SlideShare a Scribd company logo
1 of 83
Download to read offline
Extra Section
                   Synthetic Division



Fo r us e w it h li nea r fact ors
Warm-up
          Divide.
(3x + 2x − x + 3) ÷ (x − 3)
   3     2
Warm-up
                        Divide.
           (3x + 2x − x + 3) ÷ (x − 3)
                 3    2




x − 3 3x + 2x − x + 3
       3     2
Warm-up
                         Divide.
              (3x + 2x − x + 3) ÷ (x − 3)
                   3    2

          2
     3x
x − 3 3x + 2x − x + 3
          3    2
Warm-up
                         Divide.
              (3x + 2x − x + 3) ÷ (x − 3)
                   3    2

          2
     3x
x − 3 3x + 2x − x + 3
          3    2

   −(3x − 9x )
          3    2
Warm-up
                              Divide.
               (3x + 2x − x + 3) ÷ (x − 3)
                        3    2

          2
     3x
x − 3 3x + 2x − x + 3
          3     2

   −(3x − 9x )
          3     2


              11x − x
                    2
Warm-up
                           Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3    2

     3x +11x
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2
Warm-up
                           Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3    2

     3x +11x
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
              −(32x − 96)
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2


           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
              −(32x − 96)
                                 99
Warm-up
                             Divide.
            (3x + 2x − x + 3) ÷ (x − 3)
                     3       2

     3x +11x +32
       2


x − 3 3x + 2x − x + 3
       3     2

   −(3x − 9x )
       3     2
                                  3x + 11x + 32, R : 99
                                      2

           11x − x
                 2

        −(11x − 33x)
              2


                         32x + 3
              −(32x − 96)
                                 99
Rational Roots Theorem
Rational Roots Theorem

  Let p be all factors of the leading
coefficient and q be all factors of the
 constant in any polynomial. Then
 p/q gives all possible roots of the
             polynomial.
Synthetic Division
Synthetic Division


Another way to divide polynomials, without the
use of variables
Synthetic Division


Another way to divide polynomials, without the
use of variables

Only works if you’re dividing by a linear factor
Synthetic Division


Another way to divide polynomials, without the
use of variables

Only works if you’re dividing by a linear factor

Allows for us to test whether a possible root is an
actual zero
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
Example 1
Determine whether 1 is a root of
         4x − 3x + x + 5
           6    4   2




   1 4 0 −3 0 1 0 5

     4
Example 1
Determine whether 1 is a root of
         4x − 3x + x + 5
           6    4   2




   1 4 0 −3 0 1 0 5

     4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4
     4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4
     4 4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4
     4 4
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4
     4 4  1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1
     4 4  1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1
     4 4  1 1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1
     4 4  1 1
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1
     4 4  1 1 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2
     4 4  1 1 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2
     4 4  1 1 2 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2 2
     4 4  1 1 2 2
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2 2
     4 4  1 1 2 2 7
Example 1
Determine whether 1 is a root of
       4x − 3x + x + 5
          6    4    2




   1 4 0 −3 0 1 0 5
       4 4 1 1 2 2
     4 4  1 1 2 2 7
Example 1
  Determine whether 1 is a root of
         4x − 3x + x + 5
             6       4       2




      1 4 0 −3 0 1 0 5
          4 4 1 1 2 2
        4 4  1 1 2 2 7


4x + 4x + x + x + 2x + 2, R : 7
  5      4       3       2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3      2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3      2

                              5
                 4x − 5 → x − 4
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5

                   4
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                      5
                   4
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                      5
                   4   -2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5
                      5 −2
                   4   -2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                   5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5
                      5 −2
                              27
                   4   -2 −   2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                   5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5 135
                      5 −2 − 8
                              27
                   4   -2 −   2
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                   5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5 135
                      5 −2 − 8
                              27       95
                   4   -2 −   2
                                   −   8
Example 2
Use synthetic division to find the quotient and
                  remainder.
      (4x − 7x − 11x + 5) ÷ (4x − 5)
          3        2

