sources  in  79  countries.    Within  60  months  (by  2020)  –  as  the  scale  of   deployments  grows  and  the  costs  con:nue  to  decline  –  more  than  80%  humanity   will  live  in  regions  where  solar  will  be  compe::ve  with  electricity  from  other   sources.   6.  Efficiency,  Wind  &  Solar,  once  installed,  are  risk-­‐free  from  price  vola:lity  over   lifecycle  given  no  fuel  demand,  virtually  no  water,  no  pollu:on,  waste  or   emissions  in  genera:ng  and  delivering  electricity  services.  
  3. Natural Gas provides fuel for transportation, electricity, and heat Telecom provides SCADA and communications technologies Transportation provides fuel transport and shipping Electric Power provides energy to support facility operations Water provides water for production, cooling, and emissions reductions Oil provides fuel and lubricants Figure 3. Examples of Critical Infrastructure Interdependencies Adapted from: Rinaldi, Peerenboom, and Kelly (2001)”Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies” IEEE Control Systems Magazine, December. Available at: http://www.ce.cmu.edu/~hsm/im2004/readings/CII-Rinaldi.pdf. CriZcal  Infrastructure  Interdependencies     Cybersecurity  and  the  North  American  Electric  Grid:  New  Policy  Approaches  to  Address  an  Evolving  Threat,  Bipar:san  Policy  Center,  Feb.  2014  
  4. Threats  Landscape:  ELECTRIC  POWER  SECTOR   Spectrum of Threats do today. The Chertoff Group was biological, or radiological attacks). As F I G U R E 1 THREAT LANDSCAPE: ELECTRIC POWER SECTOR Source: The Chertoff Group, December 2013 Cyber Attack Physical Attack / Theft Coordinated Physical and Cyber Attack Insider Threat Electromagnetic Interference / EMP Natural Disasters Pandemic Supply Chain Compromise Chemical, Biological or Radiological Attack Nuclear Attack LIKELIHOOD CONSEQUENCE
  5. UglyGorilla  (Chinese)  Hack  of  U.S.  UZlity     Exposes  Cyberwar  Threat   “This  is  as  big  a  naZonal  security  threat  as  I  have  ever  seen  in  the   history  of  this  country  that  we  are  not  prepared  for,”  said  U.S.   Congressman  Mike  Rogers  (R-­‐MI)  ,  chairman,  USHR  intelligence   commiaee.   “Your  palms  get  a  liale  sweaty  thinking  about  what  the   outcome  of  those  aaacks  might  have  been  and  how  close  they   actually  came.”    
  6. National Security and the Accelerating Risks of Climate Change Military Advisory Board General Paul Kern, USA (Ret.) Brigadier General Gerald E. Galloway Jr., USA (Ret.) Vice Admiral Lee Gunn, USN (Ret.) Admiral Frank “Skip” Bowman, USN (Ret.) General James Conway, USMC (Ret.) Lieutenant General Ken Eickmann, USAF (Ret.) Lieutenant General Larry Farrell, USAF (Ret.) General Don Hoffman, USAF (Ret.) General Ron Keys, USAF (Ret.) Rear Admiral Neil Morisetti, British Royal Navy (Ret.) Vice Admiral Ann Rondeau, USN (Ret.) Lieutenant General Keith Stalder, USMC (Ret.) General Gordon Sullivan, USA (Ret.) Rear Admiral David Titley, USN (Ret.) General Charles “Chuck” Wald, USAF (Ret.) Lieutenant General Richard Zilmer, USMC (Ret.) Pentagon  Report:  U.S.  Military   Considers  Climate  Change  a   'Threat  MulZplier'  That  Could   Exacerbate  Terrorism  
  7. BUILDING A RESILIENT POWER GRID Industry and government are working together to ensure necessary investments—not only to anticipate and prevent possible harm to critical energy supply—but also to ensure a constant focus on building a more resilient grid.
  8. ENERGY  STRATEGIES  FOR  NATIONAL  SECURITY    (and  profits,  jobs,  nature  and  climate)   Funded  by  Dept  Defense  Civil   Defense  Preparedness  Agency   Funded  by  Department  of   Defense   1980   2005  
  9. Main Utility Grid PCC Household appliances and electronics DC Coupled Subsystem Modes of Operation: ISLANDED US  Dept  of  Defense  Mandated  Islandable  Microgrids  at     Military  Bases  to  operate  even  if    Grid  Collapses  
  10. RANKING   LEAST-­‐COST-­‐RISK  (LCR)   DELIVERED  ENERGY  SERVICES  (DES)  
  11. CORE:  Efficiency,  ProducZvity,  IntegraZve  Design  
  12. Energy  ConsumpZon  in  the  U.S.  economy,  2010-­‐2050  
  13. Ken Caldeira
  14. η   Eta   Efficiency   Power  Plants  (EPPs)  
  15. You’re  Telling  Me  An  EE  Power  Plant   Is Just Like A Fossil Power Plant? . 7 • Yes,  and  it’s  less  expensive,   removes more pollutants, and saves water • Answer these questions to build an EE power plant: – How many MW and MWh? – When and where? – Quantity of tons needed to be removed? Building  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  or  Why  EE  Advocates  Should  Engage  Air  Regulators,  Christopher   James,  Principal,  Regulatory  Assistance  Project  (RAP),  ACEEE  Summer  Study,  August  2014  
  16. Efficiency  Power  Plant  (EPP)  calculator,  Regulatory  Assistance  Project,  h,p://www.raponline.org/featured-­‐work/cu^ng-­‐ through-­‐the-­‐fog-­‐to-­‐build-­‐energy-­‐efficiency   Efficiency  Power  Plant  (EPP)  Calculator    
  17. Building  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  or  Why  EE  Advocates  Should  Engage  Air  Regulators,  Christopher   James,  Principal,  Regulatory  Assistance  Project  (RAP),  ACEEE  Summer  Study,  August  2014   same principles as our demonstration tool, that could potentially be used by states as part of their future plans. Indeed, many existing tools used by efficiency program administrators would require only modest modifications (and perhaps no modifications in some cases) to provide such functionality. Figure 2. Efficiency power plant planning tool inputs. 17 "End Use" (what the electricity is being used for) Representative installed equipment (also called "Measure") Unit of installed equipment (what are you counting?) Quantity of installed equipment (how many will be installed?) Savings per Unit (kWh/yr) Total Savings (MWh/yr) RESIDENTIAL Residential Cooling ENERGY STAR Central A/C Air Conditioner 756 150 113 Cooking & Laundry CEE Tier 3 Washer Washing Machine 6,830 237 1,619 Lighting CFL Light Bulb 981,130 35 34,340 Refrigeration Recycled Refrigerator Refrigerator 2,127 720 1,531 Space Heating Weatherization One Home 542 1,500 813 Water Heating Low Flow Showerhead Showerhead 3,530 260 918 Other Custom Projects One Home 3,257 1,000 3,257 Total Residential 42,591 COMMERCIAL & INDUSTRIAL A/C Project One C&I Project 623 5,505 3,429 Hot Water Project One C&I Project 139 1,000 139 Industrial Process Project One C&I Project 73 140,000 10,220 Interior Lighting Project One C&I Project 2,621 16,000 41,936 Motors VFD<= 10 HP One C&I Project 1,509 5,400 8,149 Refrigeration Project One C&I Project 147 17,500 2,573 Space Heating Project One C&I Project 112 4,250 476 Ventilation Project One C&I Project 73 13,400 978 Compressed Air Project One C&I Project 62 29,187 1,810 Other Project One C&I Project 540 2,000 1,080 Total Commercial & Industrial 70,789 Enter the quantity for each row in the bright yellow cell in Column E Only change the savings per unit in the light yellow cells in Column F if you have savings estimates that are specific to the service territory you are analyzing What  Might  an  Efficiency  Power  Plant  Look  Like?  
