SlideShare uma empresa Scribd logo
1 de 19
Baixar para ler offline
Livestock Production Science 59 (1999) 223–241




       Biotechnology in animal nutrition, physiology and health
                                                         a,              b
                                               M. Bonneau *, B. Laarveld
                                   a
                                     Station de Recherches Porcines, INRA, 35590 Saint Gilles, France
         b
             Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 57 N 5 B5



Abstract

   Biotechnology is already widely used in animal production and there are numerous other potential applications.
Application of biotechnology can be envisaged for improving the performance of animals through better nutrition, enhanced
production potential or improved health status. Nutrients (i.e. amino acids) can be produced and / or protected, resulting in
improved formulation of diets that more accurately meet specific needs for productive functions. Enzymes can improve the
nutrient availability from feedstuffs, lower feed costs and reduce output of waste into the environment. Pre- and pro-biotics
or immune supplements can inhibit pathogenic gut microorganisms or make the animal more resistant to them. Plant
biotechnology can produce crops with improved nutritional value or incorporate vaccines or antibodies into feeds that will
cheaply and effectively protect the animals against diseases. Transgenic manipulation of commensal gut or rumen
microorganisms has considerable potential for improving nutrition, gut development and health in animals. Administration of
recombinant somatotropin (ST) results in accelerated growth and leaner carcasses in meat animals and increased milk
production in dairy cows. The effects on meat or milk quality are limited. Immunomodulation can also be used for enhancing
the activity of endogenous anabolic hormones. Transfer of the ST gene has the same effects as use of exogenous ST.
However, unless the expression of the gene is controlled with ad-hoc promoters, the health status of the transgenic animals is
severely impaired. There are numerous applications of biotechnology that aim to improve the health and welfare of animals.
The generation of disease-resistant transgenic farm animals is still a long-term goal. On the other hand recombinant vaccines
are widely in use. New advancements such as DNA-based vaccines and genetically engineered vaccine adjuvants hold much
promise for improving animal health. Monoclonial antibodies and nucleic acid probes are used widely in diagnostic tools.
Neutralization approaches, including immunological and antisense DNA, can offer interesting alternatives to surgical
castration and the traditional prevention of broodiness in breeder birds. Acceptance of biotechnology in livestock production
is difficult, and depends heavily on the perception of risks and benefits by the general public. Information is critically
important in order that lay citizens can make an educated choice. The acceptance of biotechnology applied to animal
production will depend on social and cultural aspects, and on the perceived benefits for consumers and society in general.
© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Biotechnology; Animal biology; Nutrition; Physiology; Health; Vaccines



1. Introduction                                                        animals through increased growth, carcass quality
                                                                       and reproduction, improved nutrition and feed utili-
  Biotechnology will provide new and unpre-                            zation, improved quality and safety of food, im-
cedented opportunities to improve the productivity of                  proved health and welfare of animals, and reduced
                                                                       waste through more efficient utilization of resources.
  *Corresponding author.                                               The livestock industry will benefit also from the

0301-6226 / 99 / $ – see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0301-6226( 99 )00029-9
224                             M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241


application of biotechnology in other areas such as in                     based (Weber et al., 1995). These concerns common-
the development of new and improved feedstuffs, as                         ly arise with the introduction of biotechnology and,
well as in microbiology as related to food and                             for that matter, any other rapid major technological
bioremediation. Advances in human medical bio-                             change in agriculture that will affect society.
technology form an important basis for research and                           Acceptance of biotechnology varies to a certain
development in animal biotechnology.                                       degree between consumers from different nations
   A broad range of topics on biotechnology in                             (Hoban, 1997). However, the critical characteristic
animal nutrition, physiology and health will be                            identified among all consumers is the need for
addressed. This review does not cover areas related                        education and information on biotechnology. The
to transgenesis, reproduction and molecular genetics,                      concern about biotechnology relative to other food
which are covered in a companion paper in this                             risks is intermediate. Concerns about bacterial con-
series, and b-agonists, steroid hormones and anti-                         tamination, pesticides, antibiotics and hormones,
biotics. It does include reference to some present                         mold, product alteration, food irradiation, and limit
technologies, such as pro-biotics, that currently in the                   date passed ranked substantially higher. The accept-
strictest sense may not be considered biotechnology,                       ance and impact of agriculture biotechnology in
but which show great potential for biotechnological                        developing nations is unclear, but Steinfeld et al.
application. Extensive reviews on the application of                       (1997) suggest that biotechnology could be impor-
biotechnology in animal production (Robinson and                           tant in nations developing a sustainable agriculture
McEvoy, 1993) and in animal nutrition (Wallace and                         base to supply food for a rapidly growing population.
Chesson, 1995) are available.

                                                                           3. Application of biotechnology for the nutrition
2. Public acceptance of biotechnology                                      of farm animals

   Acceptance of biotechnology in livestock product-                       3.1. Feed additives
ion is difficult (Mersmann, 1996), and generally
more so than in areas such as crop production,                               The use of biotechnological products is relatively
horticulture, food processing and microbiology. The                        well established in the feed industry and shows
debate about the ethics of cloning humans as a result                      considerable potential for further growth. A wide
of the recent remarkable advancements in sheep                             range of applications, both current and potential, are
cloning (Wilmut et al., 1997) illustrates this. Some                       presented in Table 2.
of the underlying basic concerns governing accept-
ance of animal biotechnology, are presented in Table                       3.1.1. Nutrients
1. The first concerns related to ethics, food and                              The use of crystalline amino acids produced
environmental safety, and animal welfare are typical                       through industrial fermentation is extensive (Ber-
for consumers in increasingly affluent societies and                        covici and Fuller, 1995) and has resulted in im-
do not apply to biotechnology alone (Steinfeld et al.,                     proved diet formulation and lower feed cost. New
1997). The concerns about who will be the                                  areas of research involve the rumen protection of
beneficiary of the new technology and its socio-                            amino acids, which may lead to significant improve-
economic impact are relatively new and politically                         ments in ruminant production efficiency, and the use

Table 1
Factors governing acceptance of animal biotechnology
?   Ethical concerns: animals are closer to humans than plants and thus gene manipulation is questioned more readily
?   Risk: food safety and the environment
?   Welfare of animals
?   Benefit: trivial or real? Who benefits: the consumer, the producer, agri-industry or all?
?   Socio-economic impact: concern about the effect of rapid technological change on farm and rural structure.
M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241                  225

Table 2
Application of biotechnology for improving feed characteristics
?   Silage innoculants
?   Supplementation of amino acids
?   Diagnostics for food safety (i.e. mycotoxins)
?   Removal of anti-nutritional factors and toxins through enzymes
?   Enzymes for increased digestibility of nutrients (monogastric and ruminant)
?   Enzymes for increased digestibility of non-starch polysaccharides
?   Supplementation of endogenous enzymes for improved digestion
?   Supplementation of immune products such as disease-specific antibodies
?   Supplementation of hormones and prebiotics to promote gut growth and health
?   Supplementation of probiotics
?   Supplementation of enzymes to reduce nutrient content in waste



of amino acid chelates to improve mineral absorption                    (Jongbloed et al., 1997), with coincidental improve-
efficiency. Non-traditional applications of amino                        ment of dry matter and crude protein digestibility.
acids may involve the use of arginine (Hurson et al.,                   New areas of application being studied are the
1995) and aspartic acid (Kuhara et al., 1991) as                        enzymatic destruction of lectins and trypsin inhibitor,
potent stimulants of pituitary somatotropin release                     enzyme supplementation to augment the host’s en-
and enhance growth and carcass quality. The novel                       dogenous enzymes including protease, amylase and
use of substrates such as glutamine, arginine, or-                      lipase (Classen, 1993), and the inclusion of fibrolytic
nithine and nucleotides for gut and immune system                       enzymes in diets for monogastric animals to improve
development and function in young animals is an                         the digestibility of fiber.
active area of research (Gardiner et al., 1995).                           Our understanding of the factors controlling effec-
                                                                        tiveness of enzymes remains rather limited. This
3.1.2. Enzymes                                                          slows progress in many areas. In particular the
   The use of microbial enzymes to improve feed                         interaction between feed source, feed processing
quality is extensive and several extensive reviews are                  including temperature, moisture and mineral con-
available (Bedford, 1996; Wallace and Chesson,                          tent., diet nutrient composition, gut microflora and
1995; Classen, 1993; Campbell and Bedford, 1992).                       the host on enzyme supplementation effectiveness is
Enzymes are used to: (1) Remove anti-nutritional                        poorly understood and is an active area of research.
factors and toxins; (2) Increase digestibility of                          The use of fibrolytic enzymes in improving di-
existing nutrients; (3) Increase digestibility of non-                  gestibility of fibrous feeds for ruminants is also of
starch polysaccharides; (4) Supplement host endog-                      considerable interest (McAllister et al., 1995). The
enous enzymes. Enzymes cannot be applied broadly                        benefit of enzyme supplementation of ruminant diets
and their use is specific to certain feeds and phases                    is variable, probably because of complex interactions
of growth in poultry and livestock.                                     due to the presence of the rumen fermentation
   Glucanase is aimed at improving digestibility of                     system and the much greater variability in the quality
non-starch carbohydrates in viscous cereals such as                     of the feedstuffs, particularly of forages and silage.
barley and oats, thus reducing the viscosity in the gut                    Feed enzyme supplementation has good potential
lumen of broiler chicks and piglets. Xylanases are                      for broader application, which largely depends on
directed at viscous polymers in wheat, rye and                          development of new enzymes, better identification of
triticale. Recent research suggests that mixtures of                    the optimal conditions for feed processing including
xylanase, protease and amylases improve digestion                       physicochemical interactions, and identification of
in low-viscous cereals such as corn and sorghum                         the optimal conditions fir use in animals. Feed
(Pack et al., 1998). Phytase has been used on large                     enzymes also have considerable potential to improve
scale to reduce the phosphorous content in manure                       the availability of nutrients from by-products, such
through improved digestibility of the anti-nutrient                     as rice bran, which serve as an important source of
phytate and reduced phosphate content in the diet                       livestock feed in developing nations.
226                      M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241


3.1.3. Pre- and pro-biotics                                      antibodies to specific diseases is in an early phase of
   Manipulation of the microflora in the intestine                development. In the short term, however, the pro-
through the use of prebiotics and probiotics repre-              duction of antibodies in an alternate host shows
sents an additional opportunity for the improvement              considerable promise. Laying hens can be vaccinated
of nutrient digestion, disease resistance and health             against specific viral and bacterial pathogens com-
(Kelly et al., 1994, Salminen et al., 1998). The                 monly responsible for high morbidity and mortality
composition of the intestinal microbial population               in weaning pigs (Yokoyama et al., 1992). The egg
and competitive exclusion of pathogens has pro-                  yolk, rich in disease-specific antibodies, is spray-
gressively been recognized as a significant factor                dried and fed to weaning pigs with the added
impacting on health and growth performance. Pre-                 advantage that a highly nutritious product is pro-
biotics may be defined as compounds, other than a                 vided. Vaccination protocols can be kept up to date
dietary nutrient, that modify and balance the micro-             by including the most recent pathogens of concern
bial flora, promote the growth of beneficial bacteria              and reflecting regional disease pressure, and the feed
and thus provide a healthier intestinal environment              product antibody content can be titered for maximal
for a better absorption of nutrients. Probiotics can be          effect. These products generally target prevention of
defined as those microorganisms which, when ad-                   infectious disease, however therapeutic antibody
ministered to animals or humans, may provide                     products also can be formulated (Kellner et al.,
beneficial effects to the host by improving the                   1994). Antibody products, similar to pre- and pro-
environment of the indigenous microflora. The shift               biotics, would be expected to alter the gut microbial
in microbial populations as a result of pre- and                 flora and prevent adhesion of pathogenic organisms
pro-biotic treatments then leads to a reduction in the           to the gut mucosa (Imberechts et al., 1997). In
proliferation and attachment of pathogenic organisms             addition to the observed improved feed intake and
and reduces the incidence of disease. Generally, pre-            growth in young animals, these products may reduce
and pro-biotic products have provided inconsistent               the dependence on antibiotics for disease control.
results, and research to better define optimal feed                  Other immune products under development in-
processing and application in animals is ongoing.                clude dietary immunostimulants that enhance mucos-
The effects appear greatest in young fast growing                al immunity in the gut, hormone-modulating anti-
animals during specific periods when microbial flora               bodies and hormones. Oral delivery of the immuno
is subject to large change, such as after weaning, and           stimulant oat b-glucan was shown to enhance gut
diminish with age. This age effect is consistent with            mucosal immunity, reduce the oocyst discharge in
the capacity of the normal gut flora to resist change             mice infected with Eimeria vermiformis, and reverse
as the animal grows.                                             the immunosuppressive effect of dexamethasone
                                                                 (Yun et al., 1997). Similarly, Yun et al. (1995)
3.1.4. Immune product supplements                                demonstrated that immunoneutralization of somatos-
   Immune products may be included in feeds spe-                 tatin, a gut hormone with immunosuppressive prop-
cifically to alter microbial flora and to reduce the               erties, through systemic delivery of a monoclonal
effect of pathogens. One of these products is spray              antibody increased resistance of mice to coccidiosis.
dried plasma protein containing antibodies that pro-             Oral delivery should yield a similar response. Epi-
vide protection, sometimes variable, against common              dermal growth factor (EGF) is a potent gut hormone
pathogens. Spray dried plasma protein consistently               that enhances intestinal development and reduces
improves feed intake and growth in pigs weaned                   bacterial translocation. Buret et al. (1997) demon-
early (for review see Stein, 1996). This product is              strated in E. Coli-challenged rabbits that oral EGF
derived from blood collected at slaughter plants, and            reduced colonization of E. Coli in the jejunum, ileum
therefore the protection provided depends on the                 and proximal colcin, and prevented a decrease in
exposure of pigs to pathogens prior to slaughter.                jejunal maltase and sucrase activities. The results
   Several different approaches in providing animals             from these studies indicate that there may be signifi-
with protective antibodies through the diet are being            cant opportunity for dietary non-nutritional products
studied. The transgenic expression in plants of edible           to improve gut health and development.
M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241                        227


3.2. Transgenic approaches for improved nutrition                             Research to improve feeding value of crops must
and metabolism                                                             be interdisciplinary involving both plant breeders and
                                                                           animal nutritionists so that trait modification will
3.2.1. Plant biotechnology                                                 benefit both crop and livestock industries. Further-
   Traditionally plant breeders have focused on im-                        more, traits must be selected on the basis of improv-
proving the agronomic characteristics of crops, in-                        ing the sustainability and efficiency of the entire
cluding yield, disease resistance, and quality charac-                     production system from crop agronomy to animal
teristics required for human food. Improved feeding                        production to meat processing. Typical examples are
value of crops for animals was not emphasized and,                         the improved digestion of phytate through dietary
mostly, animal feed is considered to be food not                           supplementation with phytase (Jongbloed et al.,
suitable for human consumption or a byproduct from                         1997) or incorporation of phytase in crops, and the
food processing. Consequently animal feed is char-                         development of hulless grains with improved pro-
acterized by high variability in quality and unpredict-                    cessing characteristics and feeding value (Bell and
able feeding value. These conditions limit animal                          Keith, 1993), both of which reduce the nutrient
production efficiency and increase the burden on the                        density of animal waste.
environment. Biotechnology allows the plant breeder                           Plant biotechnology also allows for some novel
to incorporate very specific characteristics in crops,                      approaches in the production of valuable compo-
including those (Table 3) that improve the process-                        nents, which could have a large impact on the
ing characteristics and feeding value for animals                          livestock industry (Table 3). Of particular interest is
(Kuhn, 1996). Therefore, under favorable economic                          the incorporation in plants of edible vaccines (Dal-
conditions, we may well see the emergence of crops                         sgaard et al., 1997; Mason et al., 1996), antibodies
specifically designed for animal feed, targeted for a                       (Ma et al., 1995), and potentially of enzymes and
certain class and type of animal and may even                              hormones that could influence gut function.
include specific enzymes and health products. A
specific example is the development of high oil corn                        3.2.2. Animal and microbial biotechnology
with significantly enhanced feeling value (Adeola                              Genetic manipulation of animals and microorga-
and Bajjalieh, 1997), which provides increased finan-                       nisms (Table 4) holds considerable promise, but will
cial return to both crop and animal producers.                             require considerable time and investment, including


Table 3
Application of plant biotechnology for improving animal feeds
?   Plant products will change from generic feed to specific feed tailored for defined feeding purpose s and animal types
?   Diagnostics for identification of cultivar, feeding characteristics
?   Improved nutrient composition
?   Reduction in anti-nutritional factors such as phytate, molds
?   Improved processing characteristics of feed product
?   Control of rumen fermentation rates of protein and carbohydrates
?   Incorporation of edible vaccines produced in transgenic plants to protect against infectious disease
?   Incorporation of antibodies specific to enteric disease
?   Incorporation of hormones and pre-biotics




Table 4
Transgenic approaches in animals and microbes for improved nutrition and metabolism
?   Microbial biotechnology: rumen and gut recombinant organisms, including gut commensal organisms
?   Recombinant expression of gut enzymes
?   Recombinant expression of enzyme pathways for de novo substrate synthesis and for improved efficiency in nutrient metabolism
?   Recombinant enhancement of gut growth and nutrient absorption potential
228                     M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241


a lengthy process to obtain the necessary regulatory            active area of research (Forsberg et al., 1993) and is
approval. Transgenic introduction of metabolic path-            covered by several papers in this Conference.
ways may remove inherent nutritional and metabolic
limitations, leading to substantial improvement in
feed utilization efficiency.                                     4. Application of biotechnology to increase
   Limited absorption of glucose and a high rate of             performance in farm animals
gluconeogenesis (Brockman and Laarveld, 1986)
characterize ruminant metabolism. Acetate and prop-                Some of the earlier applications of biotechnology
ionate are both major products of rumen fermen-                 were the growth and lactation enhancing agents, such
tation, but only propionate is an important                     as recombinant somatotropin, and development of
glucogenic substrate. Metabolic efficiency would be              transgenic animals with enhanced growth perform-
improved through the transgenic introduction of a               ance. The areas of study (Table 5) have broadened
metabolic pathway for converting acetate into glu-              considerably as a result of a better understanding of
cose. Saini et al. (1996) have achieved this in mice            the underlying physiology governing growth and
by expressing the bacterial glyoxylate cycle genes in           carcass composition, and because of the discovery of
liver and intestine. Introduction of these genes in             novel hormonal systems such as those of myostatin
ruminants would be expected to enhance feed ef-                 and leptin.
ficiency, particularly when forage-based diets are
fed.                                                            4.1. Myostatin
   The supply of sulphur amino acids can limit wool
growth in sheep. Ward and Nancarrow (1992) are                     Skeletal muscle hyperplasia, commonly referred to
targeting sheep rumen epithelium for the transgenic             as double-muscling, is an inherited condition ob-
expression. of the enzymes serine acetyltransferase             served in several breeds of cattle. The molecular and
and o-acetylserine sulfhydrylase. This pathway en-              physiological mechanisms responsible for the hy-
ables de novo synthesis of cysteine from inorganic              perplasia are not well understood. Grobet et al.
sulphur and removes a nutritional limitation to wool            (1997) reported that in the Belgian Blue breed an 11
growth. Other transgenic research focusing on im-               base pair deletion in exon 2 for the bioactive domain
proved digestion includes the expression of cellulase           for myostatin on bovine chromosome 2 is respon-
in the pancreas of monogastric animals (Hall et al.,            sible for the muscular hypertrophy, and recently the
1993). Other potentially rewarding areas of trans-              mutation was shown in exon 3 in the Charolais
genic research would be the incorporation of meta-              breed. Myostatin is a member of the Transforming
bolic pathways to synthesize essential amino acids de           growth factor (TGF-b) superfamily. The identifica-
novo or to enhance nutrient absorptive capacity.                tion of the myostatin gene will allow the develop-
   Transgenic commensal organisms (Chang, 1996)                 ment of diagnostic tests for genetic selection in cattle
have considerable potential for improving nutrition,            and other species. The discovery of the important
gut development and health in animals. These mi-                role of myostatin within the TGF-b family also
crobes, capable of colonizing tie gut, could deliver            opens up a whole new area of study of the physio-
recombinant products, including enzymes (similar to             logical regulation of muscle development through
those described in the enzyme section above), pre-              myostatin-mediated pathways, including the myos-
biotic compounds, immunostimulants, mucosal vac-                tatin receptor, and the interaction with other growth
cines and hormones. The development of these                    factors. This advancement will lead to new ap-
recombinant commensal microbes is particularly                  proaches in the manipulation of muscle development,
intriguing as this technology, in contrast to trans-            including immunomodulation and transgenesis
genic animals, could be widely available to livestock           targeting myostatin or its receptor.
producers. Containment of these recombinant organ-
isms is a concern (Ramos et al., 1995) and may be               4.2. Leptin
dealt with through co-incorporation of multiple
suicide genes. The development of transgenic rumen                Leptin is a newly discovered hormone produced in
microbes with enhanced ability to digest fiber is an             adipose tissue. Mutations in the adipose-specific OB
M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241                               229