                                     5
                   4x − 5 → x − 4
               5
               4
                   4 −7 −11 5
                          5 135
                      5 −2 − 8
                                27       95
                   4   -2 −     2
                                     −   8

                           27                 95
           4x − 2x −
              2
                           2
                                ,R:−          8
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3      2
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3      2


                3x − 2 → x −   2
                               3
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3        2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6

                   6
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
                       4
                   6
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
                       4
                   6       -12
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −   2
                                  3

               2
               3   6 −16 17 −6
                       4 -8
                   6       -12
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −    2
                                   3

               2
               3   6 −16 17 −6
                       4 -8
                   6       -12 9
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −    2
                                   3

               2
               3   6 −16 17 −6
                       4 -8 6
                   6       -12 9
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3           2


                   3x − 2 → x −    2
                                   3

               2
               3   6 −16 17 −6
                       4 -8 6
                   6       -12 9       0
Example 3
Use synthetic division to find the quotient and
                  remainder.
       (6x − 16x + 17x − 6) ÷ (3x − 2)
           3            2


                    3x − 2 → x −    2
                                    3

                2
                3   6 −16 17 −6
                        4 -8 6
                    6       -12 9       0
               6x − 12x + 9, R : 0
                    2
Factoring a Quadratic
Factoring a Quadratic

Multiply a and c
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values

Group first 2 and last 2 terms
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values

Group first 2 and last 2 terms

Factor out the GCF of each
Factoring a Quadratic

Multiply a and c

Factor ac into two factors that add up to b

Replace b with these two values

Group first 2 and last 2 terms

Factor out the GCF of each

Factors: (Stuff inside)(Stuff outside)
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2


 2i−6
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2


 2i−6 = −12
Example 4
                Factor.
a. 2x + x − 6
     2
                          b. 4x − 19x + 12
                               2


 2i−6 = −12
   = 4(−3)
Example 4
                   Factor.
a. 2x + x − 6
      2
                             b. 4x − 19x + 12
                                  2


 2i−6 = −12
    = 4(−3)
2x + 4x − 3x − 6
  2
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                       4i12 = 48
      = 4(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                       4i12 = 48
      = 4(−3)                       = (−16)(−3)
  2x + 4x − 3x − 6
    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                       4i12 = 48
      = 4(−3)                         = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                  4x − 16x − 3x + 12
                                    2



(2x + 4x) + (−3x − 6)
   2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                  b. 4x − 19x + 12
                                       2


    2i−6 = −12                        4i12 = 48
      = 4(−3)                         = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                  4x − 16x − 3x + 12
                                    2



(2x + 4x) + (−3x − 6)
   2
                              (4x − 16x) + (−3x + 12)
                                  2


2x(x + 2) − 3(x + 2)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                    b. 4x − 19x + 12
                                         2


    2i−6 = −12                          4i12 = 48
      = 4(−3)                          = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                   4x − 16x − 3x + 12
                                     2



(2x + 4x) + (−3x − 6)
   2
                              (4x − 16x) + (−3x + 12)
                                    2


2x(x + 2) − 3(x + 2)              4x(x − 4) − 3(x − 4)
  (x + 2)(2x − 3)
Example 4
                        Factor.
   a. 2x + x − 6
         2
                                    b. 4x − 19x + 12
                                         2


    2i−6 = −12                          4i12 = 48
      = 4(−3)                          = (−16)(−3)
  2x + 4x − 3x − 6
    2
                                   4x − 16x − 3x + 12
                                     2



(2x + 4x) + (−3x − 6)
   2
                              (4x − 16x) + (−3x + 12)
                                    2


2x(x + 2) − 3(x + 2)              4x(x − 4) − 3(x − 4)
  (x + 2)(2x − 3)                   (x − 4)(4x − 3)
Homework
Homework


 Worksheet!