  18. EE Power Plant Output by Month 12 Building  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  or  Why  EE  Advocates  Should  Engage  Air  Regulators,  Christopher   James,  Principal,  Regulatory  Assistance  Project  (RAP),  ACEEE  Summer  Study,  August  2014   MWh  savings   12,000   10,000  
  19. EE Power Plant for a July Day 13 MWhSavings Building  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  or  Why  EE  Advocates  Should  Engage  Air  Regulators,  Christopher   James,  Principal,  Regulatory  Assistance  Project  (RAP),  ACEEE  Summer  Study,  August  2014   MWh  savings  
  20. Reducing  Greenhouse  Gases  and  Improving  Air  Quality  Through  Energy  Efficiency  Power  Plants:  Cu^ng  Through  the  Fog  to  Help  Air  Regulators  “Build"  EPPs,   Chris  James  and  Ken  Colburn,  Regulatory  Assistance  Project  Chris  Neme  and  Jim  Greva,,  Energy  Futures  Group,  ACEEE  Summer  Study,  August  2014   Figure 1. Ozone design values 2009-11. Source: EPA 2014b Opportunities to Include Energy Efficiency in Clean Air Act Requirements The EE community can help spur the inclusion of EE in new and revised air quality rules, and promote EE’s role in helping states and air pollution sources comply with such rules, in two principal areas. First, the EE community should assure that EPA rules explicitly include EE as a compliance option. Because many states are expressly prohibited by their state constitutions LocaZons  with  Air  PolluZon  Exceeding  Clean  Air  Standards   OpportuniZes  to  include  Energy  Efficiency  in  Clean  Air  Requirements  
  21. New York California USA minus CA & NY Per Capital Electricity Consumption 165 GW Coal Power Plants Californian’s have net savings of $1,000 per family [EPPs] For delivering least-cost & risk electricity, natural gas & water services Integrated Resource Planning (IRP) & Decoupling sales from revenues are key to harnessing Efficiency Power Plants California 30 year proof of IRP value in promoting lower cost efficiency over new power plants or hydro dams, and lower GHG emissions. California signed MOUs with Provinces in China to share IRP expertise (now underway in Jiangsu). Net  Savings   $165  per   capita  
  22. 14 Annual Energy Savings from Efficiency Programs and Standards 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 GWh/year Appliance Standards Building Standards Utility Efficiency Programs at a cost of ~1% of electric bill ~15% of Annual Electricity Use in California in 2003 Arthur  H.  Rosenfeld,  Commissioner  California  Energy  Commission,  Successes  of  Energy  Efficiency:  The  United  States  and  California,  Na:onal   Environmental  Trust,  May  2,  2007  
  23. COOL  CITIES   BENIGN  GEOENGINEERING   Over 4000 Walmart stores with white roofs, and standard practice since 1990 Reflects away 80% of solar heat SOLAR REFLECTORS
  24. A  Real-­‐World     Example  of  Cooling   25   The whitewashed greenhouses of Almeria, Spain have cooled the region by 0.8 degrees Celsius each decade compared to surrounding regions, according to 20 years of weather station data. Source:    Google  Earth    
  25. Hashem Akbari Arthur Rosenfeld and Surabi Menon, Global Cooling: Increasing World-wide Urban Albedos to Offset CO2, 5th Annual California Climate Change Conference, Sacramento, CA, September 9, 2008, http://www.climatechange.ca.gov/events/2008_conference/presentations/index.html World of Solar Reflecting Cities $2+ Trillion Global Savings Potential, 59 Gt CO2 Reduction 100 m2
  26. 27   White  roofs,  cool-­‐colored  roofs  save   money  and  can  even  avoid  the  need  to   air  condi:on   flat,  white   pitched,  white   pitched,  cool  &  colored   OLD   NEW   AC  savings  ≈  15%   AC  savings  ≈  10%   AC  savings  ≈  5%   AC  savings  ≈  15%   AC  savings  ≈  10%  
  27. Temperature  and  Smog  Forma:on   28   Source:  Maryland  Commission  on  Climate  Change   EPA  Compliance  Std  =  75   TransiZon  Zone  
  28. Calif  Title  24  “Cool  Roof”  standards   •  In  2005,  California’s  “Title  24”  energy  efficiency   standards  prescribed  white  surfaces  for  low-­‐sloped  roofs   on  commercial  and  large  residen:al  buildings   (apartments,  hotels,  etc.).  Several  hot  states  are   following.   •  In  2008,  California  prescribed  “cool  colored”  surfaces  for   steep  residen:al  roofs  in  its  5  ho,est  climate  zones,  but   not  yet  Los  Angeles.   •  Other  U.S.  states  &  all  countries  with  hot  summers   ought  to  follow.     29  
  29. Resources  on  the  web   LBNL  –  Heat  Island  Group   HeatIsland.LBL.gov     Global  Cool  Ci:es  Alliance   www.GlobalCoolCi:es.org     Cool  Roofs  and  Cool  Pavements   Toolkit   www.CoolRoofToolkit.org       Art  Rosenfeld’s  website   www.ArtRosenfeld.org   30   Figure 6: Two Cool Roof Installations A cool coating is applied to a dark roof (top), and a cool single-ply membrane roof is unrolled (bottom). Image Source: DIY Advice or coated to make them reflective. Built-Up Roofs consist of a base sheet, fabric reinforcement layers, and a protective surface layer that is traditionally dark. The surface layer can be made in a few different ways, and each has cool options. One way involves embedding mineral aggregate (gravel) in a flood coat of asphalt. By substituting reflective marble chips or gray slag for dark gravel you can make the roof cool. A second way built-up roofs are finished is with a mineral surfaced sheet. These can be made cool with reflective mineral granules or with a factory-applied coating. Another surface option involves coating the roof with a dark asphaltic emulsion. This type can be made cool by applying a cool coating directly on top of the dark emulsion. Modified Bitumen Sheet Membranes are composed of one or more layers of plastic or rubber material with reinforcing fabrics, and are surfaced with mineral granules or with a smooth finish. A modified bitumen sheet can also be used to surface a built-up roof, and this is called a “hybrid”  roof.  Modified  bitumen  surfaces  can  be  pre- coated at the factory to make them cool. Spray Polyurethane Foam roofs are constructed by mixing two liquid chemicals together that react and expand to form one solid piece that adheres to the roof. Since foams are highly susceptible to mechanical, moisture, and UV damage, they rely on a protective coating. These coatings are traditionally reflective and offer cool roof performance. Steep Sloped Roofs Shingled Roofs consist of overlapping panels made from any of numerous materials. Fiberglass asphalt shingles, commonly used on homes, are coated with granules for protection. Cool asphalt shingles are use specially coated granules that provide better solar reflectance. While it is possible to coat existing asphalt shingles to make them cool, this is not normally recommended or approved by shingle manufacturers. Other shingles are made from wood, polymers, or metals and these can be coated at the factory or in the field to make them more reflective. Metal shingles are described in the Metal Roofs section that follows. x EPDM stands for ethylene propylene diene M-class, a kind of synthetic rubber. Cool Policies for Cool Cities: Best Practices for Mitigating Urban Heat Islands in North American Cities Virginia Hewitt and Eric Mackres, American Council for an Energy-Efficient Economy Kurt Shickman, Global Cool Cities Alliance June 2014 Report Number U1405 © American Council for an Energy-Efficient Economy and Global Cool Cities Alliance 529 14th Street NW, Suite 600, Washington, DC 20045 Phone: (202) 507-4000 Twitter: @ACEEEDC Facebook.com/myACEEE www.aceee.org www.globalcoolcities.org Best Practices for Mitigating Urban Heat Islands in North American Cities Virginia Hewitt and Eric Mackres, American Council for an Energy-Efficient Economy Kurt Shickman, Global Cool Cities Alliance June 2014 Report Number U1405 © American Council for an Energy-Efficient Economy and Global Cool Cities Alliance 529 14th Street NW, Suite 600, Washington, DC 20045 Phone: (202) 507-4000 Twitter: @ACEEEDC Facebook.com/myACEEE www.aceee.org www.globalcoolcities.org
  30. HVAC  &  Electric  Motors   TUNNELING  THROUGH  TO  LOW-­‐E  
  31. Now use 1/2 global power 30-50% efficiency savings achievable w/ high ROI ELECTRIC MOTOR SYSTEMS
  32. Improvement Over Time 10 0 10 20 30 40 50 60 70 80 90 100 110 1970 1980 1990 2000 2010 2020 2030 NormalizedEUI(1975Use=100) Year Improvement in ASHRAE Standard 90.1 (Year 1975-2013) 90-1975 90A -1980 90.1-1989 90.1- 1999 90.1- 2007 90.1- 2010 90.1-2004 14% 4.5% 0.5% 12.3% 4.5% 18.5% 90.1-2001 90.1- 2013 18.5% 6~8% Improvement  in  ASHRAE  Standard  90.1  (1975-­‐2013)   PNNL,  Building  Codes  Commercial  Landscape,  PNNL-­‐SA-­‐103479,  June  2014  
  33. 10 Source: David Goldstein New United States Refrigerator Use v. Time and Retail Prices 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 1947 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 AverageEnergyUseorPrice 0 5 10 15 20 25 Refrigeratorvolume(cubicfeet) Energy Use per Unit (kWh/Year) Refrigerator Size (cubic ft) Refrigerator Price in 1983 $ $ 1,270 $ 462 Arthur  H.  Rosenfeld,  Commissioner  California  Energy  Commission,  Successes  of  Energy  Efficiency:  The  United  States  and  California,  Na:onal   Environmental  Trust,  May  2,  2007  
  34. ASHRAE Standard 90.1 Projections 11 Heating and cooling use index based on weighted equipment efficiency requirement changes; Envelope based on typical medium office steel frame wall and window areas with U-factor changes; Lighting power based on building area allowances weighted for U.S. building floor area; Overall Standard 90.1 progress based on PNNL’s analysis. ASHRAE  Standard  90.1  ProjecZons  to  2030   PNNL,  Building  Codes  Commercial  Landscape,  PNNL-­‐SA-­‐103479,  June  2014  
  35. Interrelationships IECC  adopts  90.1  by  reference  –  designer  choice  which  to  use  but  cannot  ‘pick  and  choose’,  must  use  one  or  the  other  only   IgCC  adopts  the  IECC  by  reference  but  adds  criteria  to  address  addiZonal  items  not  covered  in  the  IECC  or  increases   stringency  of  the  IECC   IgCC  adopts  189.1  by  reference  –  designer  choice  which  to  use  but  cannot  ‘pick  and  choose’,  must  use  one  or  the  other  only   ASHRAE  189.1  adopts  90.1  by  reference  but  adds  criteria  to  address  addiZonal  items  not  covered  by  90.1  or  increases   stringency  of  90.1   InterrelaZonships  Building  Energy  Commercial  Codes   ASHRAE  189.1     ASHRAE  90.1    
  36. ASHRAE--Chiller Plant Efficiency 0.5 (7.0) 0.6 (5.9) 0.7 (5.0) 0.8 (4.4) 0.9 (3.9) 1.0 (3.5) 1.1 (3.2) 1.2 (2.9) NEEDS IMPROVEMENTFAIRGOODEXCELLENT AVERAGE ANNUAL CHILLER PLANT EFFICIENCY IN KW/TON (C.O.P.) (Input energy includes chillers, condenser pumps, tower fans and chilled water pumping) New Technology All-Variable Speed Chiller Plants High-efficiency Optimized Chiller Plants Conventional Code Based Chiller Plants Older Chiller Plants Chiller Plants with Correctable Design or Operational Problems Based on electrically driven centrifugal chiller plants in comfort conditioning applications with 42F (5.6C) nominal chilled water supply temperature and open cooling towers sized for 85F (29.4C) maximum entering condenser water temperature and 20% excess capacity. Local Climate adjustment for North American climates is +/- 0.05 kW/ton kW/ton C.O.P. 0.59 typical Trane Guaranty Source: LEE Eng Lock, Singapore 0.49  Infosys,  Bangalore,  India   0.59  Trane,  Singapore   Sources:  LEE  Eng  Lock,  Trane,  Singapore;  Punit  Desai,  Infosys,  Bangalore,  India;  Tom  Hartman,  TX,  h,p://www.hartmanco.com/    
  37. Source: LEE Eng Lock, Singapore Typical Chiller Plant -- Needs Improvement (1.2 kW per ton)
  38. Source: LEE Eng Lock, Singapore High Performance Chiller Plant (0.56 kW/t)
  39. Source: LEE Eng Lock, Singapore HOW? Bigger pipes, 45° angles, Smaller chillers
