SlideShare a Scribd company logo
1 of 44
What is energy?
Energy  is defined as the ability to do work or produce heat.  You know from physical science that energy can come in many forms - light energy, nuclear energy, and electrical energy to give just a few examples.  In chemistry, heat energy is often what we are interested in, and the second part of the definition for energy will have more meaning for us. We will often discuss energy in terms of heat.
So, what exactly is  heat , or thermal energy?  This is something else that we "know it when we see it" but find it difficult to define.
You have learned that the individual atoms and molecules that make up all substances are in constant motion.  This energy of motion is called  kinetic energy .  The energy associated with this motion is heat, or thermal energy.
[object Object],[object Object],[object Object],[object Object],[object Object]
In addition to kinetic energy there is another basic form of energy  potential energy   Potential energy is  energy of position ; we often refer to it as  stored energy .
We are concerned with only one type of potential energy in chemistry chemical bond energy   Chemical bond energy arises from the attractive forces between molecules, and between atoms. This form of energy plays an important role in chemical reactions
Nuclear energy  is another form of potential energy, and is the energy stored within an atom as the forces holding the parts of an atom together.  Chemical reactions do not involve nuclear changes or energy.
One of the key principles of chemistry is the  Law of Conservation of Energy
Law of Conservation
of Energy During physical and chemical processes, energy may change from one form to another but it may not be created or destroyed. Also known as the
 First Law of Thermodynamics
To give a few examples of how energy is converted from one form to another: ・ When octane (C 3  H 8 ) the main component of gasoline) is burned in your car engine, chemical bond energy (potential energy) is converted into mechanical energy (pistons moving in the car engine; kinetic energy) and heat. ・ When we eat, our bodies convert the chemical energy of the food into movement of our muscles; again heat is also a product of this conversion. ・ When we turn on a light switch, electrical energy is converted into light energy and, you guessed it, heat energy.
We will be discussing how energy changes during chemical reactions.  Often the energy change involves a conversion between potential energy and kinetic energy (as heat).  You'll want to understand that the energy you see represented in chemical equations does have a source - potential energy - and is not created out of nothing.
Heat Energy & Temperature It is important to understand the difference between  heat  and  temperature .
Remember…. Heat  is the amount of kinetic energy in a sample of matter.  It flows in the direction from the warmer object to the colder object.
Energy Units The SI unit of energy, including heat energy, is the  joule  ( J ) It is defined as the amount of energy produced when a force of one newton acts over a distance of one meter.
How much energy is one joule? ・ One joule is the amount of energy used by a 100 W light bulb in 0.01 s. ・ One joule is approximately equal to the amount of energy you expend when you bring a cheeseburger to your mouth. ・ An ordinary paper match, burned completely, releases a little over 1,000 J.[You are also familiar with another unit of heat energy, the  calorie  (cal).
Temperature  is a measure of  the average  kinetic energy   of a sample of matter.  It is the  intensity  of heat energy .
As we have learned, temperature is measured in degrees  celsius  ( 。 C) or in  kelvin  (K).  Kelvin is the SI temperature scale.  Remember… that at the temperature known as  absolute zero  (0 K), particle motion is as slow as it can possibly be.  That's as cold as you can theoretically get!
Endothermic  &  Exothermic Reactions
All chemical reactions involve energy changes.
Exothermic reactions   are reactions in which there is a net  release   of energy.  When energy is released, an energy term will appear on the  product side  of the equation.
Fe 2 O 3 (s)  + 2Al (s)  -> Al 2 O 3(s) + 2Fe (l) + 847.6 kJ The thermite reaction is a highly exothermic reaction between ferric oxide and aluminum, producing aluminum oxide and molten iron: If you had this reaction occurring in your hand (don't try this at home!!!) your hand would feel warmer because the reaction is  releasing heat as a product.
http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/019_THERMITE.MOV ,[object Object]