Table 5
Application of biotechnology in animal physiology for improved growth, feed efficiency and carcass quality
? Nutrient Partitioning and Growth Promotion:
  ? Recombinant proteins:
    – Somatotropin (ST) and related products including growth hormone releasing hormone (GHRH)
    – Insulin-like growth factor (IGF-1) and its analogues and binding proteins
  ? Induced mRNA expression of GHRH in muscle
  ? Regulation of GLUT 1 and 4 expression in gut and adipose tissues for control of glucose transport
  ? Immune modulation:
    – Immunoneutralization of somatostatin
    – Immunoenhancement of injected and native ST, GHRH, IGF-1
  ? Genetic marker assisted selection for growth and carcass quality re]Lated parameters
  ? Control of stress-disease-growth interactions
? Leptin and Control of Feed Intake:
  ? Genetic marker assisted selection against the OB (obese) gene
  ? Immunization against leptin to enhance feed intake
  ? Immunoneutralization (inactivation) of the leptin receptor
? Muscle Development and meat quality:
  ? Immunocastration of boars
  ? Discovery of the myostatin locus responsible for muscular hypertrophy in bovine will a low for diagnostic testing for this trait
  ? Myostatin immunomodulation may allow control of muscle development



gene producing leptin and in the OB-R gene produc-                        potential usefulness in increasing appetite in live-
ing the leptin receptor result in obesity (for a review                   stock.
see Houseknecht et al. 1998, Trayhurn, 1998). Leptin
levels in blood are strongly correlated with the                          4.3. Administration of exogenous agents obtained
amount of adipose tissue accumulation, and high                           by genetic engineering (somatotropin and related
leptin levels were first observed to inhibit feed intake                   compounds)
through binding to a specific receptor in the hypo-
thalamus. It is now known that leptin regulates feed                      4.3.1. Effects on performance
intake, energy metabolism, body composition, and                             The administration of natural or recombinant
recent observations point to a role in reproduction                       somatotropin (ST) accelerates muscle growth and
and in the immune system. The discovery of leptin                         reduces fat deposition in most farm animals. ST is
opens up a whole new area of study on the regulation                      very effective in pigs (Etherton et al., 1986; Camp-
of feed intake and other areas important in metabolic                     bell et al., 1989), less so in ruminants (Moseley et
efficiency. Leptin and its receptor have been gene                         al., 1992; Verstegaard et al., 1993) and mostly
mapped for number of species and a number of                              ineffective in chicken (Bonneau, 1991b). Growth
microsatellites have been identified to assist with                        hormone-releasing hormone (GHRH) or its analogs
genetic selection. Fitzsimmons et al. (1998) con-                         have the same effects as ST, however they are less
firmed the potential application of selection for the                      effective in growth stimulation, particularly in the
leptin gene in beef cattle using a microsatellite                         pig species which is relatively resistant to GHRH
marker. Polymorphisms were associated with differ-                        due to a high somatostatinergic tone. Insulin-like
ent carcass fat characteristics, and the gene fre-                        growth factor-1 (IGF-1) is a potent mitogenic hor-
quencies differed between British breeds and                              mone and its concentration in blood is highly
Charolais and Simmental breeds. The discovery of                          correlated with growth. However, the regulation of
leptin may lead to a range of new technologies, such                      the secretion of IGF-1 and its biological activity is
as immunoneutralization, anti-sense and hormone                           highly complex (Brameld, 1997), and this may
treatments, aimed at reducing leptin and thus increas-                    explain why IGF-1 administration has had little
ing feed intake. In particular 133-agonists have been                     effect on the performance of the farm animals
shown to reduce expression of leptin in adipose                           investigated thus far. Current investigation focuses
tissue and reduce plasma leptin, indicating their                         on IGF-1 analogs that are more potent than IGF-1
230                      M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241


itself, and on manipulation of the binding proteins              manufacturing properties of milk or on the or-
for IGF-1 in plasma which appear important in                    ganoleptic quality of cheese (Laurent et al., 1992).
determining tissue-specific biological effects of IGF-
1.                                                               4.4. Immunomodulation
   The administration of recombinant bovine ST
increases milk production in dairy cows (Bauman                     Immunoneutralization of somatostatin, the hypo-
and Vernon, 1993), and in excess of 1000 studies                 thalamic factor that inhibits ST release from the
have been conducted, involving over 20 000 dairy                 pituitary, has provided either positive or no growth
cows (Bauman, 1992). Bovine ST now is in wide-                   responses. Different vaccination and experimental
spread commercial use in a number of countries.                  protocols used, and variable immune responses in
   The long-term delivery of these exogenous agents              both titer and antibody affinity are likely responsible.
is accomplished through injectable slow-release                  Somatostatin has a wide range of physiological
formulations, which are still variable. Recently,                inhibitory effects in the brain, intestine, liver, pan-
Draghia-Akli et al. (1997) demonstrated an alternate             creas and immune system, resulting in complex
method of delivery for GHRH, by injecting GHRH                   responses to immunoneutralization. Yun et al. (1995)
DNA in a myogenic vector, resulting in expression                showed that immunoneutralization of somatostatin
of GHRH in muscle of mice and increased ST levels                enhanced gut immune function in mice challenged
in plasma. This delivery method would be applicable              with a parasitic disease. This suggests that growth
to other agents, but requires considerable further               responses to somatostatin immunoneutralization may
development before it can be applied commercially.               be mediated, at least in part, through enhanced
                                                                 immunity. This could explain, in part, the variability
                                                                 of the responses observed and the observation that
4.3.2. Consequences for product quality                          growth responses may be more likely in animals with
   The reduction of adipose tissue development in                sub-optimal growth (van Kessel, 1992). A major
ST-treated pigs may have favorable or adverse                    limitation to immunomodulation using active im-
consequences on pork meat quality, depending on                  munization is that the level and duration of the
genotype of the animals. In very lean genotypes, the             immune response and the magnitude of physiological
obtained further reduction in fat development results            response are poorly controlled. A passive immuniza-
in carcasses that are too lean, with too little, poor            tion approach using monoclonal or polyclonal anti-
quality fat (soft and prone to oxidation) and lack of            bodies may provide better control, but also is more
cohesion between fat and underlying muscle.                      costly.
   ST or GHRH have little effect on the quality of                  The classical role of antibodies is to neutralize the
beef, mutton or pork. The lower intramuscular lipid              compounds against which there were raised. In some
content may be responsible for the slight reduction in           cases, however, monoclonal (or sometimes even
tenderness that is often observed in pork (Bonneau,              polyclonal) antibodies raised against a hormone can
1991a). Administration of pST has been shown to                  paradoxically potentiate the activity of the native
reduce the incidence of boar taint in entire male pigs           hormone. This has been demonstrated for ST in
(Hagen et al., 1991; Bonneau et al., 1992).                      sheep and pigs, and also for a number of other
   Changes in milk composition due to bST depend                 hormones, including TSR, GHRH and IGF-I (Pell
on the energy balance of the dairy cow. Bovine ST                and Aston, 1995). Provided that the relevant an-
during negative energy balance increases milk fat                tigenic portion of the hormone can be identified,
content. Short term variations in milk composition               vaccination (active or passive) of animals to poten-
are observed in relation to the time of administration           tiate the effect of their anabolic endogenous hor-
of sustained-release formulations of bST. Milk fat               mones can be envisaged for a more efficient meat or
content tends to increase whereas protein content                milk production (Flint, 1995; Holder and Carter,
tends to decrease in the week following the adminis-             1995).
          ´ ´
tration (Verite et al., 1989). However, the effect over             Fat deposition can also be directly inhibited
long periods of time is minimal and no clear-cut                 through the development of antibodies directed
influence of bST treatment has been observed on the               against adipose tissue plasma membranes (Moloney,
M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241                   231


1995). Targeting pre-adipocytes rather than fully               some aspects of health, including increased incidence
developed adipocytes might however be a better                  of osteochondrosis, cartilage soundness and stomach
strategy for future developments (De Clercq et al.,             ulcers (Sejrsen et al., 1996). ST treatment of pigs
1997).                                                          also results in a state of insulin resistance character-
   Immunomodulation of growth and lactation could               ized by elevated plasma levels of both glucose and
be considered as more acceptable than the exogenous             insulin (Etherton et al., 1986). Finally, the need for
administration of growth promoters, since it does not           repeated injection may cause some stress for the
require repeated injections of hormonally active                animals.
compounds. However, less stressful modes of im-                    In dairy cows, fecundity and fertility are nega-
munization have to be developed and the innocuous-              tively affected when bST is administered before
ness of the vaccines for both the animals and the               breeding (Burton et al., 1994), in relation with the
consumers of animal products have to be fully                   negative energy balance of the animal. Otherwise,
demonstrated (Mepham and Forbes, 1995).                         reproduction performance is little affected. However,
                                                                depending on feeding regime, cows may sometimes
4.5. Transgenesis                                               be unable to reach a satisfactory level of fat deposi-
                                                                tion before they start a new lactation (Chilliard et al.,
   An excellent review of the potentials offered by             1998). On the whole, bST administration has no
transgenesis for enhancing performance of farm                  effect on the incidence of infectious disease in dairy
                            ¨
animals is available in Muller and Brem (1996).                 cows (Burton et al., 1994). However, the frequency
Gene transfer in farm animals appears to be much                of clinical mastitis may be significantly increased, in
more difficult than anticipated from the relative ease           relation with the augmentation of milk production
with which it can be performed in mice.                         (Willeberg, 1993; White et al., 1994). Administration
   Numerous experiments were successful in trans-               of exogenous pST to lactating sows results in severe
ferring somatotropin (ST) genes in fish and in large             energy deficit and difficulties for adjusting internal
mammals. In most studies with fish (Brem, 1993;                  temperature. High rates of mortality were observed
Maclean and Rahman, 1994) and pigs (Pursel et al.,              in ST-treated lactating sows in a tropical environ-
1989), the ST gene was expressed and the transgenic             ment (Cromwell et al., 1989).
animals grew faster, had a better efficiency and were               In a number of species, ST treatment reduces the
leaner, the effects being similar to those obtained             detoxifying capacity of the liver (Witkamp et al.,
with the administration of exogenous ST (see above).            1993), which may have some negative consequences
Transfer of ST constructs in cattle, sheep, goat and            on the elimination of xenobiotics by the animals.
poultry were so far less successful because no                  Following the demonstration that hGH in vitro can
transfer was achieved or the transferred gene was not           stimulate the replication of some retroviruses (Laur-
expressed or the expression did not result in im-               ence et al., 1992), preliminary results suggest that
proved performance. Pursel et al. (1998) have re-               bST treatment could stimulate the production of
cently obtained increased muscle growth in the pig              some viruses in ewes and goats (unpublished results).
after targeted expression of IGF-I in muscle.                      Because it does not imply repeated injections of
   A c-ski gene construct was successfully trans-               hormonally active compounds, immunomodulation
ferred and expressed into swine (Pursel et al., 1992)           of growth could be considered as more acceptable
and into a calf (Bowen et al., 1994), resulting in              than the exogenous administration of growth promot-
some degree of muscle hypertrophy.                              ers. However, less stressful modes of immunization
                                                                have to be developed (Mepham and Forbes, 1995).
4.6. Concerns over the safety of the                               In the first studies involving transgenic pigs, the
biotechnological manipulation of performance in                 transferred GH gene was expressed ubiquitously and
farm animals                                                    was not regulated. The animals had severe health
                                                                problems and were unable to reproduce (Pursel et al.,
4.6.1. Safety and welfare for the animals                       1989; Pinkert et al., 1994). In subsequent studies,
   Administration of high doses of ST to growing                transferred GH or IGF-I genes were coupled to
pigs or steers may have adverse consequences on                 promoters enabling lower production of GH through
232                      M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241


time control or tissue specificity of gene expression             5. Applications of biotechnology to improve
(Polge et al., 1989; Wiegart et al., 1990; Nottle et al.,        product quality and safety
1997; Pursel et al., 1997). The resulting transgenic
pigs had no, or at least less, apparent physiological            5.1. Detection of residues and pathogens in animal
trouble. Transfer of the salmon GH gene in salmons               products
or trouts results in a few symptoms of acromegaly
(Devlin et al., 1997).                                              The latest developments of biotechnology, par-
   The transfer and expression of the c-ski gene                 ticularly monoclonal antibodies, RFLP, DNA probing
resulted in severe muscle degeneration in both pig               and PCR, have opened large possibilities for the
(Pursel et al., 1992) and calf (Bowen et al., 1994).             improvement of methods for the detection of patho-
                                                                 gens and trace residues of drugs or other undesirable
4.6.2. Safety for the consumers of animal products               compounds in animal products (Mattingly et al.,
   In contrast to steroids and 13-agonists, ST is                1985; Marshall and Hodgson, 1998).
heat-labile, species-specific and destroyed by diges-
tive enzymes. The very low levels of residual ST that            5.2. Immunomodulation
could possibly be found in the meat or milk of
ST-treated animals are therefore not a real concern                 Immunocastration of male pigs can be envisaged
for human safety (Butenandt, 1996). The content of               for producing boar taint free entire male pigs if at
IGF-l in milk, although very low, is increased up to 5           would have most of the advantages of entire male
fold (Burton et al., 1994) in the milk of bST-treated            pigs without adverse consequence; on meat quality
cows. Yet, these IGF-l levels remain within the                  (Bonneau and Enright, 1995).
normal range observed in human milk. According to
Butenandt (1996), ‘‘the use of growth hormone in                 5.3. Transgenesis
meat or milk production will not bear any risk for the
human consumer’’. ST is deemed safe for human                       The composition of milk can be altered using
consumption by many official regulatory agencies                  transgenesis (Houdebine, 1998), in order to: (1)
and official professional societies.                              modify the proportion of natural components for
                                                                 better nutritional characteristics; (2) add new com-
4.6.3. Safety for the environment                                pounds that can be beneficial for human or animal
   Performance enhancement in animals through                    nutrition; (3) produce proteins with pharmaceutical
application of biotechnology leads to substantial                or veterinary use (this latter possibility being out of
improvement in efficiency of feed utilization and                 the scope of the present paper).
reduces the excretion of nitrogen and phosphorus in                 Lactose-free (Stinnakre et al., 1994) or lactose-
the manure. Therefore, the environmental impact is               light (L’huillier et al., 1997) milk has been produced
generally positive.                                              in mice by disrupting the b-lactalbumin gene. In
   Because large mammals and poultry are usually                 homozygous mutant mice the milk was highly
raised in controlled conditions, the possibility that            viscous and devoid of b-lactalbumin and lactose, and
they breed with wild animals, although existent (e.g.            pups were unable to remove it from the mammary
domestic swine with wild pigs), is quite unlikely.               gland. Heterozygous mutant mice showed a 40%
There is therefore very little risk of dissemination of          decrease in b-lactalbumin, but only a 10–20%
transgenes into the wild animal population. However,             decrease in the lactose content of their milk. These
the risk with transgenic fish is greater, since they              results confirm the importance of b-lactalbumin and
could escape confinement more easily and compete                  lactose, through its important osmotic effect, in
and / or breed with wild type fish. This problem can              determining milk volume and demonstrate the po-
be addressed by taking drastic precautionary mea-                tential to manipulate milk composition.
sures in farms raising founder fish populations, while               Elevated proportions of casein-b (Persuy et al.,
using only sterile animals (through for instance                 1992) or casein-k (Guttieriez et al., 1996), that
triploidy) in regular production farms.                          would result in improved manufacturing properties,
M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241                   233


have been obtained in mice. Much work has still                          controlling animal diseases. However, they have a
needed before the genetic engineering techniques                         number of limitations. With live attenuated vaccines,
that were used to achieve the above-mentioned                            there are always some concerns about the stability of
results can be applied to farm animals (Mercier and                      the attenuation and possible recombination with wild
Vilotte, 1997).                                                          strains. In some cases, the traditional approaches are
   The production of compounds that are not normal                       unsuccessful in that it is not possible to produce a
milk constituents can be achieved through gene                           vaccine that is both efficient and innocuous. Vacci-
addition. Human lactoferrin (that could be beneficial                     nated animals cannot be differentiated from their
in human and animal neonates) his been produced in                       infected counterparts, which may cause numerous
the cow (Krimpenfort et al., 1991) and the pro-                          problems in disease control programs.
duction of numerous other proteins can be envisaged                         New generations of subunit and attenuated vac-
(Houdebine, 1998).                                                       cines have been recently developed with aid of
                                                                         biotechnology. Subunit vaccines rely on recombinant
                                                                         techniques to produce a relatively pure protective
6. Application of biotechnology for improved                             antigen(s) for formulation with adjuvant (Doel et al.,
health and welfare of farm animals                                       1990). Subunit antigen vaccination allows for dif-
                                                                         ferentiation of naturally infected versus immunized
6.1. Application of biotechnology for improved                           animals but this approach does not always provide
health of farm animals                                                   for adequate protection.
                                                                            Pathogen attenuation by gene deletion and live
   Biotechnology has already had a major impact and                      vectoring of antigen by insertion of foreign antigen
will have numerous applications in a number of                           in gene deleted mutants (Brochier et al., 1991) offers
major fields related to animal health, including                          promise of delivering antigen via natural mucosal
transgenesis, vaccines, diagnosis tests, treatment and                   routes. Mucosal routes of antigen delivery may be
disease control (Table 6).                                               more efficacious for induction of protective immune
                                                                         responses which is an idea highlighted by the
6.1.1. Vaccines                                                          tremendous interest in this area (McGhee et al.,
   Traditional vaccines, be they attenuated or inacti-                   1992). Vectoring antigen in attenuated pathogens can
vated, have often proved to be very efficient in                          provide protection against the vector itself and the