  40. Financial Benefits Before After Cooling TonHr/Week 80,000 80,000 System kWH/Week 152,000 47,200 kWh/TonH 1.90 0.59 Energy Savings in % Energy Savings in kWH / Year Energy Savings in $/Year @ $0.20/KWH Water usage per year (M3) 0 34,682 Water Charge per year (New Water @ $1.0/M3) Estimated Total $ Savings per Year Annual Reduction in Carbon Emission per year (Tones) $34,682 $1,055,238 2,724,800 68.95% 5,449,600 $1,089,920 ROI = 29%. Energy Savings over 15 years = S$15M
  41. !  Making pipes just 50% fatter reduces friction by 86% Pipe%Dia%in% inch% Flow%in% GPM% Velocity% Ft%/sec% Head%loss% S/100S% 6% 800% 8.8% 3.5% 10% 800% 3.2% 0.3% Big Pipe, small pumps Punit  Desai,  Environmental  Sustainability  at  Infosys  Driven  by  values,  Powered  by   innova:on,  InfoSys,  presenta:on  to  RMI,  Sept  15,  2014  
  42. 1. Ask for 0.60 kW/RT or better for chiller plant. 2. Ask for performance guarantee backed by clear financial penalties in event of performance shortfall. 3. Ask for accurate Measurement & Verification system of at least +-5% accuracy in accordance to international standards of ARI-550 & ASHRAE guides 14P & 22. 4. Ask for online internet access to monitor the plant performance. 5. Ask for track record. Source: LEE Eng Lock, Singapore Simple Guide to retrofit success 0.50  
  43. design temperature, thus reducing pump system opportunities. Figure 4: US Pumping System Efficiency Supply Curve Cost effective energy saving potential 0 50 100 150 200 250 300 350 400 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 CostofConservedElectricity(US$/MWh-saved) Annual Electricity Saving Potential (GWh/yr) Pump System Efficiency Supply Curve for U.S. Industry Average Unit Price of Electricity for U.S Industr in 2008:70.1 US$/MWh* 5 6 8 7 9 10 Cost effective electricity savingpotential: 36,148 GWh/yr Technicalelectricity savingpotential: 54,023 GWh/yr 4 2 1 3 * The dotted lines represent the range of price from the sensitivity analysis- see Section 4.5. NOTE: this supply curve is intended to provide an indicator of the relative cost-effectiveness of system energy efficiency measures at the national level. The cost-effectiveness of individual measures will vary based on site-specific conditions. US  Pumping  System  Efficiency  Supply  Curve   Annual  Electricity  Saving  PotenZal  (GWh/yr)   Cost  of  Conserved  Electricity  ($US/MWh-­‐saved)   *  The  do,ed  lines  represent  the  range  of  price  from  the  sensi:vity  analysis-­‐  see  Sec:on  4.5.   NOTE:  this  supply  curve  is  intended  to  provide  an  indicator  of  the  rela:ve  cost-­‐effec:veness  of  system  energy  efficiency  measures  at  the   na:onal  level.  The  cost-­‐effec:veness  of  individual  measures  will  vary  based  on  site-­‐specific  condi:ons.   Motor  Systems  Efficiency  Supply  Curves,  UNIDO,  UN  Industrial  Development  Organiza:on,  December  2010   Equal  to  14  natural  gas   power  plants  (500MW  each)  
  44. RESULTS AND DISCUSSION No. Energy Efficiency Measure Cumulative Annual Electricity Saving Potential in Industry (GWh/yr) Final CCE (US$/MWh- Saved) Cumulative Annual Primary Energy Saving Potential in Industry (TJ/yr) Cumulative Annual CO2 Emission Reduction Potential from Industry (kton CO2 /yr) 1 Isolate flow paths to non-essential or non-operating equipment 10,589 0.0 116,265 6,382 2 Install variable speed drive 23,295 44.5 255,784 14,040 3 Trim or change impeller to match output to requirements 33,279 57.0 365,405 20,057 4 Use pressure switches to shut down unnecessary pumps 36,148 65.7 396,905 21,786 5 Fix leaks, damaged seals, and packing 37,510 84.1 411,855 22,607 6 Replace motor with more energy efficient type 39,084 116.9 429,138 23,555 7 Remove sediment/scale buildup from piping 42,523 126.3 466,906 25,628 8 Replace pump with more energy efficient type 48,954 132.2 537,516 29,504 9 Initiate predictive maintenance program 52,302 189.0 574,280 31,522 10 Remove scale from components such as heat exchangers and strainers 54,023 330.9 593,171 32,559 Table 14: Cumulative Annual Electricity Saving and CO2 Emission Reduction for Pumping System Efficiency Measures in the US Ranked by their Final CCE Table 15: Total Annual Cost-effective and Technical Energy Saving and CO2 Emission Reduction Potential for US Industrial Pumping Systems  CumulaZve  Annual  Electricity  Saving  and  CO2  Emission  ReducZon  for   Pumping  System  Efficiency  Measures  in  the  US  Ranked  by  their  Final  CCE   Motor  Systems  Efficiency  Supply  Curves,  UNIDO,  UN  Industrial  Development  Organiza:on,  December  2010  
  45. Hidden treasure: Why energy efficiency deserves a second look Germany introduced an energy tax (the “eco-tax”) in 1999 to encourage energy savings in the private, public Switzerland’s Energy Strategy 2050 framework propo- ses similar measures with compulsory efficiency targets Note: * Estimation for industrial companies, where direct energy costs account for ~5% of total costs Sources: US Department of Energy; Energy Tax Advisory Case Studies; Lawrence Berkeley National Laboratory; Bain analysis Energy consumption Taxes and incentives Operational non-energy costs Input material costs Own generation/load balancing EE invest/ spend Improved profit margin Sales leverage 2.5 2.0 1.5 1.0 0.5 0 ~ 1% ~ 0.5% ~ 0.5% ? ~ 0.5% ~ 0.5% 2% SALESCOST REDUCTION Percentage of net income (averaged over three years) 10%-30% savings in energy costs for typical IG&S companies In most OECD countries, tax measures typically add 30%-50% on top of the expected energy gains Non-energy costs savings typically amount to an additional 50% of energy savings Not quantified 10-30% reduction in suppliers’ energy costs, 50% pass- through Energy efficiency measures with average investment payback of ~1.5 years, when measured against direct energy savings Figure 2: Typical manufacturing companies* can improve their profit margins by 2% within three years Typical  manufacturing  companies*  can  improve    their  profit  margins  by  2%  within  36  months  
  46. LighZng   TUNNELING  THROUGH  TO  LOW-­‐E  
  47. •  1/4th  Total  USA  Electricity  Consumed  For  LighZng  (and   associated  Cooling  to  remove  heat  from  lights)   •  Equivalent  to  Nearly  Half  of  U.S.  Coal  Plants   •  High-­‐efficiency  LED  Luminaires  Can  Deliver  Beaer   Quality  Light  While  EliminaZng  Need  for  Half  of  Coal   Plants  at  a  LCOE  [Levelized  Cost  Of  Electricity]  Lower   than  current  coal  plant  operaZng  costs   IlluminaZon  Services   1  LED  lamp  provides  life3me  light  output  of  more  than  1  million  candles  at  frac3on  of  cost    
  48. Candle  consumes  about  80  waas  (W)  of  chemical  energy  to  emit  12   lumens  of  light  for  about  seven  and  a  half  hours.   Carbon-­‐filament  bulb  used  ¼  less  energy  (60  W),  emiaed  15  Zmes   as  much  light  (180  lumens),  and  lasted  133  Zmes  as  long  as  the   candle.   Tungsten  filament  replaced  the  carbon  one,  efficiency  soared  4-­‐ fold  .  Tungsten  bulb  now  matched  lifeZme  output  of  8,100   candles,  yet  the  lamp  and  electricity  cost  only  as  much  as  14   candles.   CFL  same  lumen  output  as  incandescent,  but  consumes  75%  less   electricity  &  lasts  10  Zmes  longer.  One  CFL  now  displaces  the   need  for  500,000  candles.   LED  (Light-­‐Emi{ng  Diode)  lamp  provides  same  lumen  output  as   CFL,  but  consumes  1/3rd    less  electricity  &  lasts  10  Zmes  longer.   One  LED  now  displaces  need  for  more  than  1  million  candles.  
  49. 4 Assuming constant lumen demand per square Residential Commercial Industrial Outdoor General Service Incandescent Sectors Decorative Directional Linear Low / High Bay Street / Roadway Parking Building Exterior Submarkets Technologies Incandescent Reflector Halogen CFL Reflector CFL Pin T5 Metal Halide High Pressure Sodium Mercury Vapor LED Lamp LED Luminaire Halogen Reflector CFL T8 T12 Energy  Savings  Forecast  of  Solid-­‐State  Ligh:ng  in  General  Illumina:on  Applica:ons,  U.S.  Department  of  Energy  August  2014   LighZng  Landscape    
  50. Energy  Savings  Forecast  of  Solid-­‐State  Ligh:ng  in  General  Illumina:on  Applica:ons,  U.S.  Department  of  Energy  August  2014   BR=Bulged  Reflector        MR=Mul:faceted  Reflector      PAR=Parabolic  Aluminized  Reflector  
  51. © 2012 Strategies Unlimited 27 LED Lighting Market Segmentation LED Lighting Market Luminaires Replacement Lamps A19 /Standard PARS MR16 Candelabras /Globes/ Decorative L F T June13, 2012 The lamp technologies have been categorized as displayed below in Figure 2-1. The categories are based on those used in the 2001 LMC, the categories used in the various data sources, as well as input from members of the technical review committee. Descriptions of each lamp technology can be found in Appendix A. Figure 2-1 Lamp Classification6 Incandescent General Service - A-type General Service - Decorative Reflector Miscellaneous Halogen General Service Reflector LowVoltage Display Miscellaneous Compact Fluorescent General Service – Screw General Service – Pin Reflector Miscellaneous Fluorescent T5 T8 less than 4 foot T8 4 foot T8 greater than 4 foot T8 less than 4 foot T8 4 foot T8 greater than 4 foot T8 U-shaped T12 U-shaped Miscellaneous High Intensity Discharge LED Lamp Miscellaneous Mercury Vapor Metal Halide High Pressure Sodium LowPressure Sodium Other SMART LED DIVERSITY OF LIGHTING APPLICATIONS A-type - Incandescent lamps PARS - parabolic aluminized reflector lamps MR16 - multifaceted reflector halogen bulbs LFT- Linear Fluorescent tubes LED Replacement of: Luminaire  
  52. http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/hwcfl/HWCFL-efficacy.asp Hi-Wattage CFL (55-200 watts) CFL (27-40 watts) Compact Fluorescent Lamp (CFL) (5-26 watts) Mercury Vapor Halogen Infrared Reflecting Tungsten Halogen Incandescent Fluorescent (full-size & U-tube) Electrodeless fluorescent Metal halide High-Pressure Sodium (HPS/HID) White Sodium Smart LEDs (tunable color spectrum) Efficacy of Various Light Sources 1 1 1 1 1 1 1 1 1 2 Low-Pressure Sodium (yellow-orange color) Lumens per Watt ! (lamp plus ballast)
  53. = Smart! LED 1! 80 watt! LED Smart LED Advantages! Higher Lumens & lower Watts from Fewer lamps Smart LED other benefits - longer lifespan, no mercury, fully dimmable, instant start/restart, less heat, tunable colour spectrum 100k hrs 20k hrs 2k hrs 10k to 20k hrs Luminaire  
  54. Energy  Savings  Forecast  of  Solid-­‐State  Ligh:ng  in  General  Illumina:on  Applica:ons,  U.S.  Department  of  Energy  August  2014   U.S.  LighZng  Service  Forecast  2013  to  2030   (Trillions  of  Lumen-­‐hours)   Fluorescent   High-­‐Intensity     Discharge  (HID)   LED  Luminaires   LED  lamps   CFLs  
  55. SEM  oF  ROD  (blue)  and  CONE  (green)  cells  of  the  re:na.  ROD  cells  are  sensi:ve  to  low   light  levels  and  produce  low-­‐clarity  black  and  white  vision.  CONE  cells  are  sensi:ve  to   higher  levels  of  light  and  produce  sharp,  high-­‐clarity  trichroma:c  color   Cone   Rod   LIGHT  FACTORY  -­‐-­‐  ReZnal  Rods  and  Cones   Cone   Rod   top-­‐down  view  
  56. 3  types  of  light-­‐sensi:ve  CONE  cells  create  TRI-­‐CHROMATIC  (or   TRI-­‐STIMULUS)  color  –  blue,  green  &  red  –  or  short-­‐wavelength,   medium-­‐wavelength  and  long  wavelength  sensi:vity,   respec:vely.    ROD  cells  mediate  no  color  vision.   Mesopic Vision RODs   CONEs   RODs  &  CONEs   ReZnal  SensiZvity   ReZnal  SensiZvity  
  57. Our  visual  system  consists   of  a  2-­‐receptor  system:     CONE  cells  providing  vision   in  bright  light     (PHOTOPIC  vision)     ROD  cells  providing  vision   in  very  low  levels  of  light     (SCOTOPIC  vision)     RODS  &  CONES  func:on   together  at  :mes  like  dusk   (MESOPIC  vision).       3  types  of  CONE  cells,  red,   green  &  blue  (TRI-­‐ STIMULUS),  provide  wide   range    color  percep:on  in   bright  light.  
