O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

spectroscopy ppt.pptx

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Carregando em…3
×

Confira estes a seguir

1 de 62 Anúncio

Mais Conteúdo rRelacionado

Semelhante a spectroscopy ppt.pptx (20)

Mais recentes (20)

Anúncio

spectroscopy ppt.pptx

  1. 1. UNIT-5 SPECTROSCOPIC TECHNIQUES AND APPLICATIONS 1
  2. 2. CONTENTS • What is Spectroscopy? • Types of spectroscopy • Uses and Applications • Conclusion • Reference 2
  3. 3. WHAT IS SPECTROSCOPY? • Spectroscopy deals with the interaction of electromagnetic radiation with matter • Used to extract very useful information like structural and other physico-chemical properties of molecules. • Spectroscopy is the most imperative and promising tool for the structural investigation of chemically relevant systems. 3
  4. 4. THE INTERACTION OF RADIATION WITH MATTER 4
  5. 5. 5
  6. 6. Electromagnetic Spectrum 6
  7. 7. • Electromagnetic radiations are produced by the oscillations of electric and magnetic dipoles residing in the atom. • The most important consequence of electromagnetic interaction is that energy is absorbed or emitted by the matter in discrete amounts called quanta. • Spectroscopic methods are generally used to measurer the energy difference between various molecular energy levels and to determine the atomic and molecular structures. 7
  8. 8. Electromagnetic waves travel at the speed of light and their frequency and wavelength can be determined by the formulas: where 'c' is the speed of light in meters per second, lambda λ is the wavelength in meters frequency is in cycles per second. 8
  9. 9. Molecule contains : • Translational energy • Rotational energy • • Vibratioal energy • Electronic energy • All except the Translational energy are quantized • Energy(molecule )= E(rot )+ E(vib )+ E(elec ) 9
  10. 10. THE INTERACTION OF RADIATION WITH MATTER DEPENDS UPON BOTH RADIATION PROPERTIES AND STRUCTURAL PARTS OF THE MATERIALS INVOLVED. THIS INTERACTION BETWEEN MATTER AND RADIATION LEADS TO A VARIETY OF SPECTRA. 10
  11. 11. THREE TYPES OF THE ABSORPTION SPECTRUM: Nuclear spin states Electronic energy levels Infrared Radio frequency Ultraviolet- visible Absorptionof Electromagnetic Radiation Results inTransition Between Region ofthe Electromagnetic Spectrum Nuclear magnetic resonance Infrared Ultraviolet- visible Type of Spectroscopy Frequency (hetz) 2.5 x1014-1.5x1015 3 x107-9x108 1 x1013 -1x1014 Vibrational energy levels 11
  12. 12. 12
  13. 13. 13
  14. 14. INFRARED SPECTROSCOPY Far-Infrared (400-33 cm-1): vibrations of molecules containing heavy atoms, molecular skeleton vibrations and crystal lattice vibrations Mid-Infrared (4000-400 cm-1): useful for organic analysis Near Infrared (12820-4000 cm- 1): overtones; very useful for quantitative analysis 14
  15. 15. REQUIREMENTS FOR VISIBILITY IN THE IR REGION (selection rules) • A change in dipole moment, whether it is induced or permanent. Heteronuclear Diatomicmlecules E.g HCl, HBr etc N2, F2, etc. are inactive in the IR. • Resonant frequencies that are in the infrared frequency range of 100−4000 cm−1. • After the absorption of radiation only transition for which v=(+)(-) i.e, transition from=0 to V=1(change in vibration quatum number between two vibrational energy levels) 15
  16. 16. Molecular Vibrations 16
  17. 17. CHANGE IN DIPOLE MOMENT IN TRIATOMIC MOLECULES 17
  18. 18. Hooke’s Law 18
  19. 19. 19
  20. 20. IR SPECTRUM 20
  21. 21. 21
  22. 22. Infrared Spectroscopy Infrared spectrum of 3-methyl-2-butanone. • Infrared spectrum of 3-methyl-2-butanone. Fingerprint Region: Highly Complex and Unique for Every Molecule C-H Stretching C=O Stretching 22
  23. 23. 23
  24. 24. 24
  25. 25. 25
  26. 26. 26
  27. 27. 27
  28. 28. 28
  29. 29. 29
  30. 30. UV spectrum of acetone 30
  31. 31. 31
  32. 32. 32
  33. 33. 33
  34. 34. 34
  35. 35. 35
  36. 36. 36
  37. 37. 37
  38. 38. 38
  39. 39. 39
  40. 40. 40
  41. 41. 41
  42. 42. 42
  43. 43. 43
  44. 44. 44
  45. 45. 45
  46. 46. 46
  47. 47. 47
  48. 48. 48
  49. 49. 49
  50. 50. 50
  51. 51. 51
  52. 52. 52
  53. 53. 53
  54. 54. 54
  55. 55. 55
  56. 56. 56
  57. 57. 57
  58. 58. 58
  59. 59. 59
  60. 60. 60
  61. 61. 61
  62. 62. 62

×