More Related Content

What's hot

Polynomials and factoring
Polynomials and factoringPolynomials and factoring
Polynomials and factoring
Shilpi Singh
 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomials
Nuch Pawida
 
Mat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curvesMat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curves
GlenSchlee
 
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
magnesium121
 

What's hot (20)

Factoring
FactoringFactoring
Factoring
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
 
Polynomials and factoring
Polynomials and factoringPolynomials and factoring
Polynomials and factoring
 
3.2 factoring polynomials
3.2   factoring polynomials3.2   factoring polynomials
3.2 factoring polynomials
 
Mat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curvesMat221 5.6 definite integral substitutions and the area between two curves
Mat221 5.6 definite integral substitutions and the area between two curves
 
Polynomial function
Polynomial functionPolynomial function
Polynomial function
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
 
Long division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theoremLong division, synthetic division, remainder theorem and factor theorem
Long division, synthetic division, remainder theorem and factor theorem
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial  Fu...
Quotient of polynomial using (Synthetic Division) and Zeros of Polynomial Fu...
 
Factoring Polynomials to find its zeros
Factoring Polynomials to find its zerosFactoring Polynomials to find its zeros
Factoring Polynomials to find its zeros
 
Polynomial equations
Polynomial equationsPolynomial equations
Polynomial equations
 
0303 ch 3 day 3
0303 ch 3 day 30303 ch 3 day 3
0303 ch 3 day 3
 
1050 text-bop
1050 text-bop1050 text-bop
1050 text-bop
 
Punnett squares presentation teachership academy
Punnett squares presentation teachership academyPunnett squares presentation teachership academy
Punnett squares presentation teachership academy
 
Synthetic Division
Synthetic DivisionSynthetic Division
Synthetic Division
 
9-5 Notes
9-5 Notes9-5 Notes
9-5 Notes
 
Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on Polynomials
 
Operations on Polynomials
Operations on PolynomialsOperations on Polynomials
Operations on Polynomials
 
Polynomials
PolynomialsPolynomials
Polynomials
 

Similar to Synthetic Division

Notes 12.1 identifying, adding & subtracting polynomials
Notes 12.1   identifying, adding & subtracting polynomialsNotes 12.1   identifying, adding & subtracting polynomials
Notes 12.1 identifying, adding & subtracting polynomials
Lori Rapp
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)
Matthew Leingang
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
Matthew Leingang
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
Lily Maryati
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
Matthew Leingang
 
AA Section 5-3
AA Section 5-3AA Section 5-3
AA Section 5-3
Jimbo Lamb
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
king_danickus
 

Similar to Synthetic Division (20)

9-9 Notes
9-9 Notes9-9 Notes
9-9 Notes
 
Lesson 11: The Chain Rule
Lesson 11: The Chain RuleLesson 11: The Chain Rule
Lesson 11: The Chain Rule
 
Expand brackets 3
Expand brackets 3Expand brackets 3
Expand brackets 3
 
Notes 12.1 identifying, adding & subtracting polynomials
Notes 12.1   identifying, adding & subtracting polynomialsNotes 12.1   identifying, adding & subtracting polynomials
Notes 12.1 identifying, adding & subtracting polynomials
 
Lesson 15: The Chain Rule
Lesson 15: The Chain RuleLesson 15: The Chain Rule
Lesson 15: The Chain Rule
 
Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)Lesson 4 - Calculating Limits (Slides+Notes)
Lesson 4 - Calculating Limits (Slides+Notes)
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
AA Section 8-8
AA Section 8-8AA Section 8-8
AA Section 8-8
 
Algebra 2 Section 1-7
Algebra 2 Section 1-7Algebra 2 Section 1-7
Algebra 2 Section 1-7
 
Inequalities quadratic, fractional & irrational form
Inequalities   quadratic, fractional & irrational formInequalities   quadratic, fractional & irrational form
Inequalities quadratic, fractional & irrational form
 
Calculo Thomas (Solutions).pdf
Calculo Thomas  (Solutions).pdfCalculo Thomas  (Solutions).pdf
Calculo Thomas (Solutions).pdf
 
AA Section 8-7
AA Section 8-7AA Section 8-7
AA Section 8-7
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
 