  58. MESOPIC  region  is   where  both  the  rods   and  cones  are     func:oning.       The  lower  light  level   allows  the  ROD  to   replenish  the  light   sensi:ve  rhodopsin   and  begin  func:oning.     The  TRI-­‐STIMULUS   CONE  receptors  s:ll   have  enough  light  to   provide  some   amounts  of  color   vision.  
  59. SCOTOPIC  region     occurs  in  very  dim   light  like  viewing   grass  in  a  moonless   night.       Here  only  the  RODS   are  func:oning.       The  chemicals  in  the   CONES  no  longer   have  enough  light  to   respond,  thus  we  no   longer  see  color.  
  60. PHOTOPIC,  MESOPIC   &  SCOTOPIC  together   allow  us  to  see  over  a   wide  range  of  ligh:ng   levels  with  about  1  or   2  billion  :mes  (109,   nine  orders  of   magnitude)  range   from  the  dimmest  to   the  brightest  image   we  can  see.   Luminous  Intensity   (Candela  per  sq  meter)  1  Candela  =    
  61.   Reliance  on  the  lumen  (lm)  as  the  sole   measure  of  ligh3ng  benefits  (lm/m2  and   lm/W)  can  unnecessarily  waste  energy,   increase  costs,  and  reduce  safety,  security   and  visibility.       U3liza3on  of  analogous  benefit  metrics  in   ligh3ng  standards  that  characterize   human  visual  responses  would  increase   the  value  of  ligh3ng  for  many  applica3ons.   BETTER  LIGHTING  METRICS   OpportuniZes  with  LEDs  for  Increasing  the  Visual  Benefits  of  LighZng  Mark  S.  Rea,   LighZng  Research  Center,  Rensselaer  Polytechnic  InsZtute,  Troy  NY  
  62. Smart LEDs are Tunable ! Along Color Spectrum
  63. We thus see the future of public lighting as a transition from analog to digital, from fluorescent lightbulbs to solid-state lighting—all connected to an energy grid throug variety of last-mile access technologies (see Figure 1). Figure 1. Moving from “Traditional” to “Intelligent” Lighting Networks. Additional savings can be achieved by incorporating connected controls to the Intern Source: Philips and Cisco, 2012 Moving from “Traditional” to “Intelligent” Lighting Networks source: The Time Is Right for Connected Public Lighting Within Smart Cities, CISCO & Philips, October 2012
  64. Smart LED RFPs Should Include ! Key Technical Specifications LED photometric testing standards: ! • IES LM-79-08 Light output, efficacy, color for LED products! • IES LM-80-08 Light output over time, temperature for LED packages
 IES TM-21-11 Extrapolating LM-80 test data to predict life! • IES LM-82-12 Light output, efficacy, color over temperature for light engines! • ANSI/UL 153:2002 (Secs. 124-128A) Methods for in-situ temperature ANSI/UL 1574:2004 (Sec. 54) method (ISTM) testing for EnergyStar! • IP6 Addressable Approved method describing procedures and precautions in performing reproducible measurements of LEDs:! ! – total flux,
 – electrical power,
 – efficacy (lm/watt), and – chromaticity! N A N C Y C L A N T O N , P E , F I E S , I A L D L E E D F E L L O W C L A N T O N & A S S O C I A T E S , I N C . B O U L D E R , C O L O R A D O W W W . C L A N T O N A S S O C I A T E S . C O M Streetlighting Guidel and Design Decisio www.clantonassociates.com Questions? www.clantonassociates.com
  65. BIM  EvoluZon  BIM Evolution Hand Drawing 2D CAD evolution 3D CAD BIM 3D/4D/5D..XD BIM;  Building  Informa:on  Modeling,  but  also  encompasses  Building  Intelligence  Management  
  66. Neil  Calvert,  “Why  We  Care  About  BIM…,”  Direc:ons  Magazine,  Dec.  11,  2013,  h,p://www.direc:onsmag.com/ar:cles/why-­‐we-­‐care-­‐about-­‐bim/368436    
  67. •  20%  reducZon  in  build   costs  (buy  4,  get  one   free!)   •  33%  reducZon  is  costs   over  the  lifeZme  of  the   building   •  47%  to  65%  reducZon  in   conflicts  and  re-­‐work   during  construcZon   •  44%  to  59%  increase  in   the  overall  project   quality   •  35%  to  43%  reducZon  in   risk,  beaer  predictability   of  outcomes   •  34%  to  40%  beaer   performing  completed   infrastructure   •  32%  to  38%   improvement  in  review   and  approval  cycles   BIM  SIMs  
  68. Neil  Calvert,  “Why  We  Care  About  BIM…,”  Direc:ons  Magazine,  Dec.  11,  2013,   h,p://www.direc:onsmag.com/ar:cles/why-­‐we-­‐care-­‐about-­‐bim/368436    
  69. Issa, Suermann and Olbina (A) Solar radiation Analysis (B) Daylighting analysis (C) Shading analysis (D) Ventilation and Airflow Analysis Figure 1: Different kinds of analysis performed by Autodesk Ecotect (Source: <www.autodesk.com/revit>) Increase  in  project  Value     with  increase  in  BIM  details   Solar  RadiaZon  Analysis   DaylighZng  Analysis   Shading  Analysis   VenZlaZon  &  Airflow  Analysis  
  70. h,ps://www.youtube.com/watch?v=g04-­‐G53mbmc   3D,  4D,  5D,  6D,  7D  BIM   Con:nuous,  smarter  performance  
  71. Planned vs. Actual Planned  vs.  Actual  
  72. Building Analytics in action At one client facility running Building Analytics, the preheating coil and cooling coil were operating simultaneously and wasting more than $900 and 80,000 kBTUs on a daily basis. The problem was pinpointed at a leaking chilled water valve that once repaired produced $60,000 in annual savings with ROI in the first month. Mixed air temperature sensor Outdoor air temp “Occupancy” is at set point Return fan status Preheating discharge temperature Heating valve position Cooling valve position Supply air temperature set point Supply fan status Simultaneous heating and cooling Building name: Equipment name: Analysis name: Estimated daily cost savings: Problem: Excess or simultaneous heating and cooling either providing excess heating or cooling or operating simultaneously. Possible causes: and is leaking. > Temperature sensor error or sensor installation error is causing improper control of the valves.
  73. Issa, Suermann and Olbina 2D 3D 4D 5D Risk Figure 3: Decrease in project risk with the increase in model details VICO Control is a location based virtual construction system that allows the creation of compressed schedules which al- low the user to determine progress by comparing actual productivity to the project schedule. Many BIM models are not able to store information beyond what the building looks like and as such do not allow the user to store info on the construction process. VICO Control allows integrated construction of the whole project and allows the user to link duration and cost in- formation directly to the model. Accordingly the user can instantly see the impact of changes in scope and schedule on the entire project. It links the building model to estimating and scheduling information going from 3D to 5D and allows the user Decrease  in  project  risk     with  increase  in  BIM  details   6D Cradle-­‐to-­‐Cradle  Facility  Lifespan  Integra3on     7D Neil  Calvert,  “Why  We  Care  About  BIM…,”  Direc:ons  Magazine,  Dec.  11,  2013,   h,p://www.direc:onsmag.com/ar:cles/why-­‐we-­‐care-­‐about-­‐bim/368436    
  74. John  Boecker,  Integra:ve  Energy,  Water,  and  Waste  Community  Design…from  vision  and  concept  to  prac:cal  Implementa:on,  Army  Net-­‐Zero  Installa:ons  Conference:   19  January  2012   Integrative Design Mantra Everyone Engaging Everything !!!!group Everything Early www.sevengroup.com
  75. Benchmarking of Infosys buildings Design%target% Units% Exis:ng%(US)% BeXer% Best%prac:ce% Infosys% Delivered(energy(intensity( kBtu/sfYy( 90( 40Y60( <30( <25( LPD:(Design( W/sf( 1.5( 0.8( 0.4Y0.6( 0.4Y0.6( LPD:(Opera3onal( W/sf( 1.5( 0.6( 0.1Y0.3( <0.15( Installed(computers/appliances..( W/sf( 4Y6( 1Y2( <0.5( <0.7( Glazing(RYvalue((center(of(glass)( sfYF0Yh/Btu( 1Y2( 6Y10( ≥20( >5( Window(RYvalue((including(frame)( sfYF0Yh/Btu( 1( 3( 7Y8( >5( Glazing(spectral(selec3vity( Ke(=(Tvis/SF( 1( 1.2( >2.0( >2.0( Roof(solar(absorptance(and(emilance( α,(ε# 0.8,(0.2( 0.4,(0.4( 0.08,(0.97( 0.18,(0.99( Installed(mechanical(cooling( sf/ton( 250Y350( 500Y600( 1200Y1400+( 750(Y(1000( Cooling(designYhour(efficiency( kW/ton( 1.9( 1.2Y1.5( <0.6( <0.59( US India 11 Punit  Desai,  Environmental  Sustainability  at  Infosys  Driven  by  values,  Powered  by  innova:on,  InfoSys,  presenta:on  to  RMI,  09-­‐15-­‐2014  
  76. Integrated and goal oriented design approach HVAC(Goal( Ligh3ng(Goal( Water(Goal( !  Max envelope heat gain 1.0 W/sqft !  Total building @ 750-1000 sqft/TR !  25 deg C, 55% RH !  LPD of 0.45 W/sqft !  90% of building to be day lit > 110 lux !  No Glare throughout the year !  Architects !  Facade Specialists !  IT Specialists !  HVAC Engineers !  Lighting Specialists !  Architects !  Facade Specialists !  Lighting Specialists !  Electrical Designers !  PHE Engineers !  Architects !  Landscape Architects !  Less than 25 LPD for office building !  Zero discharge !  100% self sufficient T E A M G O A L( 13 Punit  Desai,  Environmental  Sustainability  at  Infosys  Driven  by  values,  Powered  by  innova:on,  InfoSys,  presenta:on  to  RMI,  Sept  15,  2014  
  77. und partnerund partner Arena  Amazônia   Leed  Silver  World  Soccer  Stadium  2014     Manaus,  Brazil   •  Brazil  ranks  among  the  world’s  top  5  countries  with  LEED-­‐cerZfied  projects.     •  30  million  •2  of  LEED-­‐cerZfied  space.       •  Six  were  cerZfied  for  use  in  the  2014  World  Cup  Soccer  Championships.       •  Arena  Amazônia  used  a  fracZon  of  the  steel  (5,700  tons)  compared  to   convenZonal  sports  and  entertainment  venues.  