Table 6
Application of biotechnology for improved health and welfare in animals
? Vaccines:
   – Deleted vaccines
   – Recombinant sub-unit vaccines
   – DNA vaccines
   – Vaccine specific to genotype of animal
   – Vaccine adjuvants
   – Mucosal vs. Systemic vaccines
? Vaccines and antibodies produced in plants and administered in a purified form
? Edible vaccines and antibodies generated in plants
? Immunomodulators (non-specific)
? Immune diet supplements (preventative and therapeutic)
? Pre- and pro-biotics
? Diagnostics:
   – Genetic-BLAD, MHC, disease-genotype interactions
   – Disease specific-viral, bacterial, parasitic
   – Acute phase proteins indicative of early stage infection
? Immunocastration vaccines for the control of fertility and undesired breeding behaviour
? Neutralization of prolactin or VIP to control broodiness in turkeys
234                      M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241


inserted foreign gene. Although vaccine vectoring                Vaccination can be achieved through consumption of
has been largely focused on viruses, an attenuated               the whole plant material. Provided that the resulting
suicide bacteria was recently constructed to deliver             immunogens are orally active, this would be a very
foreign antigen to macrophages (Dietrich et al.,                 cheap and convenient way of producing and adminis-
1998). Similar to subunit vaccines, gene-deleted and             tering vaccines for farm animals. Promising results
vectored vaccines are also advantaged in that vacci-             have been obtained in mice (Mason et al., 1996).
nated animals can be differentiated from their natu-
rally infected counterparts (van Oirshot et al., 1990).          6.1.2. Diagnosis
Concerns over biosafety are, at least in part, ad-                  The use of monoclonal antibodies and DNA / RNA
dressed by construction of deletion mutants in such a            probes offers large possibilities for improved diag-
way so that they cannot be transmitted (Peeters et al.,          nosis tests (McCullough, 1993; Jackwood, 1994;
1994.) or are unable to replicate (Eloit and Adam,               Zarlenga, 1994).
1995).                                                              Monoclonal antibodies have numerous advantages
   The injection of naked DNA constructs coding for              over their polyclonal counterparts. They are highly
foreign antigen driven by eucaryotic promotors may               specific for their antigens and they can be produced
elicit an immune response that is specific for that               in unlimited quantities. Like polyclonal antibodies,
antigen (Davis and Whalen, 1995). The technique                  monoclonal antibodies can be used in immunoassays,
provides for cytosolic antigen delivery potentially              particularly in ELISA and related tests. Application
favoring a protective cell mediated immune response              for such tests is widespread for the detection and
without release of a viable organism. There are                  identification of a variety of viruses, bacteria and
however a number of problems to be solved before                 parasites (Weil et al., 1985; Lunt et al., 1988).
naked DNA vaccination can be used in farm con-                      Because they are highly specific, nucleic acid
ditions. Procedures have to be standardized in order             probes are very useful for the detection and recogni-
to obtain less variable immune responses. Biosafety              tion of a large variety of pathogens. Non-radioactive
is a real concern as the presence of the injected DNA            probes are much easier to handle than the radioactive
must be avoided in germinal cells or in tissues                  ones, however they may lack sensitivity. This prob-
destined for human consumption. Using mRNA                       lem can be solved via amplification of the signal
instead of DNA could address the safety concerns,                with PCR (Polymerase Chain Reaction; for a review
however efficacy, cost and ease of utilization re-                see Pfeffer et al., 1995). PCR can also be coupled
mains to be investigated.                                        with RFLP (Restriction Fragment Length Polymor-
   Adjuvants are necessary to enhance the immuno-                phism; Kwon et al., 1993) or nucleic acid sequencing
genicity of many vaccines. The development of                    for a better identification of pathogens. The rapidly
adjuvants is, to a large extent, a quite empirical               emerging DNA chip technologies will allow large-
process. New generation adjuvants are being de-                  scale diagnostic and genetic testing (Marshall and
veloped through chemical synthesis or genetic en-                Hodgson, 1998).
gineering, in order to reduce the inappropriate im-                 Comparatively to the classical morphological and
mune response or potential severe contra-indications             serological methods, the use of nucleic acid probes,
of the traditional a adjuvants (Alexander and Brewer,            sometimes coupled with PCR, can eliminate much
1995). Modified bacterial toxins can also be consid-              ambiguity and subjectivity in the identification of
ered as antigen delivery systems capable of enhanc-              numerous unicellular or pluricellular parasites and
ing immunogenicity (Aitken and Hirst, 1995) Many                 have facilitated the detection of previously undiag-
of the deleterious effects of the traditional adjuvants,         nosed parasitemia (see review by McManus and
including injection site trauma, may be avoided by               Bowles, 1996).
delivery of vaccines via mucosal routes. Live vector-               The potential of acute phase cytokine and / or
ing, microspheres and liposomes all offer protective             protein assays are being examined for clinical appli-
mucosal responses without use of traditional ad-                 cation (Francisco et al., 1996) and applications in
juvants.                                                         meat inspection (Eckersall, 1992). Analysis of the
   Vaccines can be produced in transgenic plants.                acute phase response may provide for differentiation
M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241                     235


between viral and 14 bacterial infection, indicate               represents a novel transgenic approach to improved
herd health status or identify animals which are                 disease resistance (Ward et al., 1993).
likely to progress to overt clinical signs of infection.            Although the transfer of disease-resistance capaci-
                                                                 ty is potentially very interesting, there are still very
                                                                 few applications of these techniques for farm ani-
6.1.3. Treatment and disease control
                                                                 mals, particularly because their development needs
   The use of antibiotics, extracted from various
                                                                 huge investments in time and money.
bacteria and fungi, is one of the most important
                                                                    Animal health is a major field that will benefit
application of biotechnology for animal health.
                                                                 greatly from the development of biotechnology,
Numerous antibiotics are now semi-synthesized or
                                                                 particularly of genetic engineering. The most ad-
totally synthesized. Other molecules, from the Iver-
                                                                 vanced applications are in the area of recombinant
mectine family, have been extracted from micro-
                                                                 vaccines and diagnostic tests, where the potential for
organisms and have been proved to be efficient in
                                                                 development is still immense. The transfer of disease
parasite control.
                                                                 resistance is potentially very interesting but still little
   Monoclonal antibodies can also potentially be
                                                                 developed in farm animals. There are also still very
used for the treatment of diseased animals. However,
                                                                 few applications of the latest development of bio-
the costs associated with passive immunization of
                                                                 technology in the field of disease treatment. Bio-
farm animals may be too high in most cases.
                                                                 technology provides the opportunity to tackle dis-
   The availability of recombinant cytokines allowed
                                                                 eases thus far untreatable. Biotechnology can some-
investigation of their application in control of infecti-
                                                                 times replace chemical or antibiotic therapies that
ous disease of livestock. Modulation of immune
                                                                 may be costly, harmful to the consumer of animal
response by systemic cytokine administration often
                                                                 products or induce antibiotic resistance in germs
has not yielded the expected protection from clinical
                                                                 threatening human health.
disease (Baca-Estrada et al., 1995, van Kessel et al.,
1996). Positive results were dependent upon precise
timing of cytokine delivery in advance of infectious
                                                                 6.2. Application of biotechnology in behavior and
challenge (Babiuk et al., 1991). Commercial viability
                                                                 welfare of farm animals
of cytokine therapy in disease control awaits de-
velopment of more appropriate delivery systems and
                                                                    Anti-GnRH vaccination (immunocastration) is an
a better understanding of highly complex cytokine
                                                                 effective way of castrating farm animals without
networks. Natural immune stimulants, which evoke a
                                                                 causing them the suffering associated with the
more physiological cytokine cascade, may provide
                                                                 physical castration (Bonneau and Enright, 1995).
an alternative method to improve disease resistance
                                                                 Immunocastration has been shown to prevent aggres-
in domestic animals (Yun et al., 1997).
                                                                 sive and sexual behavior in bulls, estrus behavior in
                                                                 heifers and boar taint in pigs. Alternatively, immuno-
6.1.4. Transgenic disease-resistant animals                      castration could also been obtained via immunization
   The transfer of disease-resistance genes is poten-            against the LH and / or FSH receptor, however, this
tially a very important application of biotechnology             technique has so far been effective only in rodents
in animal production. The genes may be identified in              (Remy et al., 1996).
naturally resistant animals. One example is the gene                Dehorning of ruminants reduces the potential for
coding for the Mx protein which promotes resistance              injury to animal and producer, but is increasingly
to viral infection. They may also be genes coding for            criticized on the basis of animal welfare. It may be
monoclonal antibodies (Jones and Marasco, 1997),                 desirable to select ruminants on the basis of the
for compounds interfering with virus replication                 dominant polled (hornless) condition. Schmutz et al.
(Salter and Crittenden, 1989), for antisense mRNA                (1995) have reported two microsatellite markers,
or ribozymes inhibiting / destroying virus mRNA or               which will identify within families the heterozygous
inhibiting its transcription. Expression of chitinase in         and homozygous carriers for the polled gene. The
wool follicles to control blowfly strike in sheep                 marker-assisted selection for homozygous polled
236                      M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241


cattle will allow the rapid introduction of the polled           these techniques depends largely on the stage of
condition in non-polled populations.                             development of the countries. Developing countries,
   Broodiness in breeder turkeys reduces egg pro-                where the shortage of animal products is still very
duction, and requires repeated intervention to prevent           important, are more likely to accept biotechnology in
birds from incubating their eggs. Broodiness is                  contrast to developed countries where consumption
photo-induced through pro lactin (PRL), and vasoac-              of animal products is viewed as too high. Cultural
tive-intestinal peptide (VIP) is the principle PRL-              considerations also influence acceptance. Biotechnol-
releasing hormone. Immunoneutralization of VIP in                ogy is accepted more readily in North America than
egg-laying turkeys reduced photo-induced PRL sec-                in Europe, where the concept of ‘‘natural’’ hod is
retion, eliminated broodiness, and dramatically in-              more prevalent.
creased egg production (El-Halawani et al., 1996).                  Applications resulting in improved health, feed
Active and passive immunization techniques for VIP               efficiency and behavior of the animals may be
are now under development as well as the intro-                  perceived as benefiting both the industry (lower
duction of an anti-sense gene for PRL in turkeys                 production costs through reduced losses and drug
(Wong et al., 1997).                                             treatments) and the public (lower residues in animal
                                                                 products; reduced germ resistance to antibiotics;
                                                                 reduced environmental impact; improved animal
7. Conclusions                                                   welfare). Similarly, applications resulting in the
                                                                 development of new tools for a better control of food
   The latest developments of biotechnology, par-                safety can be easily perceived as beneficial by the
ticularly molecular biology, genetic engineering and             consumers of animal products.
transgenesis have a very large number of potential                  Finally, the use of biotechnology in animal pro-
applications in animal production. The development               duction should be mostly beneficial for humanity. In
of these applications is not as rapid as was expected            many cases, biotechnology is not accepted because
10 or 15 years ago. Transgenesis, for instance, is               people do not understand how it works and what is
much more difficult to apply to farm animals than to              really at stake. The public needs to be educated on
plants or rodents. The use of biotechnology also                 the reality of biotechnology and be informed about
meets some resistance from the general public that               the positive and negative aspects of any given
perceives some risks for the animals, for human                  application of biotechnology. On that basis, people
safety and for the environment, whereas the socio-               can make an educated choice on whether or not they
economic benefits are sometimes perceived as either               can accept it.
non existent or restricted to the industry. The general
acceptance of biotechnology may depend on a clear
communication towards the general public, explain-               Acknowledgements
ing the balance between the advantages and dis-
advantages of a given application, taking into ac-                  The authors express special thanks to their col-
count not only technical and economic considera-                 leagues who were most helpful in the preparation of
tions, but also the impact on other aspects (society,            the manuscript, particularly Y. Chilliard, M. Eloit,
environment, animal welfare) that are less easily                L.M. Houdebine and B. Poutrel (INRA), and H.L.
quantified. The applications of biotechnology in                  Classen, A. Estrada, A.G. Van Kessel and S.M.
animal production may be roughly classified into two              Schmutz (University of Saskatchewan).
groups, according to whether potential benefits may
or may not be easily perceived by the general public.
   Most of the applications resulting in improved                References
performance and carcass merit may be perceived as
resulting in large benefits for the industry and little           Adeola, O., Bajjalieh, N.L., 1997. Energy concentration of high
or no benefit for the public. The acceptability of                  oil corn varieties for pigs. J.Anim. Sci. 75, 430–436.
M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241                                237

Aitken, R., Hirst, T.R., 1995. Bacterial toxins as novel antigen        Brochier, B., Kieny, M.P., Costy, F., Coppens, P., Bauduin, B.,
   delivery systems. Livest. Prod. Sci. 42, 163–172.                       Lecoq, J.P., Languet, B., Chappus, G., Desmettre, P.,
Alexander, J., Brewer, J.M., 1995. Adjuvants and their mode of             Afiademanyo, K., Libois, R., Pastoret, P.P., 1991. Large scale
   action. Livest. Prod. Sci. 42, 153–162.                                 eradication of rabies using recombinant vaccinia-rabies vac-
Babiuk, L.A., Sordillo, L.M., Campos, M., Hughes, H.P.A., Rossi-           cine. Nature 354, 520–522.
   Campos, A., Harland, R., 1991. Application of interferons in         Brockman, R.P., Laarveld, B., 1986. Hormonal regulation of
   the control of infectious diseases of cattle. J. Dairy Sci. 74,         metabolism in ruminants. A review. Livest. Prod. Sci. 14,
   4385–4398.                                                              313–334.
Baca-Estrada, M.E., Godson, D.L., Hughes, H.P.A., Van Donker-           Buret, A., Gall, D.G., Olson, M.E., Hardin, J.A., 1997. Anti-
   sgoed, J., Van Kessel, A., Harland, R., Shuster, D.E., Daley,           infective properties of a mucosal cytokine: epidermal growth
   M.J., Babiuk, L.A., 1995. Effect of recombinant bovine                  factor (EGF). Agricultural Biotechnology Workshop, Alberta
   interleukin-1 (on viral / bacterial pneumonia in cattle. J. Inter-      Agricultural Research Institute, May 11–14, Banff, AB,
   feron and Cytokine Res. 15, 431–439.                                    Canada, Abstract 19.
Bauman, D.E., 1992. Bovine somatotropin: review of an emerging          Burton, L J., McBride, B.W., Block, E., Glimm, D.R., Kennelly,
   animal technology. J. Dairy Sci. 75, 3432–3451.                         J.J., 1994. A review of bovine growth hormone. Can. J. Anim.
Bauman, D.E., Vernon, R.G., 1993. Effects of exogenous bovine              Sci. 74, 167–201.
   somatotropin on lactation. Ann. Rev. Nutr. 13, 437–461.              Butenandt, O., 1996. Growth hormone in meat production: Are
Bedford, M.R., 1996. The effect of enzymes on digestion. J. Appl.          there any risks for the human consumers? In: Scientific
   Poultry Res. 5, 370–378.                                                Conference on Growth promotion in Meat Production, Brus-
Bell, J.M., Keith, M.O., 1993. Effects of combinations of wheat,           sels, 29 November–1 December 1995, Office for Official
   corn or hulless barley with hulled barley supplemented with             Publications of the European Community, Luxembourg, pp.
   soybean meal or canola meal on growth rate, efficiency of feed           325–331.
   utilization and carcass quality of market pigs. Anim. Feed Sci.      Campbell, G.L., Bedford, M.R., 1992. Enzyme applications for
   Technol. 44, 129–150.                                                   monogastric feeds: a review. Can. J. Anim. Sci. 72, 449–456.
Bercovici, D., Fuller, M.F., 1995. Industrial amino acids in            Campbell, R.G., Steele, N.C., Caperna, T.J., McMurtry, J.P.,
   nonruminant animal nutrition. in: Wallace, R.J., Chesson, A.            Solomon, M.B., Mitchell, A.D., 1989. Interrelationships be-
   (Eds.), Biotechnology in Animal Feeds and Animal Feeding,               tween sex and exogenous growth hormone administration on
   VCH, Weinheim, Germany, pp. 93–113.                                     performance, body composition and protein and fat accretion of
Bonneau, M., 1991a. Regulation of swine growth by somatotropic             growing pigs. J. Anim. Sci. 67, 177–186.
   hormones: II. The effect of exogenous GRF or pST administra-         Chang, H., 1996. Genetic engineering to enhance microbial
   tion on performance and meat quality. Pig News Inform. 12,              interference and related therapeutic applications. Nature
   39–45.                                                                  Biotechnol. 14, 444–447.
Bonneau, M., 1991b. The effects of exogenous growth hormone-            Chilliard, Y., Colleau, J.J., Disenhaus, C., Lerondelle, C., Mouch-
   releasing factor or somatotropin administration on growth               et, C., Paris, A., 1998. Recombinant growth hormone: potential
   performance, carcass characteristics, meat quality and re-              interest and risks of its use for bovine milk production. A
   productive function in poultry and pigs. in: Van der Wal, P.,           review. INRA Prod. Animates 11, 15–32.
   Weber, G.M., Van der Wilt, F.J. (Eds.), Biotechnology for            Classen, H.L., 1993. Microbial enzyme use in feed. in: Muirhead,
   Control of Growth and Product Quality in Meat Production,               S. (Ed.), Direct-Fed Microbial, Enzyme and Forage Additive
   Implications and Acceptability, Pudoc, Wageningen, The                  Compendium, Vol. 1, The Miller Publishing Co, Minnetonka,
   Netherlands, pp. 67–89.                                                 Minn., USA, pp. 23–26.
Bonneau, M., Enright, W.J., 1995. Immunocastration in cattle and        Cromwell, G.L., Stahly, T.S., Edgerton, L.A., Monegue, H.J.,
   pigs. Livest. Prod. Sci. 42, 193–200.                                   Burnell, T.W., Schenck, B.C., Elkins, T.T., 1989. Recombinant
Bonneau, M., Meadus, W.J., Squires, E.J., 1992. Effects of                 porcine somatotropin for lactating sows. J. Anim. Sci. 67
   exogenous porcine somatotropin on performance, testicular               (Suppl. 1), 630.
   steroid production and fat levels of boar-taint-related com-         Dalsgaard, K., Uttenthal, A., Jones, T.D., Xu, F., Merryweather,
   pounds in young boars. Can. J. Anim. Sci. 72, 537–545.                  A., Hamilton, W.D.O., Langeveld, J.P.M., Boshuizen, R.S.,
Bowen, R.P., Reed, M.L., Schnieke, A., Seidel, G.E., Stacey, J.A.,         Kamstrup, S., Lomonossoff, G.P., Porta, C., Vela, C., Casil, J.I.,
   Thomas, W.K., Kajikawa, O., 1994. Transgenic cattle resulting           Meloen, R.H., Rodgers, P.B., 1997. Plant derived vaccine
   from biopsied embryos: expression of c-ski in a transgenic calf.        protects target animals against a viral disease. Nature Biotech-
   Biol. Reprod. 50, 664–668.                                              nol. 15, 248–252.
Brameld, J.M., 1997. Molecular mechanisms involved in the               Davis, H.L., Walen, R.G., 1995. DNA-based immunization. in:
   nutritional and hormonal regulation of growth in pigs. Proc.            Dickson, G. (Ed.), Molecular and Cell Biology of Human Gene
   Nutr. Soc. 56, 607–619.                                                 Therapeutics, Chapman and Hall, London.
Brem, G., 1993. Transgenic animals. in: Rehm, H.J., Reed, G.,           De Clercq, L., Mourot, J., Genart, C., Davits, V., Boone, C.,
     ¨
   Puhler, A., Stadler, P. (Eds.), Biotechnology, VCH, Weinheim,           Remade, C., 1997. An antiadipocyte monoclonal antibody is
   Germany, pp. 745–832.                                                   cytotoxic to porcine preadipocytes in vitro and depresses the
238                            M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241