Em04 il
Em04 ilEm04 il
Em04 il
 
AA Section 7-2/7-3
AA Section 7-2/7-3AA Section 7-2/7-3
AA Section 7-2/7-3
 
AA Section 5-3
AA Section 5-3AA Section 5-3
AA Section 5-3
 
Polinomials division
Polinomials divisionPolinomials division
Polinomials division
 
Algebra 2 Section 4-6
Algebra 2 Section 4-6Algebra 2 Section 4-6
Algebra 2 Section 4-6
 
Rational Expressions
Rational ExpressionsRational Expressions
Rational Expressions
 
Implicit Differentiation, Part 2
Implicit Differentiation, Part 2Implicit Differentiation, Part 2
Implicit Differentiation, Part 2
 

More from Jimbo Lamb

More from Jimbo Lamb (20)

Geometry Section 1-5
Geometry Section 1-5Geometry Section 1-5
Geometry Section 1-5
 
Geometry Section 1-4
Geometry Section 1-4Geometry Section 1-4
Geometry Section 1-4
 
Geometry Section 1-3
Geometry Section 1-3Geometry Section 1-3
Geometry Section 1-3
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-2
Geometry Section 1-2Geometry Section 1-2
Geometry Section 1-2
 
Geometry Section 1-1
Geometry Section 1-1Geometry Section 1-1
Geometry Section 1-1
 
Algebra 2 Section 5-3
Algebra 2 Section 5-3Algebra 2 Section 5-3
Algebra 2 Section 5-3
 
Algebra 2 Section 5-2
Algebra 2 Section 5-2Algebra 2 Section 5-2
Algebra 2 Section 5-2
 
Algebra 2 Section 5-1
Algebra 2 Section 5-1Algebra 2 Section 5-1
Algebra 2 Section 5-1
 
Algebra 2 Section 4-9
Algebra 2 Section 4-9Algebra 2 Section 4-9
Algebra 2 Section 4-9
 
Algebra 2 Section 4-8
Algebra 2 Section 4-8Algebra 2 Section 4-8
Algebra 2 Section 4-8
 
Geometry Section 6-6
Geometry Section 6-6Geometry Section 6-6
Geometry Section 6-6
 
Geometry Section 6-5
Geometry Section 6-5Geometry Section 6-5
Geometry Section 6-5
 
Geometry Section 6-4
Geometry Section 6-4Geometry Section 6-4
Geometry Section 6-4
 
Geometry Section 6-3
Geometry Section 6-3Geometry Section 6-3
Geometry Section 6-3
 
Geometry Section 6-2
Geometry Section 6-2Geometry Section 6-2
Geometry Section 6-2
 
Geometry Section 6-1
Geometry Section 6-1Geometry Section 6-1
Geometry Section 6-1
 
Algebra 2 Section 4-5
Algebra 2 Section 4-5Algebra 2 Section 4-5
Algebra 2 Section 4-5
 
Algebra 2 Section 4-4
Algebra 2 Section 4-4Algebra 2 Section 4-4
Algebra 2 Section 4-4
 
Algebra 2 Section 4-2
Algebra 2 Section 4-2Algebra 2 Section 4-2
Algebra 2 Section 4-2
 

Recently uploaded

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Recently uploaded (20)

NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 

Synthetic Division

  • 1. Extra Section Synthetic Division Fo r us e w it h li nea r fact ors
  • 2. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2
  • 3. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 x − 3 3x + 2x − x + 3 3 2
  • 4. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 2 3x x − 3 3x + 2x − x + 3 3 2
  • 5. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 2 3x x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2
  • 6. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 2 3x x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2
  • 7. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2
  • 8. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2
  • 9. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3
  • 10. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3
  • 11. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3 −(32x − 96)
  • 12. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 11x − x 2 −(11x − 33x) 2 32x + 3 −(32x − 96) 99
  • 13. Warm-up Divide. (3x + 2x − x + 3) ÷ (x − 3) 3 2 3x +11x +32 2 x − 3 3x + 2x − x + 3 3 2 −(3x − 9x ) 3 2 3x + 11x + 32, R : 99 2 11x − x 2 −(11x − 33x) 2 32x + 3 −(32x − 96) 99
  • 15. Rational Roots Theorem Let p be all factors of the leading coefficient and q be all factors of the constant in any polynomial. Then p/q gives all possible roots of the polynomial.
  • 17. Synthetic Division Another way to divide polynomials, without the use of variables
  • 18. Synthetic Division Another way to divide polynomials, without the use of variables Only works if you’re dividing by a linear factor
  • 19. Synthetic Division Another way to divide polynomials, without the use of variables Only works if you’re dividing by a linear factor Allows for us to test whether a possible root is an actual zero
  • 20. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2
  • 21. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5
  • 22. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5
  • 23. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4
  • 24. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4
  • 25. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4
  • 26. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 4
  • 27. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 4 4
  • 28. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 4 4 1
  • 29. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 4 4 1
  • 30. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 4 4 1 1
  • 31. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 4 4 1 1
  • 32. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 4 4 1 1 2
  • 33. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 4 4 1 1 2
  • 34. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 4 4 1 1 2 2
  • 35. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2
  • 36. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2 7
  • 37. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2 7
  • 38. Example 1 Determine whether 1 is a root of 4x − 3x + x + 5 6 4 2 1 4 0 −3 0 1 0 5 4 4 1 1 2 2 4 4 1 1 2 2 7 4x + 4x + x + x + 2x + 2, R : 7 5 4 3 2
  • 39. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2
  • 40. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4
  • 41. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5
  • 42. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 4
  • 43. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 4
  • 44. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 4 -2
  • 45. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 5 −2 4 -2
  • 46. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 5 −2 27 4 -2 − 2
  • 47. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 135 5 −2 − 8 27 4 -2 − 2
  • 48. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 135 5 −2 − 8 27 95 4 -2 − 2 − 8
  • 49. Example 2 Use synthetic division to find the quotient and remainder. (4x − 7x − 11x + 5) ÷ (4x − 5) 3 2 5 4x − 5 → x − 4 5 4 4 −7 −11 5 5 135 5 −2 − 8 27 95 4 -2 − 2 − 8 27 95 4x − 2x − 2 2 ,R:− 8
  • 50. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2
  • 51. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3
  • 52. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6
  • 53. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 6
  • 54. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 6
  • 55. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 6 -12
  • 56. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 -12
  • 57. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 -12 9
  • 58. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 6 -12 9
  • 59. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 6 -12 9 0
  • 60. Example 3 Use synthetic division to find the quotient and remainder. (6x − 16x + 17x − 6) ÷ (3x − 2) 3 2 3x − 2 → x − 2 3 2 3 6 −16 17 −6 4 -8 6 6 -12 9 0 6x − 12x + 9, R : 0 2
  • 63. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b
  • 64. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values
  • 65. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values Group first 2 and last 2 terms
  • 66. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values Group first 2 and last 2 terms Factor out the GCF of each
  • 67. Factoring a Quadratic Multiply a and c Factor ac into two factors that add up to b Replace b with these two values Group first 2 and last 2 terms Factor out the GCF of each Factors: (Stuff inside)(Stuff outside)
  • 68. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2
  • 69. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6
  • 70. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12
  • 71. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3)
  • 72. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2
  • 73. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2
  • 74. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2)
  • 75. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 76. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 77. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 78. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 79. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 (4x − 16x) + (−3x + 12) 2 2x(x + 2) − 3(x + 2) (x + 2)(2x − 3)
  • 80. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 (4x − 16x) + (−3x + 12) 2 2x(x + 2) − 3(x + 2) 4x(x − 4) − 3(x − 4) (x + 2)(2x − 3)
  • 81. Example 4 Factor. a. 2x + x − 6 2 b. 4x − 19x + 12 2 2i−6 = −12 4i12 = 48 = 4(−3) = (−16)(−3) 2x + 4x − 3x − 6 2 4x − 16x − 3x + 12 2 (2x + 4x) + (−3x − 6) 2 (4x − 16x) + (−3x + 12) 2 2x(x + 2) − 3(x + 2) 4x(x − 4) − 3(x − 4) (x + 2)(2x − 3) (x − 4)(4x − 3)