Endothermic reactions   are reactions that require a net  input   of energy.  This is indicated by writing the energy term on the  reactant side  of the equation.
2 SO 3 (g) + 198 kJ -> 2 SO 2 (g) + O 2 (g) Consider the reaction when sulfur trioxide decomposes into sulfur dioxide and oxygen.  This reaction requires a net  input  of 198 kJ of energy in order to occur: If you held this reaction in your hand, your hand would feel colder because the energy required for the reaction to occur would be taken from the surroundings, in this case your hand.
Heat & Its Measurement:  Calorimetry
All chemical reactions involve energy changes, often in the form of heat.  How can you measure the amount of heat exchanged during a reaction?
An instrument called a  calorimeter  is used.  A  very  simple calorimeter that may be used is shown here. We will use a calorimeter like this one in order to measure the amount of heat exchanged during our next experiment.
In our next lab we will dissolve some salts in water.  If the reaction is an  exothermic reaction , energy is given off, or  released,  causing the temperature of the water in the calorimeter to rise. If, however, the reaction is  endothermic , energy will be  required  for the reaction to occur. This energy will be removed from the water, causing the water temperature to drop. By noting the temperature change of the water in our calorimeter we will be able to calculate how much energy was exchanged.
We also need to know the specific heat   of water.   Specific heat is the amount of energy required to raise the temperature of 1 g of a substance by 1  0 C Water's specific heat is 4.184 J/(g x  0 C).   This means it take 4.184 J of energy to raise the temperature of 1 g of water by 1  0 C.
This value is not a constant, but changes under various conditions. The table on your page lists the specific heats of various substances, including the specific heat of water under a variety of conditions. Water has a relatively high specific heat which allows it to absorb and release large quantities of heat. This is why temperature changes are often more moderate in areas near large lakes and other large bodies of water. The water absorbs large amounts of heat during hot weather, thus keeping the surrounding area cooler. At night, the water slowly releases heat, thereby warming the air of the surrounding area.
The Calculations
Once we know the mass of water used, the temperature change, and the specific heat of water, the amount of heat transferred by the chemical reaction can now be calculated using the following formula:
Q = mcΔT Where…. Q = amount of heat transferred, in kJ m = mass of the sample in grams C = the specific heat of water ΔT= change in temperature, in  0 C
Q = mcΔT Note  - by convention, we indicate an  increase  in temperature as a  positive  change and we indicate a  decrease  in temperature as a  negative  change.  So, if the temperature started at 50  0 C and ended at 40  0 C, then ΔT will have a value of -10  0 C.
Example 1 2,000.0 g of water in calorimeter has its temperature raised 3.0  0 C by an exothermic chemical reaction.  How much heat was transferred?
There was a net release of 25 kJ of energy  released  by the reaction.
Example 2 A 1000.0 g mass of water whose temp was 50  0 C lost 33,600 J of heat over a 5-min period.  What was the temperature of the water at the end of the 5-min period?
Chemical Bond Energy
As we have seen, whenever a chemical reaction occurs, there is always a change in energy.  Where does this energy come from?
In any chemical substance, energy is stored in the chemical bonds that hold atoms together to form molecules  (intramolecular bonds),   and in the bonds that hold individual molecules together in the solid and liquid state  (intermolecular bonds).   During a chemical change, these bonds are rearranged - some bonds are broken, other bonds are formed
Energy is required
to break chemical bonds Energy is released
when new bonds form
Almost all chemical reactions involve changes in which some bonds are both broken  and  formed. Thus, some energy will be needed to break bonds, but energy will also be released as new bonds form. When we write a chemical equation that includes the energy change, the equation shows the  net   difference   in energy change.
During exothermic reactions there is a net  release  of energy. More energy is given off than is put into the reaction. Endothermic reactions require a net  input  of energy. More energy is needed to break bonds than is given off when new bonds form.