   development of pig adipose tissue. J. Anim. Sci. 75, 1791–              Jimenez-Flores, R., Anderson, G.B., Murray, J.D., Medrano,
   1797.                                                                   J.F., 1996. Expression of a bovine k-CN cDNA in the
Devlin, R.H., Biagi, C.A., Smailus, D.E., 1997. Production and             mammary gland of transgenic mice utilizing a genomic milk
   evaluation of transgenic salmonids. in: Proceedings of a                protein gene as an expression cassette. Transgenic Res. 5,
   Conference on transgenic Animals in Agriculture, Granlibaken,           271–279.
   California, 24–27 August, p. 27.                                     Hagen, D.R., Mills, E.W., Bryan, K.A., Clark, A.M., 1991. Effects
Dietrich, G., Bubert, A., Gentschev, I., Sokolovic, Z., Simm, A.,          of exogenous porcine growth hormone (pGH) on growth,
   Catic, A., Kaufmann, S.H.E., Hess, J., Szalay, A.A., Goebell,           carcass traits, reproductive characteristics, and meat sensory
   W., 1998. Delivery of antigen-encoding plasmid DNA into the             attributes of young boars. J. Anim. Sci. 69, 2472–2479.
   cytosol of macrophages by attenuated suicide Listeria mono-
                                                                        Hall, J., Ali, S., Surani, M.A., Hazelwood, G.P., Clark, A.J.,
   cytogenes. Nature Biotechnol. 16, 181–185.
                                                                           Simons, J.P., Hirst, B.H., Gilbert, H.J., 1993. Manipulation of
Doel, T.R., Gale, C., Do Amaral, C.M.C.F., Mulcahy, G., Di-
                                                                           the repertoire of digestive enzymes secreted into the gastroin-
   marchi, R., 1990. Heterotypic protection induced by synthetic
   peptides corresponding to three serotypes of foot-and-mouth             testinal tract of transgenic mice. Biotechnology 11, 376–379.
   disease. J. Virology 64, 2260–2264.                                  Hoban, T.J., 1997. Consumer acceptance of biotechnology: an
Draghia-Akli, R., Li, X., Schwartz, R.J., 1997. Enhanced growth            international perspective. Nature Biotechnol. 15, 232–234.
   by ectopic expression of growth hormone releasing hormone            Holder, A.T., Carter, C., 1995. Immunomodulation of the growth
   using an injectable myogenic vector. Nature Biotechnol. 15,             hormone-IGF-I axis. Livest. Prod. Sci. 42, 229–237.
   1285–1289.                                                           Houdebine, L.M., 1998. Animal transgenesis and its applications.
Eckersall, P.D., 1992. Meat Inspection. The potential of acute             INRA Productions Animates 11, 81–94.
   phase protein assay. Meat Focus Intl. 6, 279–283.                    Houseknecht, K.L., Baile, C.A., Matter, R.L., Spurlock, M.E.,
El-Halawani, M.E., Pitts, G.R., Sun, S., Silsby, J.L., Sivanandan,         1998. The biology of leptin: a review. J. Anim. Sci. 76,
   V., 1996. Active immunization against vasoactive intestinal             1405–1420.
   peptide prevents photo-induced prolactin secretion in turkeys.       Hurson, M., Regan, M.C., Kirk, S.J., Wasserkrug, H.L., Barbul,
   General Comparative Endocrinol. 104, 76–83.                             A., 1995. Metabolic effects of arginine in a healthy elderly
Eloit, M., Adam, M., 1995. Isogenic adenoviruses type 5 express-           population. J. Parenteral Enteral Nutr. 19, 227–230.
   ing or not expressing the E1A gene: efficiency as virus vectors       Imberechts, F.-I., Deprez, P., Van Driessche, E., Pohi, P., 1997.
   in the vaccination of permissive and non permissive species. J.         Chicken egg yolk antibodies against F18ab fimbriae of Es-
   General Virol. 76, 1583–1589.                                           cherichia coli inhibit shedding of F18 positive E. coli by
Etherton, T.D., Wiggins, J.P., Chung, C.S., Evock, C.M., Ebhun,            experimentally infected pigs. Vet. Microbiol. 54, 329–341.
   J.F., Walton, P.E., 1986. stimulation of pig growth performance      Jackwood, M.W., 1994. Biotechnology and the development of
   by porcine growth hormone and growth hormone-releasing                  diagnostic tests in veterinary medicine. J. Am. Vet. Med. Assoc.
   factor. J. Anim. Sci. 63, 1389–1399.                                    204, 1603–1605.
Fitzsimmons, C.J., Schmutz, S.M., Bergen, R.D., McKinnon, J.J.,         Jones, S.D., Marasco, W.A., 1997. Intracellular antibodies (in-
   1998. A potential association between the BM 1500 microsatel-           trabodies): potential applications in transgenic animal research
   lite and fat deposition in beef cattle. Mammalan Genome 9, in           and engineered resistance to pathogens. in: Houdebine, L.M.
   press.                                                                  (Ed.), Transgenic Animals: Generation and Use, Harwood
Flint, D.J., 1995. Immunomodulation of lactation. Livest. Prod.            Academic Publishers, Amsterdam.
   Sci. 42, 201–206.                                                    Jongbloed, A.W., Lenis, N.P., Mroz, Z., 1997. Impact of nutrition
Forsberg, C.W., Cheng, K.J., Krell, P.J., Phillips, J.P., 1993.            on reduction of environmental pollution by pigs: an overview
   Establishment of rumen microbial gene pools and their ma-               of recent research. Vet. Quart. 19, 130–134.
   nipulation to benefit fiber digestion by domestic animals. In:         Kellner, J., Erhard, J.M.H., Renner, M., Losch, U., 1994. Thera-
   Proceedings of the VII World Conference on Animal Pro-                  peutischer Einsatz von spezifischen Eiantikorpern bei Saugfer-
   duction, Edmonton, AB, Canada June 28–July 2, vol. 1, pp.               keldurchfall-ein Feldversuch. Tierarztliche Umschu 49, 31–34.
   281–316.                                                             Kelly, D., Begbie, R., King, T.P., 1994. Nutritional influences on
Francisco, C.J., Shryock, T.R., Bane, D.P., Unverzagt, L., 1996.           interactions between bacteria and the small intestinal mucosa.
   Serum haptoglobin concentration in growing swine after in-              Nutr. Res. Rev. 7, 233–257.
   tranasal challenge with Bordetella bronchiseptica and toxigenic      Krimpenfort, P., Rademakers, A., Eyestone, W., van der Schans,
   Pasteurella multocida Type D. Can. J. Vet. Res. 60, 222–227.            A., van der Broek, S., Kooiman, P., Kootwijk, E., Platenburg,
Gardiner, K.R., Kirk, S.J., Rowlands, B.J., 1995. Novel substrates         G., Pieper, F., Strijker, R., de Boer, H., 1991. Generation of
   to maintain gut integrity. Nutr. Res. Rev. 8, 43–66.                    transgenic dairy cattle using in vitro embryo production. Biol.
Grobet, L., Martin, L.J.R., Poncelet, D., Pirottin, D., Brouwers, B.,      Techniques Ser. 9, 844–847.
   Riquet, J., Schoeberlein, A., Durner, S., Menissier, F., Mas-        Kuhara, T., Ikeda, S., Ohneda, A., Sasaki, Y., 1991. Effects of
   sabanda, J., Fries, R., Hanset, R., Georges, M., 1997. A                intravenous infusion of 17 amino acids on the secretion of GH,
   deletion in the bovine myostatin gene causes the double                 glucagon, and insulin in sheep. Am. J. Physiol. 260, E21–E26.
   muscled phenotype in cattle. Nature Genetics 17, 71–74.              Kuhn, W.E., 1996. Designer ingredients for animals from a plant
Guttieriez, A., Meade, H.M., Ditullio, P., Pollock, D., Harvey, M.,        breeder perspective. J. Appl. Poultry Res. 5, 379–385.
M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241                              239

Kwon, H.M., Jackwood, M.W., Gelb, J.G., 1993. Differentiation of           composition through transgenesis: progress and problems. in:
   infectious bronchitis virus serotypes using polymerase chain            Houdeline, L.M. (Ed.), Transgenic Animals: Generation and
   reaction and restriction fragment length polymorphism analy-            Use, Harwood Academic Publishers, Amsterdam, pp. 473–482.
   sis. Avian Dis. 30, 47–59.                                           Mersmann, H.J., 1996. Public acceptance of technological ad-
Laurence, J., Grimison, B., Gonenne, A., 1992. Effect of recombi-          vances in meat animal growth could be a formidable challenge.
   nant human growth hormone on acute and chronic human                    J. Anim. Sci. 74 (Suppl. 2), 114–121.
   immunodeficiency virus infection in vitro. Blood 79, 467–472.         Moloney, A.P., 1995. Immunomodulation of fat deposition. Livest.
Laurent, F., Vignon, B., Coomans, D., Wilkinson, J., Bonnel, A.,           Prod. Sci. 42, 239–245.
   1992. Influence of bovine somatotropin on the composition and         Moseley, W.M., Paulissen, J.B., Goodwin, M.C., Alaniz, G.R.,
   manufacturing properties of milk. J. Dairy Sci. 75, 2226–2234.          Claflin, W.H., 1992. Recombinant bovine somatotropin im-
L’huillier, P., Soulier, S., Stinnakre, M.G., Lepoury, L., Davis,          proves growth performance in finishing beef steers. J. Anim.
   S.R., Mercier, J.C., Vilotte, J.L., 1997. Efficient and specific          Sci. 70, 412–425.
   ribozyme-mediated reduction of bovine a-lactalbumin expres-            ¨
                                                                        Muller, M., Brem, G., 1996. Approaches to influence growth
   sion in double transgenic mice. Proceedings of the National             promotion of farm animals by transgenic means. In Scientific
   Academy of Science, USA, submitted.                                     Conference on Growth promotion in Meat Production, Brus-
Lunt, R., White, J., Blacksell, S., 1988. Evaluation of a mono-            sels, 29 November–1 December 1995, Office for Official
   clonal antibody blocking ELISA for the detection of group-              Publications of the European Community, Luxembourg, pp.
   specific antibodies to blue tongue virus in experimental and             213–227.
   field sera. J. Gen. Virol. 69, 2729–2740.                             Nottle, M.B., Nagashima, H., Verma, P.J., Du, Z.T., Ashman, R.J.,
Ma, J.K., Hiatt, A., Hein, M., Vine, N.D., Wang, F., Stabila, P., Van      Grupen, C.G., Macfatrick, S.M., Harding, M.P., Wigley, P.L.,
   Dolleweerd, C., Mostov, K., Lehner, T., 1995. Generation and            Lyons, I.G., Crawford, R.J., Harrison, D.T., Luxford, B.G.,
   assembly of secretory antibodies in plants. Science 268, 716–           Campbell, R.G., Robins, A.J., 1997. Production and evaluation
   719.                                                                    of growth hormone transgenic pigs. in: Proceedings of a
Maclean, N., Rahman, A., 1994. Transgenic fish. in: Maclean, N.             Conference on transgenic Animals in Agriculture, Granlibaken,
   (Ed.), Animals with Novel Genes, Cambridge University Press,            California, 24–27 August, p. 10.
   New York, pp. 63–105.                                                Pack, M., Bedford, M., Wyatt, C., 1998. Feed enzymes may
Marshall, A., Hodgson, J., 1998. DNA chips: an array of                    improve corn, sorghum diets. Feedstuffs 70, 18–19.
   possibilities. Nature Biotechnol. 16, 27–31.                         Peeters, B., Bouma, A., de Bruin, T., Moormann, R., Gielkens, A.,
Mason, H.S., Ball, I.M., Shi, J.J., Jiang, X., Estes, M.K., Arntzen,       Kimman, T., 1994. Non transmissible pseudorabies virus gp50
   C.J., 1996. Expression of Norwalk virus capsid protein in               mutants: a new generation of safe live vaccines. Vaccine 12,
   transgenic tobacco and potato and its oral immunogenicity in            375–380.
   mice. Proc. Natl. Acad. Sci. USA 93, 5335–5340.                      Pell, J.M., Aston, R., 1995. Principles of immunomodulation.
Mattingly, J.A., Robinson, B.J., Boehm, A., Gehle, W.D., 1985.             Livest. Prod. Sci. 42, 123–133.
   Use of monoclonal antibodies for the detection of salmonella in      Persuy, M.A., Stinnakre, M.G., Printz, C., Mabe, M.F., Mercier,
   foods. Food Technol. 39, 90–96.                                         J.C., 1992. High expression of the caprine b-casein gene in
McAllister, T.A., Sellinger, L.B., Yanke, L.J., Bae, H.D., Forsberg,       transgenic mice. Europ. J. Biochem. 205, 887–893.
   C.W., Shelford, J.A., Cheng, K.J., 1995. Exploitation of rumen       Pfeffer, M., Wiedmann, M., Batt, C.A., 1995. Applications of
   microbial enzymes to benefit ruminant production. In: Ivan, M.           DNA amplification techniques in veterinary diagnostics. Vet.
   (Ed.), Animal Science Research and Development: Moving                  Res. Comm. 19, 375–407.
   Toward a New Century, Proceedings of the 75th Meeting of             Pinkert, C.A., Galbreath, E.J., Yang, C.W., Striker, L.J., 1994.
   the Canadian Society of Animal Science, Ottawa, Ontario,                Liver, renal and subcutaneous histopathology in PEPCK-bGH
   Canada, pp. 541–557.                                                    transgenic pigs. Transgenic Res. 3, 401–405.
McCullough, K.C., 1993. The application of biotechnology to the         Polge, E.J.C., Barton, S.C., Surani, M.H.A., Miller, R., Wagner,
   diagnosis and control of animal diseases. Revue scientifique et          T., Elsorne, K., Davis, A.J., Goode, J.A., Foxcroft, G.R., Heap,
   technique de l’Office international des Epizooties 12, 325–353.          R.B., 1989. Induced expression of a bovine growth hormone
McGhee, J.R., Mestecky, J., Dertzbaugh, M.T., Eldridge, J.H.,              construct in transgenic pigs. in: Heap, R.B., Prosser, C.G.,
   Hirasawa, M., Kiyono, H., 1992. The mucosal immune system:              Lamming, G.E. (Eds.), Biotechnology in Growth Regulation,
   from fundamental concepts to vaccine development. Vaccine               Butterworths, London, pp. 189–199.
   10, 75–88.                                                           Pursel, V.G., Pinkert, C.A., Miller, K.F., Bolt, D.J., Campbell,
McManus, D.P., Bowles, J., 1996. Molecular genetic approaches              R.G., Palmiter, R.D., Brinster, R.L., Hammer, R.E., 1989.
   to parasite identification: their value in diagnostic parasitology       Genetic engineering of livestock. Science 244, 1281–1288.
   and systematics. Int. J. Parasitology 26, 687–704.                   Pursel, V.G., Sutrave, P., Wall, R.J., Kelly, A.M., Hughes, S.H.,
Mepham, T.B., Forbes, J.M., 1995. Ethical aspects of the use of            1992. Transfer of c-ski gene into swine to enhance muscle
   immunomodulation in farm animals. Livest. Prod. Sci. 42,                development. Theriogenology 37, 278.
   265–272.                                                             Pursel, V.G., Bee, G., Mitchell, A.D., Wall, R.J., Wells, K.D.,
Mercier, J.C., Viotte, J.L., 1997. The modification of milk protein         Elsasser, T.H., Solomon, M.B., Coleman, M.E., DeMayo, F.,
Biotechnology in animal nutrition, physiology and health
Biotechnology in animal nutrition, physiology and health

Mais conteúdo relacionado

Mais procurados

Estrus synchronization lecture 5
Estrus synchronization lecture 5Estrus synchronization lecture 5
Estrus synchronization lecture 5Dr.Jigdrel Dorji
 
Swine feeding.pptx
Swine feeding.pptxSwine feeding.pptx
Swine feeding.pptxGowhergull1
 
NUTRITION ON YAK
NUTRITION ON YAKNUTRITION ON YAK
NUTRITION ON YAKnuti eshwar
 
Nucleus breeding system
Nucleus breeding systemNucleus breeding system
Nucleus breeding systemSyedShaanz
 
Genetic improvement programs for US dairy cattle
Genetic improvement programs for US dairy cattleGenetic improvement programs for US dairy cattle
Genetic improvement programs for US dairy cattleJohn B. Cole, Ph.D.
 
Carbohydrate Metabolism (Animal Nutrition)
Carbohydrate Metabolism (Animal Nutrition)Carbohydrate Metabolism (Animal Nutrition)
Carbohydrate Metabolism (Animal Nutrition)Osama Zahid
 
Conservation of farm animal genetic resources
Conservation of farm animal genetic resourcesConservation of farm animal genetic resources
Conservation of farm animal genetic resourcesIllaya Kumar
 
Mating System and Livestock Breeding Policy
Mating System and Livestock Breeding Policy Mating System and Livestock Breeding Policy
Mating System and Livestock Breeding Policy Dr. Jayesh Vyas
 
Animal genetic resource conservation and biotechnology
Animal genetic resource conservation and biotechnologyAnimal genetic resource conservation and biotechnology
Animal genetic resource conservation and biotechnologyBruno Mmassy
 
Microbial flora and Feed fermentation
Microbial flora and Feed fermentationMicrobial flora and Feed fermentation
Microbial flora and Feed fermentationVaishnovi Sekar
 
Improving breeding&reproductive performance of dairy animals
Improving breeding&reproductive performance of dairy animalsImproving breeding&reproductive performance of dairy animals
Improving breeding&reproductive performance of dairy animalsArab Khan
 
Adv in frozen semen technologies
Adv in frozen semen technologiesAdv in frozen semen technologies
Adv in frozen semen technologiesSharadindu Shil
 
IMPACT OF BIOTECHNOLOGY ON ANIMAL BREEDING AND GENETIC PROGRESS
IMPACT OF BIOTECHNOLOGY ON ANIMAL BREEDING AND GENETIC PROGRESSIMPACT OF BIOTECHNOLOGY ON ANIMAL BREEDING AND GENETIC PROGRESS
IMPACT OF BIOTECHNOLOGY ON ANIMAL BREEDING AND GENETIC PROGRESSDepartment of Animal Production
 
The genetic factors affecting meat quality characteristics
The genetic factors affecting meat quality characteristicsThe genetic factors affecting meat quality characteristics
The genetic factors affecting meat quality characteristicsFaisal A. Alshamiry
 

Mais procurados (20)

Estrus synchronization lecture 5
Estrus synchronization lecture 5Estrus synchronization lecture 5
Estrus synchronization lecture 5
 
estrous synchronization
estrous synchronizationestrous synchronization
estrous synchronization
 
Swine feeding.pptx
Swine feeding.pptxSwine feeding.pptx
Swine feeding.pptx
 
Digestibility trial
Digestibility trialDigestibility trial
Digestibility trial
 
NUTRITION ON YAK
NUTRITION ON YAKNUTRITION ON YAK
NUTRITION ON YAK
 
Nucleus breeding system
Nucleus breeding systemNucleus breeding system
Nucleus breeding system
 
Genetic improvement programs for US dairy cattle
Genetic improvement programs for US dairy cattleGenetic improvement programs for US dairy cattle
Genetic improvement programs for US dairy cattle
 
Semen sexing
Semen sexingSemen sexing
Semen sexing
 
Carbohydrate Metabolism (Animal Nutrition)
Carbohydrate Metabolism (Animal Nutrition)Carbohydrate Metabolism (Animal Nutrition)
Carbohydrate Metabolism (Animal Nutrition)
 
Conservation of farm animal genetic resources
Conservation of farm animal genetic resourcesConservation of farm animal genetic resources
Conservation of farm animal genetic resources
 
Animal Cloning
Animal CloningAnimal Cloning
Animal Cloning
 
Repeatability
RepeatabilityRepeatability
Repeatability
 
Mating System and Livestock Breeding Policy
Mating System and Livestock Breeding Policy Mating System and Livestock Breeding Policy
Mating System and Livestock Breeding Policy
 
Animal genetic resource conservation and biotechnology
Animal genetic resource conservation and biotechnologyAnimal genetic resource conservation and biotechnology
Animal genetic resource conservation and biotechnology
 
Microbial flora and Feed fermentation
Microbial flora and Feed fermentationMicrobial flora and Feed fermentation
Microbial flora and Feed fermentation
 
Improving breeding&reproductive performance of dairy animals
Improving breeding&reproductive performance of dairy animalsImproving breeding&reproductive performance of dairy animals
Improving breeding&reproductive performance of dairy animals
 
Adv in frozen semen technologies
Adv in frozen semen technologiesAdv in frozen semen technologies
Adv in frozen semen technologies
 
ARTIFICIAL INSEMINATION
ARTIFICIAL INSEMINATIONARTIFICIAL INSEMINATION
ARTIFICIAL INSEMINATION
 
IMPACT OF BIOTECHNOLOGY ON ANIMAL BREEDING AND GENETIC PROGRESS
IMPACT OF BIOTECHNOLOGY ON ANIMAL BREEDING AND GENETIC PROGRESSIMPACT OF BIOTECHNOLOGY ON ANIMAL BREEDING AND GENETIC PROGRESS
IMPACT OF BIOTECHNOLOGY ON ANIMAL BREEDING AND GENETIC PROGRESS
 