  78. Arena  Amazônia   State-­‐of-­‐the-­‐art  lightweight  roof  based  on  the  principle  of  a  horizontally  oriented  spoked  wheel.  The  circular  roof  structure  is   comprised  of  high-­‐strength  cables  connecZng  inner  “tension  rings”  at  the  center  of  the  circle  to  an  outer  rim,  or  “compression  ring.”   The  cable  “spokes,”  which  are  allocated  at  the  inner  edge  of  the  roof,  are  Zghtened  between  the  outer  compression  ring  and  the   tension  rings.  This  creates  a  lightweight,  almost  floaZng  roof.    A  secondary  steel  structure  serves  as  a  frame  to  support  the   polytetrafluoroethylene  (PTFE)-­‐coated  high-­‐strength  resilient  fiberglass  membrane  cladding.  The  roof  elements  also  serve  as  guaers  to   collect  the  large  amounts  of  water  expected  during  the  rainy  seasons.  The  design  of  the  guaers  facilitates  rainwater  collecZon  to  be   used  in  the  arena’s  plumbing  systems.  
  79. by Arup Associates [7], and the Saint-Etienne Métropole's Zénith Rhône-Alpes (fig. 18), by Foster and Partner architectural firme [8] represents a new contemporary interpretation for the Islamic-Arab windcatcher. Both applied the same design concept of capturing the prevailing wind and disperse it around the building. Fig. 17. Kensington cricket ground, ARP Associates [7] Fig. 19. Burj al 2008 by Eckhar The Showe projects in the into the futur behind the he and extensive ventilate the r drawn in from level) and ind shower tower Kensington  Oval  cricket  Stadium,  Barbados   Designed  with  tradi:onal  Wind  Catcher   Natural  cooling  &  ven:la:on  design  by  capturing  the  prevailing  wind     and  dispersing  it  around  the  building   Design  with  Nature:  Windcatcher  as  a  Paradigm  of  Natural  Ven:la:on  Device  in  Buildings,  Dr.  Abdel-­‐moniem  El-­‐Shorbagy,  Interna:onal  Journal  of  Civil   &  Environmental  Engineering  IJCEE-­‐IJENS  Vol:10  No:03,  2010  
  80. Commercial building energy efficiency supply curve by end use, 2050
  81. The  Federal  Energy   Regulatory  Commission   has  es:mated  that  the   U.S.  could  avoid  building   188  GWs  of  power   plants,  or  approximately   $400  billion  in  capital   investment,  through   dynamic  peak  power   controls.   Amit  Narayan,  U:lity  and  Consumer  Data:  A  New  Source  of  Power  in  the  Energy  Internet  of  Things,  GreenTechMedia,  Oct  9,  2014,   h,p://www.greentechmedia.com/ar:cles/read/U:lity-­‐and-­‐Consumer-­‐Data-­‐is-­‐a-­‐New-­‐Source-­‐of-­‐Power-­‐in-­‐the-­‐Energy-­‐Internet-­‐o? utm_source=Daily&utm_medium=Headline&utm_campaign=GTMDaily     Demand  Response  (DR)  
  82. Figure 2: U.S Demand Response Potential by Program Type (2019) 0 50 100 150 200 PeakReduction(GW) 0% 5% 10% 15% 20% 25% %ofPeakDemand Other DR Interruptible Tariffs DLC Pricing w/o Tech Pricing w/Tech 38 GW, 4% of peak 82 GW, 9% of peak 138 GW, 14% of peak 188 GW, 20% of peak Business-as- Expanded Achievable Full Usual BAU Participation Participation   effect of dynamic pricing over time is dependent on  AMI market penetration, which increases throughout   the  forecast  horizon.    The  more  aggressive  AMI  deployment  assumption  in  the  AP  and  FP  scenarios   explains why demand response increases more significantly in the later years of those scenarios.   It is interesting to compare the relative impacts of the four scenarios.  Moving from the BAU  scenario to   the EBAU scenario, the peak demand reduction in 2019 is more than twice as large.  This difference is   attributable to the incremental potential for aggressively pursuing non­pricing programs in states that have   U.S  Demand  Response  (DR)  PotenZal  by  Program  Type    (10  year  Zmeframe)     2500  Peaking   Plants  (75MW   each)   =  
  83. The  New  Smart  Power  Plants   Example  of  a  networking  kits  capable  of  running  the  industrial  Internet-­‐of-­‐Things   (IoT),  or  Internet-­‐of-­‐Everything  (IoE),  and  IT-­‐based  Energy  Services  
  84. INTERNET-­‐OF-­‐EVERYTHING   IP  Cloud    Controlled   Wireless  Smart  Sensor  Networks  
  85. Key  advantage  of  IPv6  over  IPv4  is  large  address  space.  IPv6  address  length  is   128  bits  vs.  32  bits  in  IPv4.  The  address  space  therefore  has  3.4×1038   addresses,  or  314  trillion  trillion  trillion  addresses  (sex:llion).  This  would  be   about  100  addresses  for  every  atom  on  the  surface  of  the  earth.   IPv6   Internet  Protocol  version  6    
  86. Dr.  Janusz  Bryzek,  Chair,  TSensors  Summit,  VP,  MEMS  and  Sensing  Solu:ons,  Fairchild  Semiconductor,  Roadmap  for  the  Trillion  Sensor  Universe,  Nov.  26,  2013  
  87. e Suite gy rs, nd e r ess Cisco EnergyWise Discovery Service and Optimization Service Cisco EnergyWise Management Software for Distributed Offices and Data Center Core Switches Storage UPSs CPUs PDUsMainframes Blade Servers Virtualized Servers Servers Data Center Gateways Lighting Access Control Systems Video Cameras CRAC HVAC Facilities (BMS partners) VoIP Phones Laptops Macs Thin Clients Access Points Servers Desktops Printers Campus Routers Switches Network Based No Agents! Policy Based and Automated Announcing the new and improved Cisco EnergyWise Suite See, Measure and Manage CISCO  EnergyWise  Management  OpZmizaZon  So•ware   h,p://www.cisco.com/c/en/us/products/switches/energywise-­‐op:miza:on-­‐service/index.html    
  88. 9 12 3 6 9 12 3 6 9 Hourly Prices for 7/1/0915¢ 10¢ 5¢ ¢perkWh¢perkWh am pm Prevents PHEVs from charging during peak hours Adjusts space temp. and chilled water temp. set points Dispatches thermal storage or gen-sets in response to loss in solar PV output Throttles servers for non-critical applications Ensures fans do not overcompensate for new CHW set points Provides real-time visibility to building managers Automatically dims lighting Marginal cost of power increases, T&D systems become congested Curtailment signal or real-time price provided by ISO/utility 1 2 3 5 7 8 6 9 10 4 High summer temps drive up cooling loads Example of an Automated Demand Response Event 9
  89. Control – A  “Spectrum”  of  Demand  Response  Options Direct Load Control (AC Cycling) Logic, decision making and control can sit with the load-serving entity, the customer, or anywhere between (e.g. a curtailment service provider): Pure Real -Time PriceInterruptible Rate Wholesale Capacity Programs Traditional  “Aggregator”   Model Critical Peak Pricing Wholesale Energy Programs Voluntary Demand Bidding Central Control Autonomous Control 7 Historical DR has been centrally controlled, but there is a push to the right of the spectrum. Buildings benefit.
  90. Case Study – Automated Demand Response: Georgia Institute of Technology • Georgia Institute of Technology is on a dynamic hourly tariff from Georgia Power. • Each hour, the building management system reads prices for the next 48 hours from the utility’s  web-service feed. • The facilities director sets the price threshold for automated load shedding mode. Observing a 1MW peak load reduction, ~7% of load for participating buildings Savings during initial summer 2006 pilot 10
  91. SMART  SYSTEM  INTELLIGENCE  ATTRIBUTES  
  92. REMOTE  SUPPLY                      END-­‐USE/ONSITE     Centralized   Distributed   Buildings  &     Vehicle  as   Nanogrids  
  93. Jim  Lazar,  The  Regulatory  Assistance  Project,  Status  of  Distributed  Genera:on  Installa:on  and  Rate  Making  In  the  US,  American  Public  Power  Associa:on  Workshop,  Jan.  13,  2014   Typical DG Advocate View Marginal Cost Perspective: • Value of distributed resource is greater than the than retail rate; • Net-metering results in subsidy to the grid from innovators. 12 Distributed  GeneraZon  (DG)  MulZple  System  Values  
  94. Wind  Power     &     Solar  PV  
  95. Source: International Energy Agency, Energy Technology Perspectives, 2008, p. 366. The figure is based on National Petroleum Council, 2007 after Craig, Cunningham and Saigo. Oil Gas Uranium Coal ANNUAL Wind Hydro Photosynthesis ANNUAL Solar Energy Annual global energy consumption by humans SOLAR PHOTONS ACCRUED IN A MONTH EXCEED    THE  EARTH’S   FOSSIL FUEL RESERVES 1   :me   use  
  96. In the USA, cities and residences cover 56 million hectares. Every kWh of current U.S. energy requirements can be met simply by applying photovoltaics (PV) to 7% of existing urban area— on roofs, parking lots, along highway walls, on sides of buildings, and in dual-uses. Requires 93% less water than fossil fuels. Experts  say  we  wouldn’t  have  to  appropriate  a  single  acre  of  new   land to make PV our primary energy source! 15%  
  97. Energy Efficiency & Renewable Energy eere.energy.gov 1 Program Name or Ancillary Text eere.energy.gov WIND AND WATER POWER PROGRAM 1 2013 Wind Technologies Market Report Ryan Wiser and Mark Bolinger Lawrence Berkeley National Laboratory Report Summary August 2014
  98. 10 U.S. Lagging Other Countries in Wind As a Percentage of Electricity Consumption Note: Figure only includes the countries with the most installed wind power capacity at the end of 2012 Wind  as  Percentage  of  a  Country’s  Electricity  ConsumpZon    