More Related Content

What's hot

Wk 5 p1 wk 6-p2_12.1-12.2_thermal properties of materials
Wk 5 p1 wk 6-p2_12.1-12.2_thermal properties of materialsWk 5 p1 wk 6-p2_12.1-12.2_thermal properties of materials
Wk 5 p1 wk 6-p2_12.1-12.2_thermal properties of materialschris lembalemba
 
Thermal Energy & Heat Transfer
Thermal Energy & Heat TransferThermal Energy & Heat Transfer
Thermal Energy & Heat TransferAlan Wrafter
 
Thermal energy
Thermal energyThermal energy
Thermal energyKANNAN
 
3.1 thermal concepts
3.1   thermal concepts3.1   thermal concepts
3.1 thermal conceptsgavin40
 
Exo and endothermic reaction
Exo and endothermic reactionExo and endothermic reaction
Exo and endothermic reactionKEENJHER111
 
Thermal Energy
Thermal EnergyThermal Energy
Thermal Energykoitzinger
 
Energy changes
Energy changesEnergy changes
Energy changesariestotel
 
5.4 exothermic and endothermic reactions
5.4 exothermic and endothermic reactions5.4 exothermic and endothermic reactions
5.4 exothermic and endothermic reactionsMartin Brown
 
Unit 3 pp #2, #3, and #4 7th grade
Unit 3 pp #2, #3, and #4 7th gradeUnit 3 pp #2, #3, and #4 7th grade
Unit 3 pp #2, #3, and #4 7th gradeTarina Medford
 
Thermal Energy
Thermal EnergyThermal Energy
Thermal Energysocergk
 
Chemical energetic
Chemical energeticChemical energetic
Chemical energeticjslayer
 
Thermal physics ppt
Thermal physics pptThermal physics ppt
Thermal physics pptjghopwood
 
Chapter 11 for 9th grade physics
Chapter 11 for 9th grade physicsChapter 11 for 9th grade physics
Chapter 11 for 9th grade physicsPhysics Amal Sweis
 

What's hot (20)

Heat phenomenon
Heat phenomenonHeat phenomenon
Heat phenomenon
 
Wk 5 p1 wk 6-p2_12.1-12.2_thermal properties of materials
Wk 5 p1 wk 6-p2_12.1-12.2_thermal properties of materialsWk 5 p1 wk 6-p2_12.1-12.2_thermal properties of materials
Wk 5 p1 wk 6-p2_12.1-12.2_thermal properties of materials
 
Thermal Energy & Heat Transfer
Thermal Energy & Heat TransferThermal Energy & Heat Transfer
Thermal Energy & Heat Transfer
 
Thermal energy
Thermal energyThermal energy
Thermal energy
 
3.1 thermal concepts
3.1   thermal concepts3.1   thermal concepts
3.1 thermal concepts
 
Exo and endothermic reaction
Exo and endothermic reactionExo and endothermic reaction
Exo and endothermic reaction
 
Thermal Energy
Thermal EnergyThermal Energy
Thermal Energy
 
Energy changes
Energy changesEnergy changes
Energy changes
 
5.4 exothermic and endothermic reactions
5.4 exothermic and endothermic reactions5.4 exothermic and endothermic reactions
5.4 exothermic and endothermic reactions
 
Thermodynamic
ThermodynamicThermodynamic
Thermodynamic
 
Unit 3 pp #2, #3, and #4 7th grade
Unit 3 pp #2, #3, and #4 7th gradeUnit 3 pp #2, #3, and #4 7th grade
Unit 3 pp #2, #3, and #4 7th grade
 
Thermal Energy
Thermal EnergyThermal Energy
Thermal Energy
 
Chemical energetic
Chemical energeticChemical energetic
Chemical energetic
 
Ch14 S1and2
Ch14 S1and2Ch14 S1and2
Ch14 S1and2
 
Thermal physics ppt
Thermal physics pptThermal physics ppt
Thermal physics ppt
 
Specific Heat Capacity
Specific Heat CapacitySpecific Heat Capacity
Specific Heat Capacity
 
Exothermic and endothermic_reactions
Exothermic and endothermic_reactionsExothermic and endothermic_reactions
Exothermic and endothermic_reactions
 
Chapter 11 for 9th grade physics
Chapter 11 for 9th grade physicsChapter 11 for 9th grade physics
Chapter 11 for 9th grade physics
 
Heat and Calorie
Heat and CalorieHeat and Calorie
Heat and Calorie
 
Heat
HeatHeat
Heat
 

Similar to Thermodynamics

Minooka Atoms and Elements Part 1
Minooka Atoms and Elements Part 1Minooka Atoms and Elements Part 1
Minooka Atoms and Elements Part 1Jeanne Erfft
 
Thermochemistry ch 16
Thermochemistry ch 16Thermochemistry ch 16
Thermochemistry ch 16tanzmanj
 
Unit 11 thermochemistry
Unit 11 thermochemistryUnit 11 thermochemistry
Unit 11 thermochemistrycpasilla
 
Energy and chemical change - Section 1
Energy and chemical change - Section 1 Energy and chemical change - Section 1
Energy and chemical change - Section 1 Hassan Al-Dika
 
Lecture 6 heat
Lecture 6   heatLecture 6   heat
Lecture 6 heatBekark
 
4_5994635259759561834.pdf
4_5994635259759561834.pdf4_5994635259759561834.pdf
4_5994635259759561834.pdfmahamedYusuf5
 