The genetic factors affecting meat quality characteristics
The genetic factors affecting meat quality characteristicsThe genetic factors affecting meat quality characteristics
The genetic factors affecting meat quality characteristics
 

Destaque

Application of animal biotechnology
Application of animal biotechnologyApplication of animal biotechnology
Application of animal biotechnologyMohsen Ali
 
Brewers’ yeast as a supplement in aquaculture
Brewers’ yeast as a supplement in aquaculture Brewers’ yeast as a supplement in aquaculture
Brewers’ yeast as a supplement in aquaculture International Aquafeed
 
Bioenergetics - application in aquaculture nutrition
Bioenergetics - application in aquaculture nutrition Bioenergetics - application in aquaculture nutrition
Bioenergetics - application in aquaculture nutrition International Aquafeed
 
Applications of Biotechnology in Animal Health
             Applications of Biotechnology in Animal Health             Applications of Biotechnology in Animal Health
Applications of Biotechnology in Animal HealthRajashekar Baldhu
 
Luca Vandi presentation
Luca Vandi presentationLuca Vandi presentation
Luca Vandi presentationbaromfiagazat
 
Sustainable Poultry Nutrition: Challenges and Opportunities: Ravi Ravindran
Sustainable Poultry Nutrition: Challenges and Opportunities: Ravi Ravindran Sustainable Poultry Nutrition: Challenges and Opportunities: Ravi Ravindran
Sustainable Poultry Nutrition: Challenges and Opportunities: Ravi Ravindran BASF
 

Destaque (8)

Application of animal biotechnology
Application of animal biotechnologyApplication of animal biotechnology
Application of animal biotechnology
 
Brewers’ yeast as a supplement in aquaculture
Brewers’ yeast as a supplement in aquaculture Brewers’ yeast as a supplement in aquaculture
Brewers’ yeast as a supplement in aquaculture
 
Bioenergetics - application in aquaculture nutrition
Bioenergetics - application in aquaculture nutrition Bioenergetics - application in aquaculture nutrition
Bioenergetics - application in aquaculture nutrition
 
Yeast in aquaculture
Yeast in aquacultureYeast in aquaculture
Yeast in aquaculture
 
Yeast in aquaculture
Yeast in aquacultureYeast in aquaculture
Yeast in aquaculture
 
Applications of Biotechnology in Animal Health
             Applications of Biotechnology in Animal Health             Applications of Biotechnology in Animal Health
Applications of Biotechnology in Animal Health
 
Luca Vandi presentation
Luca Vandi presentationLuca Vandi presentation
Luca Vandi presentation
 
Sustainable Poultry Nutrition: Challenges and Opportunities: Ravi Ravindran
Sustainable Poultry Nutrition: Challenges and Opportunities: Ravi Ravindran Sustainable Poultry Nutrition: Challenges and Opportunities: Ravi Ravindran
Sustainable Poultry Nutrition: Challenges and Opportunities: Ravi Ravindran
 

Semelhante a Biotechnology in animal nutrition, physiology and health

A Review on Future Challenges in the field of Plant Biotechnology
A Review on Future Challenges in the field of Plant BiotechnologyA Review on Future Challenges in the field of Plant Biotechnology
A Review on Future Challenges in the field of Plant BiotechnologyIRJET Journal
 
Probiotics and medicinal plants in poultry nutrition: a review
Probiotics and medicinal plants in poultry nutrition: a reviewProbiotics and medicinal plants in poultry nutrition: a review
Probiotics and medicinal plants in poultry nutrition: a reviewSubmissionResearchpa
 
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptxGroup-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptxssuser7ed574
 
genetically modified crops
genetically modified cropsgenetically modified crops
genetically modified cropscenafrica
 
A Research on Importance of Biotechnology and Its Important Applications in D...
A Research on Importance of Biotechnology and Its Important Applications in D...A Research on Importance of Biotechnology and Its Important Applications in D...
A Research on Importance of Biotechnology and Its Important Applications in D...Associate Professor in VSB Coimbatore
 
GMO EFFECT ON ENV..pptx
GMO EFFECT ON ENV..pptxGMO EFFECT ON ENV..pptx
GMO EFFECT ON ENV..pptxaafaq ali
 
Final project in it 1(hp2)
Final project in it 1(hp2)Final project in it 1(hp2)
Final project in it 1(hp2)kristine90
 
Application Of Biotechnology And Allied Field.
Application Of Biotechnology And Allied Field.Application Of Biotechnology And Allied Field.
Application Of Biotechnology And Allied Field.Glena A. Hamad
 
Biosafety issues in biotechnology
Biosafety issues in biotechnologyBiosafety issues in biotechnology
Biosafety issues in biotechnologydeepakkumar4908
 
unit 1 SCOPE OF BIOTECHNOLOGY .pdf
unit 1 SCOPE OF BIOTECHNOLOGY .pdfunit 1 SCOPE OF BIOTECHNOLOGY .pdf
unit 1 SCOPE OF BIOTECHNOLOGY .pdfMSCW Mysore
 
B sc biotech i fob unit 1 introduction to biotechnology
B sc biotech i fob unit 1 introduction to biotechnologyB sc biotech i fob unit 1 introduction to biotechnology
B sc biotech i fob unit 1 introduction to biotechnologyRai University
 
Application Of Prebiotics And Probiotics In Poultry Production
Application Of Prebiotics And Probiotics In Poultry ProductionApplication Of Prebiotics And Probiotics In Poultry Production
Application Of Prebiotics And Probiotics In Poultry ProductionLori Mitchell
 
Agricultural_biotechnology.ppt
Agricultural_biotechnology.pptAgricultural_biotechnology.ppt
Agricultural_biotechnology.ppthumanaz52
 
Biotechnology scope,applications.pptx
Biotechnology scope,applications.pptxBiotechnology scope,applications.pptx
Biotechnology scope,applications.pptxExploreLifeScience
 
“Micropropagation Studies On Bambusa Tulda, Dendrocalamus Longipathus And Che...
“Micropropagation Studies On Bambusa Tulda, Dendrocalamus Longipathus And Che...“Micropropagation Studies On Bambusa Tulda, Dendrocalamus Longipathus And Che...
“Micropropagation Studies On Bambusa Tulda, Dendrocalamus Longipathus And Che...jayatisharma
 

Semelhante a Biotechnology in animal nutrition, physiology and health (20)

A Review on Future Challenges in the field of Plant Biotechnology
A Review on Future Challenges in the field of Plant BiotechnologyA Review on Future Challenges in the field of Plant Biotechnology
A Review on Future Challenges in the field of Plant Biotechnology
 
Basic and applied aspects of biotechnology
Basic and applied aspects of biotechnologyBasic and applied aspects of biotechnology
Basic and applied aspects of biotechnology
 
Probiotics and medicinal plants in poultry nutrition: a review
Probiotics and medicinal plants in poultry nutrition: a reviewProbiotics and medicinal plants in poultry nutrition: a review
Probiotics and medicinal plants in poultry nutrition: a review
 
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptxGroup-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
Group-4 Antibiotics uses in Livestock and Poultry Health issues.pptx
 
genetically modified crops
genetically modified cropsgenetically modified crops
genetically modified crops
 
A Research on Importance of Biotechnology and Its Important Applications in D...
A Research on Importance of Biotechnology and Its Important Applications in D...A Research on Importance of Biotechnology and Its Important Applications in D...
A Research on Importance of Biotechnology and Its Important Applications in D...
 
Lary nel abao gmf final report
Lary nel abao gmf final reportLary nel abao gmf final report
Lary nel abao gmf final report
 
GMO EFFECT ON ENV..pptx
GMO EFFECT ON ENV..pptxGMO EFFECT ON ENV..pptx
GMO EFFECT ON ENV..pptx
 
Final project in it 1(hp2)
Final project in it 1(hp2)Final project in it 1(hp2)
Final project in it 1(hp2)
 
Application Of Biotechnology And Allied Field.
Application Of Biotechnology And Allied Field.Application Of Biotechnology And Allied Field.
Application Of Biotechnology And Allied Field.
 
victory
victoryvictory
victory
 
Biosafety issues in biotechnology
Biosafety issues in biotechnologyBiosafety issues in biotechnology
Biosafety issues in biotechnology
 
unit 1 SCOPE OF BIOTECHNOLOGY .pdf
unit 1 SCOPE OF BIOTECHNOLOGY .pdfunit 1 SCOPE OF BIOTECHNOLOGY .pdf
unit 1 SCOPE OF BIOTECHNOLOGY .pdf
 
B sc biotech i fob unit 1 introduction to biotechnology
B sc biotech i fob unit 1 introduction to biotechnologyB sc biotech i fob unit 1 introduction to biotechnology
B sc biotech i fob unit 1 introduction to biotechnology
 
Application Of Prebiotics And Probiotics In Poultry Production
Application Of Prebiotics And Probiotics In Poultry ProductionApplication Of Prebiotics And Probiotics In Poultry Production
Application Of Prebiotics And Probiotics In Poultry Production
 
Agricultural_biotechnology.ppt
Agricultural_biotechnology.pptAgricultural_biotechnology.ppt
Agricultural_biotechnology.ppt
 
Biotechnology scope,applications.pptx
Biotechnology scope,applications.pptxBiotechnology scope,applications.pptx
Biotechnology scope,applications.pptx
 
“Micropropagation Studies On Bambusa Tulda, Dendrocalamus Longipathus And Che...
“Micropropagation Studies On Bambusa Tulda, Dendrocalamus Longipathus And Che...“Micropropagation Studies On Bambusa Tulda, Dendrocalamus Longipathus And Che...
“Micropropagation Studies On Bambusa Tulda, Dendrocalamus Longipathus And Che...
 
Impact of Genetically Modified Food on Human Health
Impact of Genetically Modified Food on Human HealthImpact of Genetically Modified Food on Human Health
Impact of Genetically Modified Food on Human Health
 
Impact of Genetically Modified Food on Human Health
Impact of Genetically Modified Food on Human HealthImpact of Genetically Modified Food on Human Health
Impact of Genetically Modified Food on Human Health
 

Último

Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkPixlogix Infotech
 
Infrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsInfrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsYoss Cohen
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationKnoldus Inc.
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...Wes McKinney
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFMichael Gough
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxAna-Maria Mihalceanu
 
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...Jeffrey Haguewood
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Mark Simos
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...Karmanjay Verma
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesBernd Ruecker
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Kaya Weers
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 

Último (20)

Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App Framework
 
Infrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platformsInfrared simulation and processing on Nvidia platforms
Infrared simulation and processing on Nvidia platforms
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog Presentation
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
 
All These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDFAll These Sophisticated Attacks, Can We Really Detect Them - PDF
All These Sophisticated Attacks, Can We Really Detect Them - PDF
 
A Glance At The Java Performance Toolbox
A Glance At The Java Performance ToolboxA Glance At The Java Performance Toolbox
A Glance At The Java Performance Toolbox
 
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
Email Marketing Automation for Bonterra Impact Management (fka Social Solutio...
 
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
Tampa BSides - The No BS SOC (slides from April 6, 2024 talk)
 
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...React JS; all concepts. Contains React Features, JSX, functional & Class comp...
React JS; all concepts. Contains React Features, JSX, functional & Class comp...
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architectures
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)Design pattern talk by Kaya Weers - 2024 (v2)
Design pattern talk by Kaya Weers - 2024 (v2)
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 