  99. WIND AND WATER POWER PROGRAM Wind PPA Prices Have Reached All-Time Lows 50 $0 $20 $40 $60 $80 $100 $120 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06 Jan-07 Jan-08 Jan-09 Jan-10 Jan-11 Jan-12 Jan-13 Jan-14 PPA Execution Date Interior (18,178 MW, 192 contracts) West (7,124 MW, 72 contracts) Great Lakes (3,044 MW, 42 contracts) Northeast (1,018 MW, 25 contracts) Southeast (268 MW, 6 contracts) LevelizedPPAPrice(2013$/MWh) 75 MW 150 MW 50 MW
  100. that the turbine scaling and other improvements to turbine efficiency described in Chapter 4 have more than overcome these headwinds to help drive PPA prices lower. Source: Berkeley Lab Figure 46. Generation-weighted average levelized wind PPA prices by PPA execution date and region Figure 46 also shows trends in the generation-weighted average levelized PPA price over time among four of the five regions broken out in Figure 30 (the Southeast region is omitted from Figure 46 owing to its small sample size). Figures 45 and 46 both demonstrate that, based on our data sample, PPA prices are generally low in the U.S. Interior, high in the West, and in the middle in the Great Lakes and Northeast regions. The large Interior region, where much of U.S. wind project development occurs, saw average levelized PPA prices of just $22/MWh in 2013. USA  Wind  Power  LCOE  PPA  in  2013  2.5¢/kWH   GLOBAL  Wind  Power  LCOE  in  2013  6.5¢/kWh   Ryan  Wiser  &  Mark  Bollinger,  2013  Wind  Technologies  Market  Report,  Lawrence   Berkeley,  August  2014   6¢/kWh   2¢/kWh   4¢/kWh  
  101. WIND AND WATER POWER PROGRAM Recent Wind Prices Are Hard to Beat: Competitive with Expected Future Cost of Burning Fuel in Natural Gas Plants 54 0 10 20 30 40 50 60 70 80 90 100 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 Range of AEO14 gas price projections AEO14 reference case gas price projection Wind 2011 PPA execution (3,980 MW, 38 contracts) Wind 2012 PPA execution (970 MW, 13 contracts) Wind 2013 PPA execution (2,761 MW, 18 contracts) 2013$/MWh Price comparison shown here is far from perfect – see full report for caveats
  102. WIND AND WATER POWER PROGRAM Turbine Nameplate Capacity, Hub Height, and Rotor Diameter Have All Increased Significantly Over the Long Term 29
  103. energy.gov/sunshot energy.gov/sunshot Photovoltaic System Pricing Trends Historical, Recent, and Near-Term Projections 2014 Edition David Feldman1, Galen Barbose2, Robert Margolis1, Ted James1, Samantha Weaver2, Naïm Darghouth2, Ran Fu1, Carolyn Davidson1, Sam Booth1, and Ryan Wiser2 September 22, 2014 1National Renewable Energy Laboratory 2Lawrence Berkeley National Laboratory NREL/PR-6A20-62558
  104. Tracking the Sun VII An Historical Summary of the Installed Price of Photovoltaics in the United States from 1998 to 2013 Galen Barbose, Samantha Weaver and Naïm Darghouth Lawrence Berkeley National Laboratory — Report Summary — September 2014 This analysis was funded by the Solar Energy Technologies Office, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
  105. $0 $2 $4 $6 $8 $10 $12 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Installation Year 10-100 kW >100 kW Residential & Commercial PV (Median Values) InstalledPrice(2013$/WDC) Installed prices continued their precipitous decline in 2013 12 Median installed prices fell by $0.7/W (12-15%) from 2012-2013, across the three size ranges shown, and have fallen by an average of $0.5/W (6-8%) annually over the full historical period Note: Median installed prices are shown only if 15 or more observations are available for the individual size range Median prices for systems installed in 2013 (n=50,614): $4.7/W $4.3/W (10-100 kW), $3.9/W (>100kW)
  106. PARAMETERS SUMMARIES In reality, conditions vary substantially among countries and, as discussed above, the LCOE for a technology is driven every bit as much by the cost of capital and the availability of equipment locally as it is by natural resource availability. This is particularly cost capital can at times be extremely challenging to source and tariffs or other barriers can make the importation of goods challenging. - Industrial power prices vs onshore wind and solar photovoltaic LCOE, 2013 ($/MWh) Source: Bloomberg New Energy Finance Botswana Haiti Guatemala Nigeria Myanmar SierraLeone ElSalvador Coted’Ivoire Bolivia Argentina Jamaica CostaRica India Kenya Venezuela Senegal Pakistan Bangladesh Paraguay Ethiopia Honduras Belize Nepal Trinidad&Tobago Zambia Nicaragua China Peru SouthAfrica Uganda Mexico Indonesia Suriname Rwanda Chile Zimbabwe Malawi Tajikistan Barbados Ghana Colombia Panama Bahamas Dom.Republic Brazil Tanzania Guyana Uruguay SriLanka Ecuador Mozambique 450 400 350 300 250 200 Solar PV LCOE Onshore wind LCOE 150 100 50 0 tial customers in the 55 nations and found they averaged 14.7 cents per kilowatt-hour in 20133 . However, prices were above 15 cents per kilowatt-hour in 20 Climatescope countries and 22 cents in 16 countries. Bloomberg New Energy Finance estimates the levelized cost of residential electricity for solar power at ap- proximately 15 cents per kWh with the LCOE potentially much lower in the sunniest parts of the world. That is, when power sense for a homeowner to install a solar system rather than La:n  American  &  Caribbean  na:ons   Industrial  power  prices  vs  onshore  wind  &  solar  PV     LCOE  2013  ($MWh)  
  107. PARAMETERS SUMMARY Progress on policy Climatescope surveyed 55 developing nations to get a better un- derstanding of what policy frameworks have been established to date and which may be most effective. Data collection included the creation of policy records now accessible at www.global-climatescope.org. In all, the survey found at least 359 clean energy-supportive poli- cies on the books in these countries today dating back to 2006. Residential power prices vs residential solar photovoltaic LCOE, 2013 ($/MWh) Source: Bloomberg New Energy Finance Barbados Haiti Peru Botswana Guyana Guatemala Nigeria China Argentina Rwanda Colombia Mexico Mozambique SriLanka Kenya SierraLeone Zimbabwe India Suriname ElSalvador Chile SouthAfrica Indonesia Myanmar Nicaragua Ghana Ecuador Zambia Venezuela Senegal Pakistan Tanzania Trinidad&Tobago Tajikistan Dom.Republic CostaRica Malawi Cameroon Ethiopia Jamaica Panama Honduras Bolivia Bahamas Belize Coted’Ivoire Nepal Uruguay Uganda Brazil Paraguay Bangladesh 450 400 350 300 250 200 Residential solar PV LCOE 150 100 50 0 Policies in force by type and year of establishment 64 71 75 Carbon Market Mechanism Debt Finance Mechanism Number of policies La:n  American  &  Caribbean  na:ons   ResidenZal  power  prices  vs  residenZal  solar  PV     LCOE,  2013  ($MWh)  
  108. FIRST  SOLAR  UZlity-­‐Scale  Solar  PV     2013  LCOE  $0.07-­‐0.15/kWh*   *2013  data,  costs  depending  on  irradiance  levels,  interest  rates,  and  other  factors,  e.g.   development  costs,  h,p://www.firstsolar.com/en/solu:ons/u:lity-­‐scale-­‐genera:on     Cents/kWh  
  109. *Permi^ng,  inspec:on,  and  interconnec:on  costs   **  Includes  installer  and  integrator  margin,  legal  fees,   professional  fees,  financing  transac:onal  costs,  O+M  costs,   produc:on  guarantees,  reserves,  and  warranty  costs.   Jesse  Morris  et  al,  REDUCING  SOLAR  PV  SOFT  COST,   A  FOCUS  ON  INSTALLATION  LABOR,  Rocky  Mountain   Ins:itute,  2013,  www.rmi.org/     Solar  PV  roo•op   system  installed   costs  vary  several-­‐ fold  from  country   to  country,  state   to  state,   depending  on   pracZces  and   policies.  
  110. Bloomberg  New  Energy  Finance,  2030  Market  Outlook:  Solar,  June  27,  2014   Global  ResidenZal-­‐Scale  Solar  PV     System  Economics     some parts of the Americas have already begun to see uptake of unsubsidised PV systems such as utility-scale PV in Chile. As solar technology gets cheaper we expect households and businesses to increasing opt for solar systems. There will however be opposition from utilities and changing rate structures for consumers. The first signs of this trend can already be observed: in Spain, for example, the government has threatened to impose a tax on electricity generated for auto-consumption, although the final bill is still pending. Ultimately however we don't believe developments such as this will have a material effect on the size of the market in the long term, particularly as the small-scale power storage solutions become increasingly viable. Figure 9: Global residential-scale PV system economics 2014 2025 500 ] 500 450 450 . any 50GW 400 . any 400 Hawaii .Hawaii Denmark 8 8..1350 tit 350 Slovakia Australia INeth. stralia Neth. • "' Slovakia 100GW "' - 100GW Q) Q) 0 Switz.Po 9 0 §. 250 '§. 250 ChileQ) 200 • Chile •a. 8. 200 - "(ij 150 '(ij 150 100 100 50 50 Arabia 0 0 750 1,250 1,750 2,250 750 1,250 1,750 2,250 Irradiation (kWhlkW/year) Irradiation (kWh/kW/year) Source: Bloomberg New Energy Finance. Note: NJ, New Jersey; CA, California. - c:. - !:.. ; <- "' -;: 2014   2025  
  111. RISKS   IN  RANKING   LEAST-­‐COST-­‐RISK  (LCR)   DELIVERED  ENERGY  SERVICES  (DES)  
  112. Very&few&Years&Away&from&Reaching&& 2°C&Carbon&Budget& 113!
  113. UNCERTAINTY& 115!Source:!UK!Met!Office,!Hadley!Centre,! h-p://www.metoffice.gov.uk/climateZguide!! Lost!opportuniAes!from! inacAon!in!reducing!CO2! emissions!are!esAmated!to! incur!hundreds!of!trillions!of! dollars!in!future!economic! value!foreclosed;! in!addiAon!to!hundreds!of! trillions!of!dollars!in!economic! losses!caused!by!increased! destrucAon!from!extreme! weather!catastrophes.!