Energy, Thermodynamics and metabolism.pptx
Energy, Thermodynamics and metabolism.pptxEnergy, Thermodynamics and metabolism.pptx
Energy, Thermodynamics and metabolism.pptxSehrishSarfraz2
 
Presentation 1.pdf
Presentation 1.pdfPresentation 1.pdf
Presentation 1.pdfGaunliaPila
 
chemistry-enthalpy power point
chemistry-enthalpy power pointchemistry-enthalpy power point
chemistry-enthalpy power pointShmiley3000
 
Heat Lecture Slides
Heat Lecture SlidesHeat Lecture Slides
Heat Lecture SlidesEd Stermer
 
VCE Environmental Science - Unit 3 - Energy
VCE Environmental Science - Unit 3 - EnergyVCE Environmental Science - Unit 3 - Energy
VCE Environmental Science - Unit 3 - EnergyHawkesdale P12 College
 
Thermochemistry PowerPoint.ppt
Thermochemistry PowerPoint.pptThermochemistry PowerPoint.ppt
Thermochemistry PowerPoint.pptAnthonyPublico4
 
Thermal Properties of Material presentation
Thermal Properties of Material presentationThermal Properties of Material presentation
Thermal Properties of Material presentationShehzadAhmed90
 
12C W9 Thermal physics.pptx
12C W9 Thermal physics.pptx12C W9 Thermal physics.pptx
12C W9 Thermal physics.pptxImuroIkiro
 
Measurement and effects of heat
Measurement and effects of heatMeasurement and effects of heat
Measurement and effects of heatsiddharthsamant5
 
Thermochemistry Presentation
Thermochemistry PresentationThermochemistry Presentation
Thermochemistry PresentationQ M Muktadir Neal
 
Thermal properties of materials A2 physics Topic 4
Thermal properties of materials A2 physics Topic 4Thermal properties of materials A2 physics Topic 4
Thermal properties of materials A2 physics Topic 4Allen Tobve
 

Similar to Thermodynamics (20)

Chapter 17
Chapter 17Chapter 17
Chapter 17
 
2.1.ppt
2.1.ppt 2.1.ppt
2.1.ppt
 
Minooka Atoms and Elements Part 1
Minooka Atoms and Elements Part 1Minooka Atoms and Elements Part 1
Minooka Atoms and Elements Part 1
 
Thermochemistry ch 16
Thermochemistry ch 16Thermochemistry ch 16
Thermochemistry ch 16
 
Unit 11 thermochemistry
Unit 11 thermochemistryUnit 11 thermochemistry
Unit 11 thermochemistry
 
Energy and chemical change - Section 1
Energy and chemical change - Section 1 Energy and chemical change - Section 1
Energy and chemical change - Section 1
 
Lecture 6 heat
Lecture 6   heatLecture 6   heat
Lecture 6 heat
 
4_5994635259759561834.pdf
4_5994635259759561834.pdf4_5994635259759561834.pdf
4_5994635259759561834.pdf
 
Energy, Thermodynamics and metabolism.pptx
Energy, Thermodynamics and metabolism.pptxEnergy, Thermodynamics and metabolism.pptx
Energy, Thermodynamics and metabolism.pptx
 
Presentation 1.pdf
Presentation 1.pdfPresentation 1.pdf
Presentation 1.pdf
 
chemistry-enthalpy power point
chemistry-enthalpy power pointchemistry-enthalpy power point
chemistry-enthalpy power point
 
Heat Lecture Slides
Heat Lecture SlidesHeat Lecture Slides
Heat Lecture Slides
 
VCE Environmental Science - Unit 3 - Energy
VCE Environmental Science - Unit 3 - EnergyVCE Environmental Science - Unit 3 - Energy
VCE Environmental Science - Unit 3 - Energy
 
Thermochemistry PowerPoint.ppt
Thermochemistry PowerPoint.pptThermochemistry PowerPoint.ppt
Thermochemistry PowerPoint.ppt
 
Thermal Properties of Material presentation
Thermal Properties of Material presentationThermal Properties of Material presentation
Thermal Properties of Material presentation
 
12C W9 Thermal physics.pptx
12C W9 Thermal physics.pptx12C W9 Thermal physics.pptx
12C W9 Thermal physics.pptx
 
Measurement and effects of heat
Measurement and effects of heatMeasurement and effects of heat
Measurement and effects of heat
 
Thermochemistry Presentation
Thermochemistry PresentationThermochemistry Presentation
Thermochemistry Presentation
 