Biotechnology in animal nutrition, physiology and health

  • 1. Livestock Production Science 59 (1999) 223–241 Biotechnology in animal nutrition, physiology and health a, b M. Bonneau *, B. Laarveld a Station de Recherches Porcines, INRA, 35590 Saint Gilles, France b Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 57 N 5 B5 Abstract Biotechnology is already widely used in animal production and there are numerous other potential applications. Application of biotechnology can be envisaged for improving the performance of animals through better nutrition, enhanced production potential or improved health status. Nutrients (i.e. amino acids) can be produced and / or protected, resulting in improved formulation of diets that more accurately meet specific needs for productive functions. Enzymes can improve the nutrient availability from feedstuffs, lower feed costs and reduce output of waste into the environment. Pre- and pro-biotics or immune supplements can inhibit pathogenic gut microorganisms or make the animal more resistant to them. Plant biotechnology can produce crops with improved nutritional value or incorporate vaccines or antibodies into feeds that will cheaply and effectively protect the animals against diseases. Transgenic manipulation of commensal gut or rumen microorganisms has considerable potential for improving nutrition, gut development and health in animals. Administration of recombinant somatotropin (ST) results in accelerated growth and leaner carcasses in meat animals and increased milk production in dairy cows. The effects on meat or milk quality are limited. Immunomodulation can also be used for enhancing the activity of endogenous anabolic hormones. Transfer of the ST gene has the same effects as use of exogenous ST. However, unless the expression of the gene is controlled with ad-hoc promoters, the health status of the transgenic animals is severely impaired. There are numerous applications of biotechnology that aim to improve the health and welfare of animals. The generation of disease-resistant transgenic farm animals is still a long-term goal. On the other hand recombinant vaccines are widely in use. New advancements such as DNA-based vaccines and genetically engineered vaccine adjuvants hold much promise for improving animal health. Monoclonial antibodies and nucleic acid probes are used widely in diagnostic tools. Neutralization approaches, including immunological and antisense DNA, can offer interesting alternatives to surgical castration and the traditional prevention of broodiness in breeder birds. Acceptance of biotechnology in livestock production is difficult, and depends heavily on the perception of risks and benefits by the general public. Information is critically important in order that lay citizens can make an educated choice. The acceptance of biotechnology applied to animal production will depend on social and cultural aspects, and on the perceived benefits for consumers and society in general. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Biotechnology; Animal biology; Nutrition; Physiology; Health; Vaccines 1. Introduction animals through increased growth, carcass quality and reproduction, improved nutrition and feed utili- Biotechnology will provide new and unpre- zation, improved quality and safety of food, im- cedented opportunities to improve the productivity of proved health and welfare of animals, and reduced waste through more efficient utilization of resources. *Corresponding author. The livestock industry will benefit also from the 0301-6226 / 99 / $ – see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S0301-6226( 99 )00029-9
  • 2. 224 M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 application of biotechnology in other areas such as in based (Weber et al., 1995). These concerns common- the development of new and improved feedstuffs, as ly arise with the introduction of biotechnology and, well as in microbiology as related to food and for that matter, any other rapid major technological bioremediation. Advances in human medical bio- change in agriculture that will affect society. technology form an important basis for research and Acceptance of biotechnology varies to a certain development in animal biotechnology. degree between consumers from different nations A broad range of topics on biotechnology in (Hoban, 1997). However, the critical characteristic animal nutrition, physiology and health will be identified among all consumers is the need for addressed. This review does not cover areas related education and information on biotechnology. The to transgenesis, reproduction and molecular genetics, concern about biotechnology relative to other food which are covered in a companion paper in this risks is intermediate. Concerns about bacterial con- series, and b-agonists, steroid hormones and anti- tamination, pesticides, antibiotics and hormones, biotics. It does include reference to some present mold, product alteration, food irradiation, and limit technologies, such as pro-biotics, that currently in the date passed ranked substantially higher. The accept- strictest sense may not be considered biotechnology, ance and impact of agriculture biotechnology in but which show great potential for biotechnological developing nations is unclear, but Steinfeld et al. application. Extensive reviews on the application of (1997) suggest that biotechnology could be impor- biotechnology in animal production (Robinson and tant in nations developing a sustainable agriculture McEvoy, 1993) and in animal nutrition (Wallace and base to supply food for a rapidly growing population. Chesson, 1995) are available. 3. Application of biotechnology for the nutrition 2. Public acceptance of biotechnology of farm animals Acceptance of biotechnology in livestock product- 3.1. Feed additives ion is difficult (Mersmann, 1996), and generally more so than in areas such as crop production, The use of biotechnological products is relatively horticulture, food processing and microbiology. The well established in the feed industry and shows debate about the ethics of cloning humans as a result considerable potential for further growth. A wide of the recent remarkable advancements in sheep range of applications, both current and potential, are cloning (Wilmut et al., 1997) illustrates this. Some presented in Table 2. of the underlying basic concerns governing accept- ance of animal biotechnology, are presented in Table 3.1.1. Nutrients 1. The first concerns related to ethics, food and The use of crystalline amino acids produced environmental safety, and animal welfare are typical through industrial fermentation is extensive (Ber- for consumers in increasingly affluent societies and covici and Fuller, 1995) and has resulted in im- do not apply to biotechnology alone (Steinfeld et al., proved diet formulation and lower feed cost. New 1997). The concerns about who will be the areas of research involve the rumen protection of beneficiary of the new technology and its socio- amino acids, which may lead to significant improve- economic impact are relatively new and politically ments in ruminant production efficiency, and the use Table 1 Factors governing acceptance of animal biotechnology ? Ethical concerns: animals are closer to humans than plants and thus gene manipulation is questioned more readily ? Risk: food safety and the environment ? Welfare of animals ? Benefit: trivial or real? Who benefits: the consumer, the producer, agri-industry or all? ? Socio-economic impact: concern about the effect of rapid technological change on farm and rural structure.
  • 3. M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 225 Table 2 Application of biotechnology for improving feed characteristics ? Silage innoculants ? Supplementation of amino acids ? Diagnostics for food safety (i.e. mycotoxins) ? Removal of anti-nutritional factors and toxins through enzymes ? Enzymes for increased digestibility of nutrients (monogastric and ruminant) ? Enzymes for increased digestibility of non-starch polysaccharides ? Supplementation of endogenous enzymes for improved digestion ? Supplementation of immune products such as disease-specific antibodies ? Supplementation of hormones and prebiotics to promote gut growth and health ? Supplementation of probiotics ? Supplementation of enzymes to reduce nutrient content in waste of amino acid chelates to improve mineral absorption (Jongbloed et al., 1997), with coincidental improve- efficiency. Non-traditional applications of amino ment of dry matter and crude protein digestibility. acids may involve the use of arginine (Hurson et al., New areas of application being studied are the 1995) and aspartic acid (Kuhara et al., 1991) as enzymatic destruction of lectins and trypsin inhibitor, potent stimulants of pituitary somatotropin release enzyme supplementation to augment the host’s en- and enhance growth and carcass quality. The novel dogenous enzymes including protease, amylase and use of substrates such as glutamine, arginine, or- lipase (Classen, 1993), and the inclusion of fibrolytic nithine and nucleotides for gut and immune system enzymes in diets for monogastric animals to improve development and function in young animals is an the digestibility of fiber. active area of research (Gardiner et al., 1995). Our understanding of the factors controlling effec- tiveness of enzymes remains rather limited. This 3.1.2. Enzymes slows progress in many areas. In particular the The use of microbial enzymes to improve feed interaction between feed source, feed processing quality is extensive and several extensive reviews are including temperature, moisture and mineral con- available (Bedford, 1996; Wallace and Chesson, tent., diet nutrient composition, gut microflora and 1995; Classen, 1993; Campbell and Bedford, 1992). the host on enzyme supplementation effectiveness is Enzymes are used to: (1) Remove anti-nutritional poorly understood and is an active area of research. factors and toxins; (2) Increase digestibility of The use of fibrolytic enzymes in improving di- existing nutrients; (3) Increase digestibility of non- gestibility of fibrous feeds for ruminants is also of starch polysaccharides; (4) Supplement host endog- considerable interest (McAllister et al., 1995). The enous enzymes. Enzymes cannot be applied broadly benefit of enzyme supplementation of ruminant diets and their use is specific to certain feeds and phases is variable, probably because of complex interactions of growth in poultry and livestock. due to the presence of the rumen fermentation Glucanase is aimed at improving digestibility of system and the much greater variability in the quality non-starch carbohydrates in viscous cereals such as of the feedstuffs, particularly of forages and silage. barley and oats, thus reducing the viscosity in the gut Feed enzyme supplementation has good potential lumen of broiler chicks and piglets. Xylanases are for broader application, which largely depends on directed at viscous polymers in wheat, rye and development of new enzymes, better identification of triticale. Recent research suggests that mixtures of the optimal conditions for feed processing including xylanase, protease and amylases improve digestion physicochemical interactions, and identification of in low-viscous cereals such as corn and sorghum the optimal conditions fir use in animals. Feed (Pack et al., 1998). Phytase has been used on large enzymes also have considerable potential to improve scale to reduce the phosphorous content in manure the availability of nutrients from by-products, such through improved digestibility of the anti-nutrient as rice bran, which serve as an important source of phytate and reduced phosphate content in the diet livestock feed in developing nations.
  • 4. 226 M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 3.1.3. Pre- and pro-biotics antibodies to specific diseases is in an early phase of Manipulation of the microflora in the intestine development. In the short term, however, the pro- through the use of prebiotics and probiotics repre- duction of antibodies in an alternate host shows sents an additional opportunity for the improvement considerable promise. Laying hens can be vaccinated of nutrient digestion, disease resistance and health against specific viral and bacterial pathogens com- (Kelly et al., 1994, Salminen et al., 1998). The monly responsible for high morbidity and mortality composition of the intestinal microbial population in weaning pigs (Yokoyama et al., 1992). The egg and competitive exclusion of pathogens has pro- yolk, rich in disease-specific antibodies, is spray- gressively been recognized as a significant factor dried and fed to weaning pigs with the added impacting on health and growth performance. Pre- advantage that a highly nutritious product is pro- biotics may be defined as compounds, other than a vided. Vaccination protocols can be kept up to date dietary nutrient, that modify and balance the micro- by including the most recent pathogens of concern bial flora, promote the growth of beneficial bacteria and reflecting regional disease pressure, and the feed and thus provide a healthier intestinal environment product antibody content can be titered for maximal for a better absorption of nutrients. Probiotics can be effect. These products generally target prevention of defined as those microorganisms which, when ad- infectious disease, however therapeutic antibody ministered to animals or humans, may provide products also can be formulated (Kellner et al., beneficial effects to the host by improving the 1994). Antibody products, similar to pre- and pro- environment of the indigenous microflora. The shift biotics, would be expected to alter the gut microbial in microbial populations as a result of pre- and flora and prevent adhesion of pathogenic organisms pro-biotic treatments then leads to a reduction in the to the gut mucosa (Imberechts et al., 1997). In proliferation and attachment of pathogenic organisms addition to the observed improved feed intake and and reduces the incidence of disease. Generally, pre- growth in young animals, these products may reduce and pro-biotic products have provided inconsistent the dependence on antibiotics for disease control. results, and research to better define optimal feed Other immune products under development in- processing and application in animals is ongoing. clude dietary immunostimulants that enhance mucos- The effects appear greatest in young fast growing al immunity in the gut, hormone-modulating anti- animals during specific periods when microbial flora bodies and hormones. Oral delivery of the immuno is subject to large change, such as after weaning, and stimulant oat b-glucan was shown to enhance gut diminish with age. This age effect is consistent with mucosal immunity, reduce the oocyst discharge in the capacity of the normal gut flora to resist change mice infected with Eimeria vermiformis, and reverse as the animal grows. the immunosuppressive effect of dexamethasone (Yun et al., 1997). Similarly, Yun et al. (1995) 3.1.4. Immune product supplements demonstrated that immunoneutralization of somatos- Immune products may be included in feeds spe- tatin, a gut hormone with immunosuppressive prop- cifically to alter microbial flora and to reduce the erties, through systemic delivery of a monoclonal effect of pathogens. One of these products is spray antibody increased resistance of mice to coccidiosis. dried plasma protein containing antibodies that pro- Oral delivery should yield a similar response. Epi- vide protection, sometimes variable, against common dermal growth factor (EGF) is a potent gut hormone pathogens. Spray dried plasma protein consistently that enhances intestinal development and reduces improves feed intake and growth in pigs weaned bacterial translocation. Buret et al. (1997) demon- early (for review see Stein, 1996). This product is strated in E. Coli-challenged rabbits that oral EGF derived from blood collected at slaughter plants, and reduced colonization of E. Coli in the jejunum, ileum therefore the protection provided depends on the and proximal colcin, and prevented a decrease in exposure of pigs to pathogens prior to slaughter. jejunal maltase and sucrase activities. The results Several different approaches in providing animals from these studies indicate that there may be signifi- with protective antibodies through the diet are being cant opportunity for dietary non-nutritional products studied. The transgenic expression in plants of edible to improve gut health and development.
  • 5. M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 227 3.2. Transgenic approaches for improved nutrition Research to improve feeding value of crops must and metabolism be interdisciplinary involving both plant breeders and animal nutritionists so that trait modification will 3.2.1. Plant biotechnology benefit both crop and livestock industries. Further- Traditionally plant breeders have focused on im- more, traits must be selected on the basis of improv- proving the agronomic characteristics of crops, in- ing the sustainability and efficiency of the entire cluding yield, disease resistance, and quality charac- production system from crop agronomy to animal teristics required for human food. Improved feeding production to meat processing. Typical examples are value of crops for animals was not emphasized and, the improved digestion of phytate through dietary mostly, animal feed is considered to be food not supplementation with phytase (Jongbloed et al., suitable for human consumption or a byproduct from 1997) or incorporation of phytase in crops, and the food processing. Consequently animal feed is char- development of hulless grains with improved pro- acterized by high variability in quality and unpredict- cessing characteristics and feeding value (Bell and able feeding value. These conditions limit animal Keith, 1993), both of which reduce the nutrient production efficiency and increase the burden on the density of animal waste. environment. Biotechnology allows the plant breeder Plant biotechnology also allows for some novel to incorporate very specific characteristics in crops, approaches in the production of valuable compo- including those (Table 3) that improve the process- nents, which could have a large impact on the ing characteristics and feeding value for animals livestock industry (Table 3). Of particular interest is (Kuhn, 1996). Therefore, under favorable economic the incorporation in plants of edible vaccines (Dal- conditions, we may well see the emergence of crops sgaard et al., 1997; Mason et al., 1996), antibodies specifically designed for animal feed, targeted for a (Ma et al., 1995), and potentially of enzymes and certain class and type of animal and may even hormones that could influence gut function. include specific enzymes and health products. A specific example is the development of high oil corn 3.2.2. Animal and microbial biotechnology with significantly enhanced feeling value (Adeola Genetic manipulation of animals and microorga- and Bajjalieh, 1997), which provides increased finan- nisms (Table 4) holds considerable promise, but will cial return to both crop and animal producers. require considerable time and investment, including Table 3 Application of plant biotechnology for improving animal feeds ? Plant products will change from generic feed to specific feed tailored for defined feeding purpose s and animal types ? Diagnostics for identification of cultivar, feeding characteristics ? Improved nutrient composition ? Reduction in anti-nutritional factors such as phytate, molds ? Improved processing characteristics of feed product ? Control of rumen fermentation rates of protein and carbohydrates ? Incorporation of edible vaccines produced in transgenic plants to protect against infectious disease ? Incorporation of antibodies specific to enteric disease ? Incorporation of hormones and pre-biotics Table 4 Transgenic approaches in animals and microbes for improved nutrition and metabolism ? Microbial biotechnology: rumen and gut recombinant organisms, including gut commensal organisms ? Recombinant expression of gut enzymes ? Recombinant expression of enzyme pathways for de novo substrate synthesis and for improved efficiency in nutrient metabolism ? Recombinant enhancement of gut growth and nutrient absorption potential
  • 6. 228 M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 a lengthy process to obtain the necessary regulatory active area of research (Forsberg et al., 1993) and is approval. Transgenic introduction of metabolic path- covered by several papers in this Conference. ways may remove inherent nutritional and metabolic limitations, leading to substantial improvement in feed utilization efficiency. 4. Application of biotechnology to increase Limited absorption of glucose and a high rate of performance in farm animals gluconeogenesis (Brockman and Laarveld, 1986) characterize ruminant metabolism. Acetate and prop- Some of the earlier applications of biotechnology ionate are both major products of rumen fermen- were the growth and lactation enhancing agents, such tation, but only propionate is an important as recombinant somatotropin, and development of glucogenic substrate. Metabolic efficiency would be transgenic animals with enhanced growth perform- improved through the transgenic introduction of a ance. The areas of study (Table 5) have broadened metabolic pathway for converting acetate into glu- considerably as a result of a better understanding of cose. Saini et al. (1996) have achieved this in mice the underlying physiology governing growth and by expressing the bacterial glyoxylate cycle genes in carcass composition, and because of the discovery of liver and intestine. Introduction of these genes in novel hormonal systems such as those of myostatin ruminants would be expected to enhance feed ef- and leptin. ficiency, particularly when forage-based diets are fed. 4.1. Myostatin The supply of sulphur amino acids can limit wool growth in sheep. Ward and Nancarrow (1992) are Skeletal muscle hyperplasia, commonly referred to targeting sheep rumen epithelium for the transgenic as double-muscling, is an inherited condition ob- expression. of the enzymes serine acetyltransferase served in several breeds of cattle. The molecular and and o-acetylserine sulfhydrylase. This pathway en- physiological mechanisms responsible for the hy- ables de novo synthesis of cysteine from inorganic perplasia are not well understood. Grobet et al. sulphur and removes a nutritional limitation to wool (1997) reported that in the Belgian Blue breed an 11 growth. Other transgenic research focusing on im- base pair deletion in exon 2 for the bioactive domain proved digestion includes the expression of cellulase for myostatin on bovine chromosome 2 is respon- in the pancreas of monogastric animals (Hall et al., sible for the muscular hypertrophy, and recently the 1993). Other potentially rewarding areas of trans- mutation was shown in exon 3 in the Charolais genic research would be the incorporation of meta- breed. Myostatin is a member of the Transforming bolic pathways to synthesize essential amino acids de growth factor (TGF-b) superfamily. The identifica- novo or to enhance nutrient absorptive capacity. tion of the myostatin gene will allow the develop- Transgenic commensal organisms (Chang, 1996) ment of diagnostic tests for genetic selection in cattle have considerable potential for improving nutrition, and other species. The discovery of the important gut development and health in animals. These mi- role of myostatin within the TGF-b family also crobes, capable of colonizing tie gut, could deliver opens up a whole new area of study of the physio- recombinant products, including enzymes (similar to logical regulation of muscle development through those described in the enzyme section above), pre- myostatin-mediated pathways, including the myos- biotic compounds, immunostimulants, mucosal vac- tatin receptor, and the interaction with other growth cines and hormones. The development of these factors. This advancement will lead to new ap- recombinant commensal microbes is particularly proaches in the manipulation of muscle development, intriguing as this technology, in contrast to trans- including immunomodulation and transgenesis genic animals, could be widely available to livestock targeting myostatin or its receptor. producers. Containment of these recombinant organ- isms is a concern (Ramos et al., 1995) and may be 4.2. Leptin dealt with through co-incorporation of multiple suicide genes. The development of transgenic rumen Leptin is a newly discovered hormone produced in microbes with enhanced ability to digest fiber is an adipose tissue. Mutations in the adipose-specific OB