  114. CO2e!budget!for!2°C!Limit! 111! Listed Fossil Fuel Reserves & Resources Global Non-Listed Fossil Fuel Reserves Remaining Available 2°C Carbon Budget Through 2100 2500 2000 1500 1000 500 0 Unburnable Carbon Reserves GtCO2Estimate A significant portion of the world’s fossil fuel reserves will need to remain in the ground in 2050 if we are to avoid catastrophic levels of climate change. Fossil fuel companies, however, continue to develop reserves that may never be used. 1541 987 2098 Fossil Fuel Assets at Risk Unburnable Carbon Reserves If!humanity!is!to!prevent!global!average! temperature!rise!from!exceeding!2°C!,!then! 80%!of!fossil!fuel!assets!(now!owned!by! corporaAons!or!governments)!must!not!be! burned.! ! This!means!leaving!the!majority!in!the! ground!as!stranded!assets,!or!those!that!are! consumed!must!be!done!with!zero!emission! releases,!such!as!carbon!capture!and! storage!(CCS).! ! With!CCS,!both!coal!and!most!gasZfired! power!plants!are!technically!and! economically!unnecessary,!given!robust! compeAAon!that!can!deliver!electricity! services!at!the!leastZcostZandZrisk!LCOE! (levelized!cost!of!electricity).! Chart!source:!CERES!&!CarbonTracker,!Investors!ask!fossil!fuel!companies!to!assess!how!business!plans!fare!in!lowZcarbon!future!ZZ!coaliAon!of!70!investors!worth! $3!trillion!call!on!world’s!largest!oil!&!gas,!coal!and!electric!power!companies!to!assess!risks!under!climate!acAon!and!‘business!as!usual’!scenarios,!Nov!2013!! CO2  budget  for  2°C  Limit   $28  trillion  in  Stranded  Carbon  Assets  
  115. 2.2   5.5   27.3   0.0   5.0   10.0   15.0   20.0   25.0   30.0   $40/tCO2   $100  /tCO2  $500/tCO2   cents  per  kWh   ¢   ¢   ¢   AddiZonal  Cost  per  kWh  of  natural  gas-­‐generated  electricity   (at  $40,  $100  and  $500  per  metric  ton  of  CO2  fee)   Steam  Turbine   1.4   3.5   17.7   0.0   2.0   4.0   6.0   8.0   10.0   12.0   14.0   16.0   18.0   20.0   $40/tCO2   $100  /tCO2   $500/tCO2   cents  per  kWh   Advanced  Gas  Turbine   ¢   ¢   ¢  
  116. Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org nuclear coal CC gas wind farm CC ind cogen bldg scale cogen recycled ind cogen end-use efficiency CCS Cost of new delivered electricity (US¢/kWh) US current average
  117. 1¢/kWh 2¢ 47 93 kg Amory Lovins & Imran Sheikh, The Nuclear Illusion, May 2008, www.rmi.org Coal-fired CO2 emissions displaced per dollar spent on electrical services Carbon  displacement  at   various  efficiency  costs/kWh   Keystone  high  nuclear  cost  scenario   3¢     4¢     kg  CO2,  displaced  per  2007  dollar  
  118. ies was expected to decline, at the same time Mexico could see the highest growth rate jump, t from 1.8 percent in the current decade. Figure 31:  Electricity  in  Latin  America’s  Generation  Mix : Based on Ariel Yepes et al., Meeting the Balance of Electricity Supply and Demand in Latin America an ean. World Bank 2010 coal fuel oil natural gas hydro nuclear oil products others 2008 4.6% 8.4% 22.0% 58.6% 2.8% 2.3% 1.3% 2030 7.9% 3.3% 29.4% 50.0% 4.2% 1.2% 4.1% -10% 0% 10% 20% 30% 40% 50% 60% 2008 2030 Based  on  Ariel  Yepes  et  al.,  Mee:ng  the  Balance  of  Electricity  Supply  and  Demand  in  La:n  America  and  the  Caribbean.  World  Bank  2010,  cited  in  “La:n   America’s  Energy  Future”  by  Roger  Tissot  for  the  Inter-­‐American  Development  Bank  and  the  Inter-­‐American  Dialogue  Energy  Working  Paper  Series,  No.   IDB-­‐DP-­‐252,  December  2012.     Electricity  in  LaZn  America’s  GeneraZon  Mix  –  2008  and  2030  
  119. America and the Caribbean are rich in natural resources, not only of a renewable n. Since natural resources have historically been primarily harnessed through the blishment of hydro plants, this region can nowadays boost one of the cleanest ricity mixes in the world in terms of GHG emissions. e 1 below shows total installed capacity and hydroelectric share in the region. Figure 1. Installed capacity and hydroelectric share in Latin America (source: IDB, 2013) e the availability and quality of data on the real potential of each of these resources s considerably, the potential for exploiting new renewable energy sources, such as Installed capacity GW (Hydroelectric share %) Installed  capacity  &  hydroelectric  share  in  LaZn  America     (Le€  Map  2010,  Right  Map  Amazon  Dams  Opera:ng  &  Planned)   Le€  Map:  Carlos  Batlle  and  Juan  Roberto  Paredes,  Analysis  of  the  impact  of  increased  Non-­‐  Conven:onal  Renewable  Energy  genera:on  on  La:n  American   Electric  Power  Systems,  Tools  and  Methodologies  for  assessing  future  Opera:on,  Planning  and  Expansion,  Discussion  paper  No.  IDB-­‐DP-­‐341,  January  2014   Right  Map:  Dams  in  Amazonia,  h,p://dams-­‐info.org/en    
  120. Updated data, Synapse Leakage rates uncertainty Wind, Solar, Efficiency Wind power Solar power End-use Efficiency Assembled  and  adapted  from  mul:ple  sources   GHG  Emissions  Comparison  from  different  Sources  
  121. Net Emissions from Brazilian Reservoirs compared with Combined Cycle Natural Gas Source: Patrick McCully, Tropical Hydropower is a Significant Source of Greenhouse Gas Emissions: Interim response to the International Hydropower Association, International Rivers Network, June 2004 DAM Reservoir Area (km2) Generating Capacity (MW) km2/ MW Emissions: Hydro (MtCO2- eq/yr) Emissions: CC Gas (MtCO2- eq/yr) Emissions Ratio Hydro/Gas Tucuruí 24330 4240 6 8.60 2.22 4 Curuá- Una 72 40 2 0.15 0.02 7.5 Balbina 3150 250 13 6.91 0.12 58
  122. concentrations of methane at different reservoir depths, the depth of turbine and spillway intakes, and the type of spillway design. ■ Surface emissions vary widely among different parts of the same reservoir (largely due to changes in depth, exposure to wind and sun, and growth of aquatic plants), and from year to year, season to season, and between night and day. This greatly complicates efforts to develop reliable whole-reservoir estimates from a limited set of samples measured at specific points in the reservoir during specific time periods. Confidence in the measurements themselves is also hampered by the different results obtained through different measuring equipment and techniques, and disagreements over which measuring methods are most appropriate.22 Factors affecting degassing emission volumes include variations in the volume of water discharged, and the proportion of turbined water versus that which is spilled. Length of Annual Ice Cover CO2 Diffusion CH4 Bubbles Decomposition of Flooded Biomass & Soils Wind Forcing Growth & Decay of Aquatic Plants Degassing Water Level Fluctuation Plankton Growth & Decay Carbon Inputs from Watershed Drawdown Vegetation FIGURE 3. SOME KEY FACTORS INFLUENCING RESERVOIR GHG EMISSIONS Hydropower  Dam  GHG  Emissions  Can  be  Significant   Some  Key  Factors  Influencing  Reservoir  GHG  Emissions    
  123. 4 TABLE 1. GREENHOUSE GAS EMISSIONS FROM HYDROPOWER PLANTS Hydro plant Power Installed Flooded CO2 CH4 CH4 Total Electricity Reservoir Emissions density capacity area reservoir reservoir degassing emissions generation age per kWh (W/m2 ) (MW) (km2 ) surface surface (Mt gas/yr) (Mt CO2eq/yr) (GWh/yr) (years)§ (gCO2eq/kWh) (Mt gas/yr) (Mt gas/yr) Boreal Sainte-Marguerite 10.38 882 85 0.02 0.000 0.02 2,770 N/A 8 gross Churchill/Nelson 2.80 3,925 1,400 0.22 0.003 0.28 14,000 N/A 20 (Canada) Manic Complex 1.91 5,044 2,645 0.64 0.008 0.80 20,000 N/A 40 La Grande Complex 1.20 15,552 13,000 3.28 0.039 4.10 82,000 N/A 50 Churchill Falls 0.81 5,428 6,705 1.67 0.020 2.09 35,000 N/A 60 Average 3.42 6,166 4,767 1.17 0.014 1.46 30,754 N/A 36 Tropical Tucuruí 1.74 4,240 2,430 9.34# 0.094 0.970 31.56 18,030 6 (1990) 1,751 “reservoir Curuá-Una .56 40 72 0.04# 0.001 0.022 0.51 190 13 (1990) 2,704 net”* (Brazil) Samuel 0.40 216 540 0.22# 0.010 0.030 1.06 530 12 (2000) 2,008 Average 0.90 1,499 1,014 3.20# 0.035 0.341 11.05 6,250 2,154 Balbina 0.08 250 3,150 23.60 0.036 0.034 28.44 970 3 (1990) 29,322 Tropical Petit Saut 0.32 115 365 0.24 0.012 0.023 1.21 470 20 year avg 2,577 gross (French Guyana) including degassing Tropical Xingó 50.00 3,000 60 0.13 0.001 0.15 13,140 4-5 12 gross Segredo 15.37 1,260 82 0.08 0.0003 0.09 5,519 6-7 16 excluding Itaipú 8.13 12,600 1,549 0.10 0.012 0.34 55,188 16-17 6 degassing Miranda 7.65 390 51 0.08 0.003 0.14 1,708 2-3 83 (Brazil) Tucuruí 1.74 4,240 2,430 7.52 0.097 9.55 18,571 14-15 514 Serra da Mesa 0.71 1,275 1,784 2.59 0.033 3.28 5,585 3-4 588 Barra Bonita 0.45 141 312 0.45 0.002 0.50 618 36-37 816 Samuel 0.39 216 559 1.52 0.021 1.97 946 10-11 2,077 Três Marias 0.38 396 1,040 0.42 0.075 1.99 1,734 35-36 1,147 Average 9.43 2,613 874 1.43 0.027 2.00 11,445 14-15 584 Table  1.:  Patrick  McCully,  Fizzy  Science,  Interna:onal  Rivers  Network,  November  2006   160  to   250  g   CO2eq/ kWh   *update   *update:  William  Steinhurst,  Patrick  Knight,  and  Melissa  Schultz,  Hydropower  Greenhouse  Gas  Emissions,  State  of  the  Research,  Synapse,  February  14,  2012,   www.synapse-­‐energy.com     Table  1.    GHG  Emissions  from  Hydropower  Plants  
  124. 2014   2010   2010   2005   COST  OF  DROUGHT  
  125. 2000-­‐2009   2060-­‐2069   2030-­‐2039   2090-­‐2099   Worsening  Drought  All  Century  Long  
  126. “We  don’t  have  a  robust  energy  system,  and  the  costs  are  significant.  The  cost   today  is  measured  in  the  billions.  Over  the  coming  decades,  it  will  be  in  the   trillions.  You  can’t  just  put  your  head  in  the  sand  anymore.”    U.S.  Dept.  of   Energy  Official  Jonathan  Pershing,  2013   Hurricane  Sandy,  2012  
  127. SECURING THE U.S. ELECTRICAL GRID THE HONORABLE THOMAS F. McLARTY III & THE HONORABLE THOMAS J. RIDGE PROJECT CO-CHAIRS Energy  Surety  Microgrid   U.S.  Military  bases  mandated  to  be  “islandable”   –  capable  of  operaZng  even  if  grid  collapses   Power  Grid  DisrupZon  Risks  &  Threats   Human  or  Technical  Error,  Cybera,acks,  Military  A,acts  or  Terrorism,     Climate  Disrup:on  &  Natural  Disasters  