  • 7. M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 229 Table 5 Application of biotechnology in animal physiology for improved growth, feed efficiency and carcass quality ? Nutrient Partitioning and Growth Promotion: ? Recombinant proteins: – Somatotropin (ST) and related products including growth hormone releasing hormone (GHRH) – Insulin-like growth factor (IGF-1) and its analogues and binding proteins ? Induced mRNA expression of GHRH in muscle ? Regulation of GLUT 1 and 4 expression in gut and adipose tissues for control of glucose transport ? Immune modulation: – Immunoneutralization of somatostatin – Immunoenhancement of injected and native ST, GHRH, IGF-1 ? Genetic marker assisted selection for growth and carcass quality re]Lated parameters ? Control of stress-disease-growth interactions ? Leptin and Control of Feed Intake: ? Genetic marker assisted selection against the OB (obese) gene ? Immunization against leptin to enhance feed intake ? Immunoneutralization (inactivation) of the leptin receptor ? Muscle Development and meat quality: ? Immunocastration of boars ? Discovery of the myostatin locus responsible for muscular hypertrophy in bovine will a low for diagnostic testing for this trait ? Myostatin immunomodulation may allow control of muscle development gene producing leptin and in the OB-R gene produc- potential usefulness in increasing appetite in live- ing the leptin receptor result in obesity (for a review stock. see Houseknecht et al. 1998, Trayhurn, 1998). Leptin levels in blood are strongly correlated with the 4.3. Administration of exogenous agents obtained amount of adipose tissue accumulation, and high by genetic engineering (somatotropin and related leptin levels were first observed to inhibit feed intake compounds) through binding to a specific receptor in the hypo- thalamus. It is now known that leptin regulates feed 4.3.1. Effects on performance intake, energy metabolism, body composition, and The administration of natural or recombinant recent observations point to a role in reproduction somatotropin (ST) accelerates muscle growth and and in the immune system. The discovery of leptin reduces fat deposition in most farm animals. ST is opens up a whole new area of study on the regulation very effective in pigs (Etherton et al., 1986; Camp- of feed intake and other areas important in metabolic bell et al., 1989), less so in ruminants (Moseley et efficiency. Leptin and its receptor have been gene al., 1992; Verstegaard et al., 1993) and mostly mapped for number of species and a number of ineffective in chicken (Bonneau, 1991b). Growth microsatellites have been identified to assist with hormone-releasing hormone (GHRH) or its analogs genetic selection. Fitzsimmons et al. (1998) con- have the same effects as ST, however they are less firmed the potential application of selection for the effective in growth stimulation, particularly in the leptin gene in beef cattle using a microsatellite pig species which is relatively resistant to GHRH marker. Polymorphisms were associated with differ- due to a high somatostatinergic tone. Insulin-like ent carcass fat characteristics, and the gene fre- growth factor-1 (IGF-1) is a potent mitogenic hor- quencies differed between British breeds and mone and its concentration in blood is highly Charolais and Simmental breeds. The discovery of correlated with growth. However, the regulation of leptin may lead to a range of new technologies, such the secretion of IGF-1 and its biological activity is as immunoneutralization, anti-sense and hormone highly complex (Brameld, 1997), and this may treatments, aimed at reducing leptin and thus increas- explain why IGF-1 administration has had little ing feed intake. In particular 133-agonists have been effect on the performance of the farm animals shown to reduce expression of leptin in adipose investigated thus far. Current investigation focuses tissue and reduce plasma leptin, indicating their on IGF-1 analogs that are more potent than IGF-1
  • 8. 230 M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 itself, and on manipulation of the binding proteins manufacturing properties of milk or on the or- for IGF-1 in plasma which appear important in ganoleptic quality of cheese (Laurent et al., 1992). determining tissue-specific biological effects of IGF- 1. 4.4. Immunomodulation The administration of recombinant bovine ST increases milk production in dairy cows (Bauman Immunoneutralization of somatostatin, the hypo- and Vernon, 1993), and in excess of 1000 studies thalamic factor that inhibits ST release from the have been conducted, involving over 20 000 dairy pituitary, has provided either positive or no growth cows (Bauman, 1992). Bovine ST now is in wide- responses. Different vaccination and experimental spread commercial use in a number of countries. protocols used, and variable immune responses in The long-term delivery of these exogenous agents both titer and antibody affinity are likely responsible. is accomplished through injectable slow-release Somatostatin has a wide range of physiological formulations, which are still variable. Recently, inhibitory effects in the brain, intestine, liver, pan- Draghia-Akli et al. (1997) demonstrated an alternate creas and immune system, resulting in complex method of delivery for GHRH, by injecting GHRH responses to immunoneutralization. Yun et al. (1995) DNA in a myogenic vector, resulting in expression showed that immunoneutralization of somatostatin of GHRH in muscle of mice and increased ST levels enhanced gut immune function in mice challenged in plasma. This delivery method would be applicable with a parasitic disease. This suggests that growth to other agents, but requires considerable further responses to somatostatin immunoneutralization may development before it can be applied commercially. be mediated, at least in part, through enhanced immunity. This could explain, in part, the variability of the responses observed and the observation that 4.3.2. Consequences for product quality growth responses may be more likely in animals with The reduction of adipose tissue development in sub-optimal growth (van Kessel, 1992). A major ST-treated pigs may have favorable or adverse limitation to immunomodulation using active im- consequences on pork meat quality, depending on munization is that the level and duration of the genotype of the animals. In very lean genotypes, the immune response and the magnitude of physiological obtained further reduction in fat development results response are poorly controlled. A passive immuniza- in carcasses that are too lean, with too little, poor tion approach using monoclonal or polyclonal anti- quality fat (soft and prone to oxidation) and lack of bodies may provide better control, but also is more cohesion between fat and underlying muscle. costly. ST or GHRH have little effect on the quality of The classical role of antibodies is to neutralize the beef, mutton or pork. The lower intramuscular lipid compounds against which there were raised. In some content may be responsible for the slight reduction in cases, however, monoclonal (or sometimes even tenderness that is often observed in pork (Bonneau, polyclonal) antibodies raised against a hormone can 1991a). Administration of pST has been shown to paradoxically potentiate the activity of the native reduce the incidence of boar taint in entire male pigs hormone. This has been demonstrated for ST in (Hagen et al., 1991; Bonneau et al., 1992). sheep and pigs, and also for a number of other Changes in milk composition due to bST depend hormones, including TSR, GHRH and IGF-I (Pell on the energy balance of the dairy cow. Bovine ST and Aston, 1995). Provided that the relevant an- during negative energy balance increases milk fat tigenic portion of the hormone can be identified, content. Short term variations in milk composition vaccination (active or passive) of animals to poten- are observed in relation to the time of administration tiate the effect of their anabolic endogenous hor- of sustained-release formulations of bST. Milk fat mones can be envisaged for a more efficient meat or content tends to increase whereas protein content milk production (Flint, 1995; Holder and Carter, tends to decrease in the week following the adminis- 1995). ´ ´ tration (Verite et al., 1989). However, the effect over Fat deposition can also be directly inhibited long periods of time is minimal and no clear-cut through the development of antibodies directed influence of bST treatment has been observed on the against adipose tissue plasma membranes (Moloney,
  • 9. M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 231 1995). Targeting pre-adipocytes rather than fully some aspects of health, including increased incidence developed adipocytes might however be a better of osteochondrosis, cartilage soundness and stomach strategy for future developments (De Clercq et al., ulcers (Sejrsen et al., 1996). ST treatment of pigs 1997). also results in a state of insulin resistance character- Immunomodulation of growth and lactation could ized by elevated plasma levels of both glucose and be considered as more acceptable than the exogenous insulin (Etherton et al., 1986). Finally, the need for administration of growth promoters, since it does not repeated injection may cause some stress for the require repeated injections of hormonally active animals. compounds. However, less stressful modes of im- In dairy cows, fecundity and fertility are nega- munization have to be developed and the innocuous- tively affected when bST is administered before ness of the vaccines for both the animals and the breeding (Burton et al., 1994), in relation with the consumers of animal products have to be fully negative energy balance of the animal. Otherwise, demonstrated (Mepham and Forbes, 1995). reproduction performance is little affected. However, depending on feeding regime, cows may sometimes 4.5. Transgenesis be unable to reach a satisfactory level of fat deposi- tion before they start a new lactation (Chilliard et al., An excellent review of the potentials offered by 1998). On the whole, bST administration has no transgenesis for enhancing performance of farm effect on the incidence of infectious disease in dairy ¨ animals is available in Muller and Brem (1996). cows (Burton et al., 1994). However, the frequency Gene transfer in farm animals appears to be much of clinical mastitis may be significantly increased, in more difficult than anticipated from the relative ease relation with the augmentation of milk production with which it can be performed in mice. (Willeberg, 1993; White et al., 1994). Administration Numerous experiments were successful in trans- of exogenous pST to lactating sows results in severe ferring somatotropin (ST) genes in fish and in large energy deficit and difficulties for adjusting internal mammals. In most studies with fish (Brem, 1993; temperature. High rates of mortality were observed Maclean and Rahman, 1994) and pigs (Pursel et al., in ST-treated lactating sows in a tropical environ- 1989), the ST gene was expressed and the transgenic ment (Cromwell et al., 1989). animals grew faster, had a better efficiency and were In a number of species, ST treatment reduces the leaner, the effects being similar to those obtained detoxifying capacity of the liver (Witkamp et al., with the administration of exogenous ST (see above). 1993), which may have some negative consequences Transfer of ST constructs in cattle, sheep, goat and on the elimination of xenobiotics by the animals. poultry were so far less successful because no Following the demonstration that hGH in vitro can transfer was achieved or the transferred gene was not stimulate the replication of some retroviruses (Laur- expressed or the expression did not result in im- ence et al., 1992), preliminary results suggest that proved performance. Pursel et al. (1998) have re- bST treatment could stimulate the production of cently obtained increased muscle growth in the pig some viruses in ewes and goats (unpublished results). after targeted expression of IGF-I in muscle. Because it does not imply repeated injections of A c-ski gene construct was successfully trans- hormonally active compounds, immunomodulation ferred and expressed into swine (Pursel et al., 1992) of growth could be considered as more acceptable and into a calf (Bowen et al., 1994), resulting in than the exogenous administration of growth promot- some degree of muscle hypertrophy. ers. However, less stressful modes of immunization have to be developed (Mepham and Forbes, 1995). 4.6. Concerns over the safety of the In the first studies involving transgenic pigs, the biotechnological manipulation of performance in transferred GH gene was expressed ubiquitously and farm animals was not regulated. The animals had severe health problems and were unable to reproduce (Pursel et al., 4.6.1. Safety and welfare for the animals 1989; Pinkert et al., 1994). In subsequent studies, Administration of high doses of ST to growing transferred GH or IGF-I genes were coupled to pigs or steers may have adverse consequences on promoters enabling lower production of GH through
  • 10. 232 M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 time control or tissue specificity of gene expression 5. Applications of biotechnology to improve (Polge et al., 1989; Wiegart et al., 1990; Nottle et al., product quality and safety 1997; Pursel et al., 1997). The resulting transgenic pigs had no, or at least less, apparent physiological 5.1. Detection of residues and pathogens in animal trouble. Transfer of the salmon GH gene in salmons products or trouts results in a few symptoms of acromegaly (Devlin et al., 1997). The latest developments of biotechnology, par- The transfer and expression of the c-ski gene ticularly monoclonal antibodies, RFLP, DNA probing resulted in severe muscle degeneration in both pig and PCR, have opened large possibilities for the (Pursel et al., 1992) and calf (Bowen et al., 1994). improvement of methods for the detection of patho- gens and trace residues of drugs or other undesirable 4.6.2. Safety for the consumers of animal products compounds in animal products (Mattingly et al., In contrast to steroids and 13-agonists, ST is 1985; Marshall and Hodgson, 1998). heat-labile, species-specific and destroyed by diges- tive enzymes. The very low levels of residual ST that 5.2. Immunomodulation could possibly be found in the meat or milk of ST-treated animals are therefore not a real concern Immunocastration of male pigs can be envisaged for human safety (Butenandt, 1996). The content of for producing boar taint free entire male pigs if at IGF-l in milk, although very low, is increased up to 5 would have most of the advantages of entire male fold (Burton et al., 1994) in the milk of bST-treated pigs without adverse consequence; on meat quality cows. Yet, these IGF-l levels remain within the (Bonneau and Enright, 1995). normal range observed in human milk. According to Butenandt (1996), ‘‘the use of growth hormone in 5.3. Transgenesis meat or milk production will not bear any risk for the human consumer’’. ST is deemed safe for human The composition of milk can be altered using consumption by many official regulatory agencies transgenesis (Houdebine, 1998), in order to: (1) and official professional societies. modify the proportion of natural components for better nutritional characteristics; (2) add new com- 4.6.3. Safety for the environment pounds that can be beneficial for human or animal Performance enhancement in animals through nutrition; (3) produce proteins with pharmaceutical application of biotechnology leads to substantial or veterinary use (this latter possibility being out of improvement in efficiency of feed utilization and the scope of the present paper). reduces the excretion of nitrogen and phosphorus in Lactose-free (Stinnakre et al., 1994) or lactose- the manure. Therefore, the environmental impact is light (L’huillier et al., 1997) milk has been produced generally positive. in mice by disrupting the b-lactalbumin gene. In Because large mammals and poultry are usually homozygous mutant mice the milk was highly raised in controlled conditions, the possibility that viscous and devoid of b-lactalbumin and lactose, and they breed with wild animals, although existent (e.g. pups were unable to remove it from the mammary domestic swine with wild pigs), is quite unlikely. gland. Heterozygous mutant mice showed a 40% There is therefore very little risk of dissemination of decrease in b-lactalbumin, but only a 10–20% transgenes into the wild animal population. However, decrease in the lactose content of their milk. These the risk with transgenic fish is greater, since they results confirm the importance of b-lactalbumin and could escape confinement more easily and compete lactose, through its important osmotic effect, in and / or breed with wild type fish. This problem can determining milk volume and demonstrate the po- be addressed by taking drastic precautionary mea- tential to manipulate milk composition. sures in farms raising founder fish populations, while Elevated proportions of casein-b (Persuy et al., using only sterile animals (through for instance 1992) or casein-k (Guttieriez et al., 1996), that triploidy) in regular production farms. would result in improved manufacturing properties,
  • 11. M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 233 have been obtained in mice. Much work has still controlling animal diseases. However, they have a needed before the genetic engineering techniques number of limitations. With live attenuated vaccines, that were used to achieve the above-mentioned there are always some concerns about the stability of results can be applied to farm animals (Mercier and the attenuation and possible recombination with wild Vilotte, 1997). strains. In some cases, the traditional approaches are The production of compounds that are not normal unsuccessful in that it is not possible to produce a milk constituents can be achieved through gene vaccine that is both efficient and innocuous. Vacci- addition. Human lactoferrin (that could be beneficial nated animals cannot be differentiated from their in human and animal neonates) his been produced in infected counterparts, which may cause numerous the cow (Krimpenfort et al., 1991) and the pro- problems in disease control programs. duction of numerous other proteins can be envisaged New generations of subunit and attenuated vac- (Houdebine, 1998). cines have been recently developed with aid of biotechnology. Subunit vaccines rely on recombinant techniques to produce a relatively pure protective 6. Application of biotechnology for improved antigen(s) for formulation with adjuvant (Doel et al., health and welfare of farm animals 1990). Subunit antigen vaccination allows for dif- ferentiation of naturally infected versus immunized 6.1. Application of biotechnology for improved animals but this approach does not always provide health of farm animals for adequate protection. Pathogen attenuation by gene deletion and live Biotechnology has already had a major impact and vectoring of antigen by insertion of foreign antigen will have numerous applications in a number of in gene deleted mutants (Brochier et al., 1991) offers major fields related to animal health, including promise of delivering antigen via natural mucosal transgenesis, vaccines, diagnosis tests, treatment and routes. Mucosal routes of antigen delivery may be disease control (Table 6). more efficacious for induction of protective immune responses which is an idea highlighted by the 6.1.1. Vaccines tremendous interest in this area (McGhee et al., Traditional vaccines, be they attenuated or inacti- 1992). Vectoring antigen in attenuated pathogens can vated, have often proved to be very efficient in provide protection against the vector itself and the Table 6 Application of biotechnology for improved health and welfare in animals ? Vaccines: – Deleted vaccines – Recombinant sub-unit vaccines – DNA vaccines – Vaccine specific to genotype of animal – Vaccine adjuvants – Mucosal vs. Systemic vaccines ? Vaccines and antibodies produced in plants and administered in a purified form ? Edible vaccines and antibodies generated in plants ? Immunomodulators (non-specific) ? Immune diet supplements (preventative and therapeutic) ? Pre- and pro-biotics ? Diagnostics: – Genetic-BLAD, MHC, disease-genotype interactions – Disease specific-viral, bacterial, parasitic – Acute phase proteins indicative of early stage infection ? Immunocastration vaccines for the control of fertility and undesired breeding behaviour ? Neutralization of prolactin or VIP to control broodiness in turkeys
  • 12. 234 M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 inserted foreign gene. Although vaccine vectoring Vaccination can be achieved through consumption of has been largely focused on viruses, an attenuated the whole plant material. Provided that the resulting suicide bacteria was recently constructed to deliver immunogens are orally active, this would be a very foreign antigen to macrophages (Dietrich et al., cheap and convenient way of producing and adminis- 1998). Similar to subunit vaccines, gene-deleted and tering vaccines for farm animals. Promising results vectored vaccines are also advantaged in that vacci- have been obtained in mice (Mason et al., 1996). nated animals can be differentiated from their natu- rally infected counterparts (van Oirshot et al., 1990). 6.1.2. Diagnosis Concerns over biosafety are, at least in part, ad- The use of monoclonal antibodies and DNA / RNA dressed by construction of deletion mutants in such a probes offers large possibilities for improved diag- way so that they cannot be transmitted (Peeters et al., nosis tests (McCullough, 1993; Jackwood, 1994; 1994.) or are unable to replicate (Eloit and Adam, Zarlenga, 1994). 1995). Monoclonal antibodies have numerous advantages The injection of naked DNA constructs coding for over their polyclonal counterparts. They are highly foreign antigen driven by eucaryotic promotors may specific for their antigens and they can be produced elicit an immune response that is specific for that in unlimited quantities. Like polyclonal antibodies, antigen (Davis and Whalen, 1995). The technique monoclonal antibodies can be used in immunoassays, provides for cytosolic antigen delivery potentially particularly in ELISA and related tests. Application favoring a protective cell mediated immune response for such tests is widespread for the detection and without release of a viable organism. There are identification of a variety of viruses, bacteria and however a number of problems to be solved before parasites (Weil et al., 1985; Lunt et al., 1988). naked DNA vaccination can be used in farm con- Because they are highly specific, nucleic acid ditions. Procedures have to be standardized in order probes are very useful for the detection and recogni- to obtain less variable immune responses. Biosafety tion of a large variety of pathogens. Non-radioactive is a real concern as the presence of the injected DNA probes are much easier to handle than the radioactive must be avoided in germinal cells or in tissues ones, however they may lack sensitivity. This prob- destined for human consumption. Using mRNA lem can be solved via amplification of the signal instead of DNA could address the safety concerns, with PCR (Polymerase Chain Reaction; for a review however efficacy, cost and ease of utilization re- see Pfeffer et al., 1995). PCR can also be coupled mains to be investigated. with RFLP (Restriction Fragment Length Polymor- Adjuvants are necessary to enhance the immuno- phism; Kwon et al., 1993) or nucleic acid sequencing genicity of many vaccines. The development of for a better identification of pathogens. The rapidly adjuvants is, to a large extent, a quite empirical emerging DNA chip technologies will allow large- process. New generation adjuvants are being de- scale diagnostic and genetic testing (Marshall and veloped through chemical synthesis or genetic en- Hodgson, 1998). gineering, in order to reduce the inappropriate im- Comparatively to the classical morphological and mune response or potential severe contra-indications serological methods, the use of nucleic acid probes, of the traditional a adjuvants (Alexander and Brewer, sometimes coupled with PCR, can eliminate much 1995). Modified bacterial toxins can also be consid- ambiguity and subjectivity in the identification of ered as antigen delivery systems capable of enhanc- numerous unicellular or pluricellular parasites and ing immunogenicity (Aitken and Hirst, 1995) Many have facilitated the detection of previously undiag- of the deleterious effects of the traditional adjuvants, nosed parasitemia (see review by McManus and including injection site trauma, may be avoided by Bowles, 1996). delivery of vaccines via mucosal routes. Live vector- The potential of acute phase cytokine and / or ing, microspheres and liposomes all offer protective protein assays are being examined for clinical appli- mucosal responses without use of traditional ad- cation (Francisco et al., 1996) and applications in juvants. meat inspection (Eckersall, 1992). Analysis of the Vaccines can be produced in transgenic plants. acute phase response may provide for differentiation
  • 13. M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 235 between viral and 14 bacterial infection, indicate represents a novel transgenic approach to improved herd health status or identify animals which are disease resistance (Ward et al., 1993). likely to progress to overt clinical signs of infection. Although the transfer of disease-resistance capaci- ty is potentially very interesting, there are still very few applications of these techniques for farm ani- 6.1.3. Treatment and disease control mals, particularly because their development needs The use of antibiotics, extracted from various huge investments in time and money. bacteria and fungi, is one of the most important Animal health is a major field that will benefit application of biotechnology for animal health. greatly from the development of biotechnology, Numerous antibiotics are now semi-synthesized or particularly of genetic engineering. The most ad- totally synthesized. Other molecules, from the Iver- vanced applications are in the area of recombinant mectine family, have been extracted from micro- vaccines and diagnostic tests, where the potential for organisms and have been proved to be efficient in development is still immense. The transfer of disease parasite control. resistance is potentially very interesting but still little Monoclonal antibodies can also potentially be developed in farm animals. There are also still very used for the treatment of diseased animals. However, few applications of the latest development of bio- the costs associated with passive immunization of technology in the field of disease treatment. Bio- farm animals may be too high in most cases. technology provides the opportunity to tackle dis- The availability of recombinant cytokines allowed eases thus far untreatable. Biotechnology can some- investigation of their application in control of infecti- times replace chemical or antibiotic therapies that ous disease of livestock. Modulation of immune may be costly, harmful to the consumer of animal response by systemic cytokine administration often products or induce antibiotic resistance in germs has not yielded the expected protection from clinical threatening human health. disease (Baca-Estrada et al., 1995, van Kessel et al., 1996). Positive results were dependent upon precise timing of cytokine delivery in advance of infectious 6.2. Application of biotechnology in behavior and challenge (Babiuk et al., 1991). Commercial viability welfare of farm animals of cytokine therapy in disease control awaits de- velopment of more appropriate delivery systems and Anti-GnRH vaccination (immunocastration) is an a better understanding of highly complex cytokine effective way of castrating farm animals without networks. Natural immune stimulants, which evoke a causing them the suffering associated with the more physiological cytokine cascade, may provide physical castration (Bonneau and Enright, 1995). an alternative method to improve disease resistance Immunocastration has been shown to prevent aggres- in domestic animals (Yun et al., 1997). sive and sexual behavior in bulls, estrus behavior in heifers and boar taint in pigs. Alternatively, immuno- 6.1.4. Transgenic disease-resistant animals castration could also been obtained via immunization The transfer of disease-resistance genes is poten- against the LH and / or FSH receptor, however, this tially a very important application of biotechnology technique has so far been effective only in rodents in animal production. The genes may be identified in (Remy et al., 1996). naturally resistant animals. One example is the gene Dehorning of ruminants reduces the potential for coding for the Mx protein which promotes resistance injury to animal and producer, but is increasingly to viral infection. They may also be genes coding for criticized on the basis of animal welfare. It may be monoclonal antibodies (Jones and Marasco, 1997), desirable to select ruminants on the basis of the for compounds interfering with virus replication dominant polled (hornless) condition. Schmutz et al. (Salter and Crittenden, 1989), for antisense mRNA (1995) have reported two microsatellite markers, or ribozymes inhibiting / destroying virus mRNA or which will identify within families the heterozygous inhibiting its transcription. Expression of chitinase in and homozygous carriers for the polled gene. The wool follicles to control blowfly strike in sheep marker-assisted selection for homozygous polled
  • 14. 236 M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 cattle will allow the rapid introduction of the polled these techniques depends largely on the stage of condition in non-polled populations. development of the countries. Developing countries, Broodiness in breeder turkeys reduces egg pro- where the shortage of animal products is still very duction, and requires repeated intervention to prevent important, are more likely to accept biotechnology in birds from incubating their eggs. Broodiness is contrast to developed countries where consumption photo-induced through pro lactin (PRL), and vasoac- of animal products is viewed as too high. Cultural tive-intestinal peptide (VIP) is the principle PRL- considerations also influence acceptance. Biotechnol- releasing hormone. Immunoneutralization of VIP in ogy is accepted more readily in North America than egg-laying turkeys reduced photo-induced PRL sec- in Europe, where the concept of ‘‘natural’’ hod is retion, eliminated broodiness, and dramatically in- more prevalent. creased egg production (El-Halawani et al., 1996). Applications resulting in improved health, feed Active and passive immunization techniques for VIP efficiency and behavior of the animals may be are now under development as well as the intro- perceived as benefiting both the industry (lower duction of an anti-sense gene for PRL in turkeys production costs through reduced losses and drug (Wong et al., 1997). treatments) and the public (lower residues in animal products; reduced germ resistance to antibiotics; reduced environmental impact; improved animal 7. Conclusions welfare). Similarly, applications resulting in the development of new tools for a better control of food The latest developments of biotechnology, par- safety can be easily perceived as beneficial by the ticularly molecular biology, genetic engineering and consumers of animal products. transgenesis have a very large number of potential Finally, the use of biotechnology in animal pro- applications in animal production. The development duction should be mostly beneficial for humanity. In of these applications is not as rapid as was expected many cases, biotechnology is not accepted because 10 or 15 years ago. Transgenesis, for instance, is people do not understand how it works and what is much more difficult to apply to farm animals than to really at stake. The public needs to be educated on plants or rodents. The use of biotechnology also the reality of biotechnology and be informed about meets some resistance from the general public that the positive and negative aspects of any given perceives some risks for the animals, for human application of biotechnology. On that basis, people safety and for the environment, whereas the socio- can make an educated choice on whether or not they economic benefits are sometimes perceived as either can accept it. non existent or restricted to the industry. The general acceptance of biotechnology may depend on a clear communication towards the general public, explain- Acknowledgements ing the balance between the advantages and dis- advantages of a given application, taking into ac- The authors express special thanks to their col- count not only technical and economic considera- leagues who were most helpful in the preparation of tions, but also the impact on other aspects (society, the manuscript, particularly Y. Chilliard, M. Eloit, environment, animal welfare) that are less easily L.M. Houdebine and B. Poutrel (INRA), and H.L. quantified. The applications of biotechnology in Classen, A. Estrada, A.G. Van Kessel and S.M. animal production may be roughly classified into two Schmutz (University of Saskatchewan). groups, according to whether potential benefits may or may not be easily perceived by the general public. Most of the applications resulting in improved References performance and carcass merit may be perceived as resulting in large benefits for the industry and little Adeola, O., Bajjalieh, N.L., 1997. Energy concentration of high or no benefit for the public. The acceptability of oil corn varieties for pigs. J.Anim. Sci. 75, 430–436.
  • 15. M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 237 Aitken, R., Hirst, T.R., 1995. Bacterial toxins as novel antigen Brochier, B., Kieny, M.P., Costy, F., Coppens, P., Bauduin, B., delivery systems. Livest. Prod. Sci. 42, 163–172. Lecoq, J.P., Languet, B., Chappus, G., Desmettre, P., Alexander, J., Brewer, J.M., 1995. Adjuvants and their mode of Afiademanyo, K., Libois, R., Pastoret, P.P., 1991. Large scale action. Livest. Prod. Sci. 42, 153–162. eradication of rabies using recombinant vaccinia-rabies vac- Babiuk, L.A., Sordillo, L.M., Campos, M., Hughes, H.P.A., Rossi- cine. Nature 354, 520–522. Campos, A., Harland, R., 1991. Application of interferons in Brockman, R.P., Laarveld, B., 1986. Hormonal regulation of the control of infectious diseases of cattle. J. Dairy Sci. 74, metabolism in ruminants. A review. Livest. Prod. Sci. 14, 4385–4398. 313–334. Baca-Estrada, M.E., Godson, D.L., Hughes, H.P.A., Van Donker- Buret, A., Gall, D.G., Olson, M.E., Hardin, J.A., 1997. Anti- sgoed, J., Van Kessel, A., Harland, R., Shuster, D.E., Daley, infective properties of a mucosal cytokine: epidermal growth M.J., Babiuk, L.A., 1995. Effect of recombinant bovine factor (EGF). Agricultural Biotechnology Workshop, Alberta interleukin-1 (on viral / bacterial pneumonia in cattle. J. Inter- Agricultural Research Institute, May 11–14, Banff, AB, feron and Cytokine Res. 15, 431–439. Canada, Abstract 19. Bauman, D.E., 1992. Bovine somatotropin: review of an emerging Burton, L J., McBride, B.W., Block, E., Glimm, D.R., Kennelly, animal technology. J. Dairy Sci. 75, 3432–3451. J.J., 1994. A review of bovine growth hormone. Can. J. Anim. Bauman, D.E., Vernon, R.G., 1993. Effects of exogenous bovine Sci. 74, 167–201. somatotropin on lactation. Ann. Rev. Nutr. 13, 437–461. Butenandt, O., 1996. Growth hormone in meat production: Are Bedford, M.R., 1996. The effect of enzymes on digestion. J. Appl. there any risks for the human consumers? In: Scientific Poultry Res. 5, 370–378. Conference on Growth promotion in Meat Production, Brus- Bell, J.M., Keith, M.O., 1993. Effects of combinations of wheat, sels, 29 November–1 December 1995, Office for Official corn or hulless barley with hulled barley supplemented with Publications of the European Community, Luxembourg, pp. soybean meal or canola meal on growth rate, efficiency of feed 325–331. utilization and carcass quality of market pigs. Anim. Feed Sci. Campbell, G.L., Bedford, M.R., 1992. Enzyme applications for Technol. 44, 129–150. monogastric feeds: a review. Can. J. Anim. Sci. 72, 449–456. Bercovici, D., Fuller, M.F., 1995. Industrial amino acids in Campbell, R.G., Steele, N.C., Caperna, T.J., McMurtry, J.P., nonruminant animal nutrition. in: Wallace, R.J., Chesson, A. Solomon, M.B., Mitchell, A.D., 1989. Interrelationships be- (Eds.), Biotechnology in Animal Feeds and Animal Feeding, tween sex and exogenous growth hormone administration on VCH, Weinheim, Germany, pp. 93–113. performance, body composition and protein and fat accretion of Bonneau, M., 1991a. Regulation of swine growth by somatotropic growing pigs. J. Anim. Sci. 67, 177–186. hormones: II. The effect of exogenous GRF or pST administra- Chang, H., 1996. Genetic engineering to enhance microbial tion on performance and meat quality. Pig News Inform. 12, interference and related therapeutic applications. Nature 39–45. Biotechnol. 14, 444–447. Bonneau, M., 1991b. The effects of exogenous growth hormone- Chilliard, Y., Colleau, J.J., Disenhaus, C., Lerondelle, C., Mouch- releasing factor or somatotropin administration on growth et, C., Paris, A., 1998. Recombinant growth hormone: potential performance, carcass characteristics, meat quality and re- interest and risks of its use for bovine milk production. A productive function in poultry and pigs. in: Van der Wal, P., review. INRA Prod. Animates 11, 15–32. Weber, G.M., Van der Wilt, F.J. (Eds.), Biotechnology for Classen, H.L., 1993. Microbial enzyme use in feed. in: Muirhead, Control of Growth and Product Quality in Meat Production, S. (Ed.), Direct-Fed Microbial, Enzyme and Forage Additive Implications and Acceptability, Pudoc, Wageningen, The Compendium, Vol. 1, The Miller Publishing Co, Minnetonka, Netherlands, pp. 67–89. Minn., USA, pp. 23–26. Bonneau, M., Enright, W.J., 1995. Immunocastration in cattle and Cromwell, G.L., Stahly, T.S., Edgerton, L.A., Monegue, H.J., pigs. Livest. Prod. Sci. 42, 193–200. Burnell, T.W., Schenck, B.C., Elkins, T.T., 1989. Recombinant Bonneau, M., Meadus, W.J., Squires, E.J., 1992. Effects of porcine somatotropin for lactating sows. J. Anim. Sci. 67 exogenous porcine somatotropin on performance, testicular (Suppl. 1), 630. steroid production and fat levels of boar-taint-related com- Dalsgaard, K., Uttenthal, A., Jones, T.D., Xu, F., Merryweather, pounds in young boars. Can. J. Anim. Sci. 72, 537–545. A., Hamilton, W.D.O., Langeveld, J.P.M., Boshuizen, R.S., Bowen, R.P., Reed, M.L., Schnieke, A., Seidel, G.E., Stacey, J.A., Kamstrup, S., Lomonossoff, G.P., Porta, C., Vela, C., Casil, J.I., Thomas, W.K., Kajikawa, O., 1994. Transgenic cattle resulting Meloen, R.H., Rodgers, P.B., 1997. Plant derived vaccine from biopsied embryos: expression of c-ski in a transgenic calf. protects target animals against a viral disease. Nature Biotech- Biol. Reprod. 50, 664–668. nol. 15, 248–252. Brameld, J.M., 1997. Molecular mechanisms involved in the Davis, H.L., Walen, R.G., 1995. DNA-based immunization. in: nutritional and hormonal regulation of growth in pigs. Proc. Dickson, G. (Ed.), Molecular and Cell Biology of Human Gene Nutr. Soc. 56, 607–619. Therapeutics, Chapman and Hall, London. Brem, G., 1993. Transgenic animals. in: Rehm, H.J., Reed, G., De Clercq, L., Mourot, J., Genart, C., Davits, V., Boone, C., ¨ Puhler, A., Stadler, P. (Eds.), Biotechnology, VCH, Weinheim, Remade, C., 1997. An antiadipocyte monoclonal antibody is Germany, pp. 745–832. cytotoxic to porcine preadipocytes in vitro and depresses the
  • 16. 238 M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 development of pig adipose tissue. J. Anim. Sci. 75, 1791– Jimenez-Flores, R., Anderson, G.B., Murray, J.D., Medrano, 1797. J.F., 1996. Expression of a bovine k-CN cDNA in the Devlin, R.H., Biagi, C.A., Smailus, D.E., 1997. Production and mammary gland of transgenic mice utilizing a genomic milk evaluation of transgenic salmonids. in: Proceedings of a protein gene as an expression cassette. Transgenic Res. 5, Conference on transgenic Animals in Agriculture, Granlibaken, 271–279. California, 24–27 August, p. 27. Hagen, D.R., Mills, E.W., Bryan, K.A., Clark, A.M., 1991. Effects Dietrich, G., Bubert, A., Gentschev, I., Sokolovic, Z., Simm, A., of exogenous porcine growth hormone (pGH) on growth, Catic, A., Kaufmann, S.H.E., Hess, J., Szalay, A.A., Goebell, carcass traits, reproductive characteristics, and meat sensory W., 1998. Delivery of antigen-encoding plasmid DNA into the attributes of young boars. J. Anim. Sci. 69, 2472–2479. cytosol of macrophages by attenuated suicide Listeria mono- Hall, J., Ali, S., Surani, M.A., Hazelwood, G.P., Clark, A.J., cytogenes. Nature Biotechnol. 16, 181–185. Simons, J.P., Hirst, B.H., Gilbert, H.J., 1993. Manipulation of Doel, T.R., Gale, C., Do Amaral, C.M.C.F., Mulcahy, G., Di- the repertoire of digestive enzymes secreted into the gastroin- marchi, R., 1990. Heterotypic protection induced by synthetic peptides corresponding to three serotypes of foot-and-mouth testinal tract of transgenic mice. Biotechnology 11, 376–379. disease. J. Virology 64, 2260–2264. Hoban, T.J., 1997. Consumer acceptance of biotechnology: an Draghia-Akli, R., Li, X., Schwartz, R.J., 1997. Enhanced growth international perspective. Nature Biotechnol. 15, 232–234. by ectopic expression of growth hormone releasing hormone Holder, A.T., Carter, C., 1995. Immunomodulation of the growth using an injectable myogenic vector. Nature Biotechnol. 15, hormone-IGF-I axis. Livest. Prod. Sci. 42, 229–237. 1285–1289. Houdebine, L.M., 1998. Animal transgenesis and its applications. Eckersall, P.D., 1992. Meat Inspection. The potential of acute INRA Productions Animates 11, 81–94. phase protein assay. Meat Focus Intl. 6, 279–283. Houseknecht, K.L., Baile, C.A., Matter, R.L., Spurlock, M.E., El-Halawani, M.E., Pitts, G.R., Sun, S., Silsby, J.L., Sivanandan, 1998. The biology of leptin: a review. J. Anim. Sci. 76, V., 1996. Active immunization against vasoactive intestinal 1405–1420. peptide prevents photo-induced prolactin secretion in turkeys. Hurson, M., Regan, M.C., Kirk, S.J., Wasserkrug, H.L., Barbul, General Comparative Endocrinol. 104, 76–83. A., 1995. Metabolic effects of arginine in a healthy elderly Eloit, M., Adam, M., 1995. Isogenic adenoviruses type 5 express- population. J. Parenteral Enteral Nutr. 19, 227–230. ing or not expressing the E1A gene: efficiency as virus vectors Imberechts, F.-I., Deprez, P., Van Driessche, E., Pohi, P., 1997. in the vaccination of permissive and non permissive species. J. Chicken egg yolk antibodies against F18ab fimbriae of Es- General Virol. 76, 1583–1589. cherichia coli inhibit shedding of F18 positive E. coli by Etherton, T.D., Wiggins, J.P., Chung, C.S., Evock, C.M., Ebhun, experimentally infected pigs. Vet. Microbiol. 54, 329–341. J.F., Walton, P.E., 1986. stimulation of pig growth performance Jackwood, M.W., 1994. Biotechnology and the development of by porcine growth hormone and growth hormone-releasing diagnostic tests in veterinary medicine. J. Am. Vet. Med. Assoc. factor. J. Anim. Sci. 63, 1389–1399. 204, 1603–1605. Fitzsimmons, C.J., Schmutz, S.M., Bergen, R.D., McKinnon, J.J., Jones, S.D., Marasco, W.A., 1997. Intracellular antibodies (in- 1998. A potential association between the BM 1500 microsatel- trabodies): potential applications in transgenic animal research lite and fat deposition in beef cattle. Mammalan Genome 9, in and engineered resistance to pathogens. in: Houdebine, L.M. press. (Ed.), Transgenic Animals: Generation and Use, Harwood Flint, D.J., 1995. Immunomodulation of lactation. Livest. Prod. Academic Publishers, Amsterdam. Sci. 42, 201–206. Jongbloed, A.W., Lenis, N.P., Mroz, Z., 1997. Impact of nutrition Forsberg, C.W., Cheng, K.J., Krell, P.J., Phillips, J.P., 1993. on reduction of environmental pollution by pigs: an overview Establishment of rumen microbial gene pools and their ma- of recent research. Vet. Quart. 19, 130–134. nipulation to benefit fiber digestion by domestic animals. In: Kellner, J., Erhard, J.M.H., Renner, M., Losch, U., 1994. Thera- Proceedings of the VII World Conference on Animal Pro- peutischer Einsatz von spezifischen Eiantikorpern bei Saugfer- duction, Edmonton, AB, Canada June 28–July 2, vol. 1, pp. keldurchfall-ein Feldversuch. Tierarztliche Umschu 49, 31–34. 281–316. Kelly, D., Begbie, R., King, T.P., 1994. Nutritional influences on Francisco, C.J., Shryock, T.R., Bane, D.P., Unverzagt, L., 1996. interactions between bacteria and the small intestinal mucosa. Serum haptoglobin concentration in growing swine after in- Nutr. Res. Rev. 7, 233–257. tranasal challenge with Bordetella bronchiseptica and toxigenic Krimpenfort, P., Rademakers, A., Eyestone, W., van der Schans, Pasteurella multocida Type D. Can. J. Vet. Res. 60, 222–227. A., van der Broek, S., Kooiman, P., Kootwijk, E., Platenburg, Gardiner, K.R., Kirk, S.J., Rowlands, B.J., 1995. Novel substrates G., Pieper, F., Strijker, R., de Boer, H., 1991. Generation of to maintain gut integrity. Nutr. Res. Rev. 8, 43–66. transgenic dairy cattle using in vitro embryo production. Biol. Grobet, L., Martin, L.J.R., Poncelet, D., Pirottin, D., Brouwers, B., Techniques Ser. 9, 844–847. Riquet, J., Schoeberlein, A., Durner, S., Menissier, F., Mas- Kuhara, T., Ikeda, S., Ohneda, A., Sasaki, Y., 1991. Effects of sabanda, J., Fries, R., Hanset, R., Georges, M., 1997. A intravenous infusion of 17 amino acids on the secretion of GH, deletion in the bovine myostatin gene causes the double glucagon, and insulin in sheep. Am. J. Physiol. 260, E21–E26. muscled phenotype in cattle. Nature Genetics 17, 71–74. Kuhn, W.E., 1996. Designer ingredients for animals from a plant Guttieriez, A., Meade, H.M., Ditullio, P., Pollock, D., Harvey, M., breeder perspective. J. Appl. Poultry Res. 5, 379–385.
  • 17. M. Bonneau, B. Laarveld / Livestock Production Science 59 (1999) 223 – 241 239 Kwon, H.M., Jackwood, M.W., Gelb, J.G., 1993. Differentiation of composition through transgenesis: progress and problems. in: infectious bronchitis virus serotypes using polymerase chain Houdeline, L.M. (Ed.), Transgenic Animals: Generation and reaction and restriction fragment length polymorphism analy- Use, Harwood Academic Publishers, Amsterdam, pp. 473–482. sis. Avian Dis. 30, 47–59. Mersmann, H.J., 1996. Public acceptance of technological ad- Laurence, J., Grimison, B., Gonenne, A., 1992. Effect of recombi- vances in meat animal growth could be a formidable challenge. nant human growth hormone on acute and chronic human J. Anim. Sci. 74 (Suppl. 2), 114–121. immunodeficiency virus infection in vitro. Blood 79, 467–472. Moloney, A.P., 1995. Immunomodulation of fat deposition. Livest. Laurent, F., Vignon, B., Coomans, D., Wilkinson, J., Bonnel, A., Prod. Sci. 42, 239–245. 1992. Influence of bovine somatotropin on the composition and Moseley, W.M., Paulissen, J.B., Goodwin, M.C., Alaniz, G.R., manufacturing properties of milk. J. Dairy Sci. 75, 2226–2234. Claflin, W.H., 1992. Recombinant bovine somatotropin im- L’huillier, P., Soulier, S., Stinnakre, M.G., Lepoury, L., Davis, proves growth performance in finishing beef steers. J. Anim. S.R., Mercier, J.C., Vilotte, J.L., 1997. Efficient and specific Sci. 70, 412–425. ribozyme-mediated reduction of bovine a-lactalbumin expres- ¨ Muller, M., Brem, G., 1996. Approaches to influence growth sion in double transgenic mice. Proceedings of the National promotion of farm animals by transgenic means. In Scientific Academy of Science, USA, submitted. Conference on Growth promotion in Meat Production, Brus- Lunt, R., White, J., Blacksell, S., 1988. Evaluation of a mono- sels, 29 November–1 December 1995, Office for Official clonal antibody blocking ELISA for the detection of group- Publications of the European Community, Luxembourg, pp. specific antibodies to blue tongue virus in experimental and 213–227. field sera. J. Gen. Virol. 69, 2729–2740. Nottle, M.B., Nagashima, H., Verma, P.J., Du, Z.T., Ashman, R.J., Ma, J.K., Hiatt, A., Hein, M., Vine, N.D., Wang, F., Stabila, P., Van Grupen, C.G., Macfatrick, S.M., Harding, M.P., Wigley, P.L., Dolleweerd, C., Mostov, K., Lehner, T., 1995. Generation and Lyons, I.G., Crawford, R.J., Harrison, D.T., Luxford, B.G., assembly of secretory antibodies in plants. Science 268, 716– Campbell, R.G., Robins, A.J., 1997. Production and evaluation 719. of growth hormone transgenic pigs. in: Proceedings of a Maclean, N., Rahman, A., 1994. Transgenic fish. in: Maclean, N. Conference on transgenic Animals in Agriculture, Granlibaken, (Ed.), Animals with Novel Genes, Cambridge University Press, California, 24–27 August, p. 10. New York, pp. 63–105. Pack, M., Bedford, M., Wyatt, C., 1998. Feed enzymes may Marshall, A., Hodgson, J., 1998. DNA chips: an array of improve corn, sorghum diets. Feedstuffs 70, 18–19. possibilities. Nature Biotechnol. 16, 27–31. Peeters, B., Bouma, A., de Bruin, T., Moormann, R., Gielkens, A., Mason, H.S., Ball, I.M., Shi, J.J., Jiang, X., Estes, M.K., Arntzen, Kimman, T., 1994. Non transmissible pseudorabies virus gp50 C.J., 1996. Expression of Norwalk virus capsid protein in mutants: a new generation of safe live vaccines. Vaccine 12, transgenic tobacco and potato and its oral immunogenicity in 375–380. mice. Proc. Natl. Acad. Sci. USA 93, 5335–5340. Pell, J.M., Aston, R., 1995. Principles of immunomodulation. Mattingly, J.A., Robinson, B.J., Boehm, A., Gehle, W.D., 1985. Livest. Prod. Sci. 42, 123–133. Use of monoclonal antibodies for the detection of salmonella in Persuy, M.A., Stinnakre, M.G., Printz, C., Mabe, M.F., Mercier, foods. Food Technol. 39, 90–96. J.C., 1992. High expression of the caprine b-casein gene in McAllister, T.A., Sellinger, L.B., Yanke, L.J., Bae, H.D., Forsberg, transgenic mice. Europ. J. Biochem. 205, 887–893. C.W., Shelford, J.A., Cheng, K.J., 1995. Exploitation of rumen Pfeffer, M., Wiedmann, M., Batt, C.A., 1995. Applications of microbial enzymes to benefit ruminant production. In: Ivan, M. DNA amplification techniques in veterinary diagnostics. Vet. (Ed.), Animal Science Research and Development: Moving Res. Comm. 19, 375–407. Toward a New Century, Proceedings of the 75th Meeting of Pinkert, C.A., Galbreath, E.J., Yang, C.W., Striker, L.J., 1994. the Canadian Society of Animal Science, Ottawa, Ontario, Liver, renal and subcutaneous histopathology in PEPCK-bGH Canada, pp. 541–557. transgenic pigs. Transgenic Res. 3, 401–405. McCullough, K.C., 1993. The application of biotechnology to the Polge, E.J.C., Barton, S.C., Surani, M.H.A., Miller, R., Wagner, diagnosis and control of animal diseases. Revue scientifique et T., Elsorne, K., Davis, A.J., Goode, J.A., Foxcroft, G.R., Heap, technique de l’Office international des Epizooties 12, 325–353. R.B., 1989. Induced expression of a bovine growth hormone McGhee, J.R., Mestecky, J., Dertzbaugh, M.T., Eldridge, J.H., construct in transgenic pigs. in: Heap, R.B., Prosser, C.G., Hirasawa, M., Kiyono, H., 1992. The mucosal immune system: Lamming, G.E. (Eds.), Biotechnology in Growth Regulation, from fundamental concepts to vaccine development. Vaccine Butterworths, London, pp. 189–199. 10, 75–88. Pursel, V.G., Pinkert, C.A., Miller, K.F., Bolt, D.J., Campbell, McManus, D.P., Bowles, J., 1996. Molecular genetic approaches R.G., Palmiter, R.D., Brinster, R.L., Hammer, R.E., 1989. to parasite identification: their value in diagnostic parasitology Genetic engineering of livestock. Science 244, 1281–1288. and systematics. Int. J. Parasitology 26, 687–704. Pursel, V.G., Sutrave, P., Wall, R.J., Kelly, A.M., Hughes, S.H., Mepham, T.B., Forbes, J.M., 1995. Ethical aspects of the use of 1992. Transfer of c-ski gene into swine to enhance muscle immunomodulation in farm animals. Livest. Prod. Sci. 42, development. Theriogenology 37, 278. 265–272. Pursel, V.G., Bee, G., Mitchell, A.D., Wall, R.J., Wells, K.D., Mercier, J.C., Viotte, J.L., 1997. The modification of milk protein Elsasser, T.H., Solomon, M.B., Coleman, M.E., DeMayo, F.,