  128. A:f  Ansar,  Bent  Flyvbjerg,  Alexander  Budzier,  Daniel  Lun    Should  we   build  more  large  dams?  The  actual  costs  of  hydropower  megaproject   development.  Energy  Policy  (2014),  h,p://dx.doi.org/10.1016/j.enpol. 2013.10.069   6. U.S. Bureau of Reclamation, also see Hufschmidt and Gerin (1970),3 and Merewitz (1973) on the U.S. water-resource con- struction agencies. acquisition and resettlement; design engineerin management services; construction of all civil w ities; equipment purchases. Actual outturn costs real, accounted construction costs determined a Fig. 1. Sample distribution of 245 large dams (1934–2007), across five continents, worth USD 353B (2010 prices). A. Ansar et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎4 •  ex  post  outcomes  of  schedule   &  cost  es:mates  of   hydropower  dams.     •  Es:mates  are  systema:cally   &  severely  biased  below   actual  values.   •  Projects  that  take  longer  have   greater  cost  overruns;  bigger   projects  take  longer.   •   Upli€  required  to  de-­‐bias   systema:c  cost  under-­‐ es:ma:on  for  large  dams  is   +99%.   6. U.S. Bureau of Reclamation, also see Hufschmidt and Gerin (1970),3 and Merewitz (1973) on the U.S. water-resource con- struction agencies. The procedures applied to the cost and schedule data here are acquisition and resettlement; design engineering an management services; construction of all civil works ities; equipment purchases. Actual outturn costs are d real, accounted construction costs determined at the project completion. Estimated costs are defined as bud Fig. 1. Sample distribution of 245 large dams (1934–2007), across five continents, worth USD 353B (2010 prices). A. Ansar et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎4 Hydropower  Dam    Cost  Overruns  
  129. A:f  Ansar,  Bent  Flyvbjerg,  Alexander  Budzier,  Daniel  Lun    Should   we  build  more  large  dams?  The  actual  costs  of  hydropower   megaproject  development.  Energy  Policy  (2014),  h,p:// dx.doi.org/10.1016/j.enpol.2013.10.069   Fig. 3. Location of large dams in the sample and cost overruns by geography. A. Ansar et al. / Energy Policy ∎ (∎∎∎∎) ∎∎∎–∎∎∎6 “Using  the  largest  and  most  reliable  reference  data   of  its  kind  and  mul:level  sta:s:cal  techniques   applied  to  large  dams  for  the  first  :me,  we  were   successful  in  fi^ng  parsimonious  models  to  predict   cost  and  schedule  overruns.       …in  most  countries  large  hydropower  dams  will  be   too  costly  in  absolute  terms  and  take  too  long  to   build  to  deliver  a  posi:ve  risk-­‐adjusted  return  unless   suitable  risk  management  can  be  affordably   provided.”   “Policymakers,  par3cularly  in  developing  countries,   are  advised  to  prefer  agile  energy  alterna3ves  that   can  be  built  over  shorter  3me  horizons  to  energy   megaprojects.”   Hydropower  Dam  Cost  Overruns  
  130. Corn ethanol Cellulosic ethanol Wind-battery turbine spacing Wind turbines ground footprint Solar-battery Mark Z. Jacobson, Wind Versus Biofuels for Addressing Climate, Health, and Energy, Atmosphere/Energy Program, Dept. of Civil & Environmental Engineering, Stanford University, March 5, 2007, http://www.stanford.edu/group/efmh/jacobson/E85vWindSol Area to Power 100% of U.S. Onroad Vehicles COMPARISON OF LAND NEEDED TO POWER VEHICLES Solar-battery and Wind-battery refer to battery storage of these intermittent renewable resources in plug-in electric driven vehicles
  131. Map  of  basins  with  assessed  shale  oil  &  shale  gas  formaZons,  2013       Argen:na  2nd   largest  deposits   in  world  
  132. Natural  Gas,  Coal  &  Oil    Fueled  Power  Plants  in  LaZn  America   (30%,  8%,  and  4.5%,  respecZvely,  in  2030)   Based  on  Ariel  Yepes  et  al.,  Mee:ng  the  Balance  of  Electricity  Supply  and  Demand  in  La:n  America  and  the  Caribbean.  World  Bank  2010,  cited  in  “La:n  America’s  Energy   Future”  by  Roger  Tissot  for  the  Inter-­‐American  Development  Bank  and  the  Inter-­‐American  Dialogue  Energy  Working  Paper  Series,  No.  IDB-­‐DP-­‐252,  December  2012.    
  133. Natural!Gas!vs.!Coal! A!Climate!PerspecAve! 101! Source:!adapted!from!IEA,!“Golden!Age!of!Gas”!special!report!(Figure!1.5)!! Leakage&rate&(%&of&total&producKon)& RaKo&of&GHG&emissions&of&gas&over&coal& 8%& 7%& 6%& 5%& 4%& 3%& 2%& 1%& 0& 25& 50& 75& 105& 0& 0.5& 1& 1.5& 2& Global&Warming&PotenKal&(GWP)&for&methane&
  134. Risk!factor:!Fuel!cost!comparisons! 130! Graph 1 (http://blogs-images.forbes.com/jamesconca/files/2012/07/Fuel-Costs.jpg) Efficiency  
  135. Vulnerability!of!Natural!Gas!to!! Higher!Prices!and!VolaAlity! 131! UCS,!Gas!Ceiling,!Assessing!the!Climate!Risks!of!an!Overreliance!on!Natural!Gas!for!Electricity,!Sept.!2013,!Union!of!Concerned!ScienAsts.!! UCS,  Gas  Ceiling,  Assessing  the  Climate  Risks  of  an  Overreliance  on  Natural  Gas  for  Electricity,  Sept.  2013,  Union  of  Concerned  Scientsts  
  136. AccounAng!for!VolaAlity! 132! commodity! options.! ! In! fact,! implied! volatility! levels! can! be! derived! from! listed! option!premiums!to!determine!the!magnitude!of!natural!gas!movements!“pricedbin”! by!the!options!market!at!a!given!future!date!(Figure!3).!!For!example,!options!are! currently! pricing! in! a! potential! range! of! $1.18! to! $13.80! per! mmBtu! at! the! 99%! confidence!interval!by!June!2015.!! ! ! ! Figure! 3:! Using! implied! volatility! levels! and! option! premiums! to! determine! future! natural! gas! price! ranges!at!68%,!95%,!and!99%!confidence!intervals! RISK+DISTRIBUTION+ ! Assets!generally!face!two!types!of!risk:!risk!associated!strictly!with!the!underlying! asset!(alpha),!and!risk!correlated!with!the!broader!market!(beta).!!A!positive!beta! value!represents!a!positive!correlation!with!the!broader!market,!whereas!a!negative! $13.80+ + + + + June+2015+ + + + + $1.18+ Potential NYMEX Henry Hub Prices RMI,!UKlity^Scale&Wind&and&Natural&Gas&VolaKlity:&Uncovering&the&Hedge&Value&of&Wind&for&UKliKes&and&Their& Customers,&2012!! Using&implied&volaKlity&levels&and&opKon&premiums&to&determine&future& natural&gas&prices&ranges&at&68%,&95%&and&99%&confidence&intervals.& NYMEX&Henry&Hub&Futures& 68%CI& 99%CI&95%CI&
  137. AccounAng!for!VolaAlity! 133! CCGT&New&Build&(No&VolaKlity&Premium&included)& CCGT&New&Build&(AccounKng&for&VolaKlity)& Wind&PPA&(No&PTC)& AccounKng&for&volaKlity& shows&wind&out^compeKng& gas&in&the&long^term& CCGT&curve& shics&up&with& volaKlity& premium&added& AccounKng&for&volaKlity&shows& wind&out^compeKng&gas& &in&the&long^term& Low&gas&prices& seemed&to&out^ compete&wind& RMI,!UKlity^Scale&Wind&and&Natural&Gas&VolaKlity:&Uncovering&the&Hedge&Value&of&Wind&for&UKliKes&and&Their& Customers,&2012!!
  138. Policies!&!Subsidies!promote!highZ Emission!investments!over!ZeroZE!OpAons! 128! Total Global Investments in Renewables Billions of Dollars Invested 2012 Investments in Fossil Fuel Reserves Versus Clean Energy 0 100 200 300 400 500 600 700 $674 $281 Corporate Investments in Developing Fossil Fuel Reserves www.ceres.org www.carbontracker.org Legacy!policies,!subsidies,! and!regulaAons!(or!lack! thereof)!conAnue!to!steer! investments!into!energy! opAons!with!highZemission! output.!!The!IMF!esAmates! $2!trillion!per!year! worldwide!in!subsidies!to! the!fossil!fuel!industry.!! Another!$4!trillion!per!year!in!economic!losses!are!due!to!fossil!fuel! externaliAes!that!go!unpriced!or!unregulated,!according!to!esAmates!by!UN! Finance!IniAaAve.!!This!skewing!of!decisionmaking!creates!uncertainty!as!to! whether!emissions!will!steeply!rise!(BAU)!or!major!policy!changes!will!occur.!! Chart!source:!CERES!&!CarbonTracker,!Investors!ask!fossil!fuel!companies!to!assess!how!business!plans!fare!in!lowZcarbon!future!ZZ!coaliAon!of!70!investors!worth! $3!trillion!call!on!world’s!largest!oil!&!gas,!coal!and!electric!power!companies!to!assess!risks!under!climate!acAon!and!‘business!as!usual’!scenarios,!Nov!2013!!
  139. Water!&!CCS!impact!by!power!plant! 150! Water and Carbon Capture Impact Source: Gerdes, K.; Nichols, C. Water Requirements for Existing and Emerging Thermoelectric Plant Technologies; DOE/NETL Report 402/080108; U.S. Department of Energy National Energy Technology Laboratory: Morgantown, WV, 2009. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Subcritical pc Supercritical pc IGCC – Dry Feed IGCC – Slurry Feed NGCC No Capture 0.52 0.45 0.30 0.31 0.19 With Capture 0.99 0.84 0.48 0.45 0.34 Estimated Water Consumption Increase with CO2 Capture and Compression gal/ kWh % Increase 91 87 61 46 76 pc=!pulverized!coal;!IGCC=!integrated!gasificaAon!combined!cycle!coal!plant;!! NGCCZ!natural!gas!combined!cycle! Gerdes,!K.;!Nichols,!C.!Water!Requirements!for!ExisAng!and!Emerging!Thermoelectric!Plant!Technologies;!DOE/NETL! Report!402/080108;!U.S.!Department!of!Energy!NaAonal!Energy!Technology!Laboratory:!Morgantown,!WV,!2009.!
  140. RelaAve!Risk!Exposure!New! GeneraAon!Sources!! 125! Source:!Ron!Binz,!PracAcing!RiskZAware!Electricity!RegulaAon:!What!Every!State!Regulator!Needs!to!Know,!April!2012,!CERES!
  141. RelaAve!Cost!&!Risk!Rankings!! 126! Source:!Ron!Binz,!PracAcing!RiskZ Aware!Electricity!RegulaAon:! What!Every!State!Regulator!Needs! to!Know,!April!2012,!CERES! Cost&is&an& essenKal&but&not& sufficient& decision^making& criterion& Risk&is&an& essenKal&and& imperaKve& decision^making& criterion&as&well&
  142. Projected&UKlity&GeneraKon&Resources& RelaKve&Cost&&&RelaKve&Risk&^&2015& ! 127!Source:!Ron!Binz,!PracAcing!RiskZAware!Electricity!RegulaAon:!What!Every!State!Regulator!Needs!to!Know,!April!2012,!CERES! Offshore Wind
Anúncio