Chapter 4 final
Chapter 4 finalChapter 4 final
Chapter 4 final
 
Thermal properties of materials A2 physics Topic 4
Thermal properties of materials A2 physics Topic 4Thermal properties of materials A2 physics Topic 4
Thermal properties of materials A2 physics Topic 4
 

Thermodynamics

  • 2. Energy is defined as the ability to do work or produce heat. You know from physical science that energy can come in many forms - light energy, nuclear energy, and electrical energy to give just a few examples. In chemistry, heat energy is often what we are interested in, and the second part of the definition for energy will have more meaning for us. We will often discuss energy in terms of heat.
  • 3. So, what exactly is heat , or thermal energy? This is something else that we "know it when we see it" but find it difficult to define.
  • 4. You have learned that the individual atoms and molecules that make up all substances are in constant motion. This energy of motion is called kinetic energy . The energy associated with this motion is heat, or thermal energy.
  • 5.
  • 6. In addition to kinetic energy there is another basic form of energy potential energy Potential energy is energy of position ; we often refer to it as stored energy .
  • 7. We are concerned with only one type of potential energy in chemistry chemical bond energy Chemical bond energy arises from the attractive forces between molecules, and between atoms. This form of energy plays an important role in chemical reactions
  • 8. Nuclear energy is another form of potential energy, and is the energy stored within an atom as the forces holding the parts of an atom together. Chemical reactions do not involve nuclear changes or energy.
  • 9. One of the key principles of chemistry is the Law of Conservation of Energy
  • 10. Law of Conservation
of Energy During physical and chemical processes, energy may change from one form to another but it may not be created or destroyed. Also known as the
 First Law of Thermodynamics
  • 11. To give a few examples of how energy is converted from one form to another: ・ When octane (C 3 H 8 ) the main component of gasoline) is burned in your car engine, chemical bond energy (potential energy) is converted into mechanical energy (pistons moving in the car engine; kinetic energy) and heat. ・ When we eat, our bodies convert the chemical energy of the food into movement of our muscles; again heat is also a product of this conversion. ・ When we turn on a light switch, electrical energy is converted into light energy and, you guessed it, heat energy.
  • 12. We will be discussing how energy changes during chemical reactions. Often the energy change involves a conversion between potential energy and kinetic energy (as heat). You'll want to understand that the energy you see represented in chemical equations does have a source - potential energy - and is not created out of nothing.
  • 13. Heat Energy & Temperature It is important to understand the difference between heat and temperature .
  • 14. Remember…. Heat is the amount of kinetic energy in a sample of matter. It flows in the direction from the warmer object to the colder object.
  • 15. Energy Units The SI unit of energy, including heat energy, is the joule ( J ) It is defined as the amount of energy produced when a force of one newton acts over a distance of one meter.
  • 16. How much energy is one joule? ・ One joule is the amount of energy used by a 100 W light bulb in 0.01 s. ・ One joule is approximately equal to the amount of energy you expend when you bring a cheeseburger to your mouth. ・ An ordinary paper match, burned completely, releases a little over 1,000 J.[You are also familiar with another unit of heat energy, the calorie (cal).
  • 17. Temperature is a measure of the average kinetic energy of a sample of matter. It is the intensity of heat energy .
  • 18. As we have learned, temperature is measured in degrees celsius ( 。 C) or in kelvin (K). Kelvin is the SI temperature scale. Remember… that at the temperature known as absolute zero (0 K), particle motion is as slow as it can possibly be. That's as cold as you can theoretically get!
  • 19. Endothermic & Exothermic Reactions
  • 20. All chemical reactions involve energy changes.
  • 21. Exothermic reactions are reactions in which there is a net release of energy. When energy is released, an energy term will appear on the product side of the equation.
  • 22. Fe 2 O 3 (s) + 2Al (s) -> Al 2 O 3(s) + 2Fe (l) + 847.6 kJ The thermite reaction is a highly exothermic reaction between ferric oxide and aluminum, producing aluminum oxide and molten iron: If you had this reaction occurring in your hand (don't try this at home!!!) your hand would feel warmer because the reaction is releasing heat as a product.
  • 23.
  • 24. Endothermic reactions are reactions that require a net input of energy. This is indicated by writing the energy term on the reactant side of the equation.
  • 25. 2 SO 3 (g) + 198 kJ -> 2 SO 2 (g) + O 2 (g) Consider the reaction when sulfur trioxide decomposes into sulfur dioxide and oxygen. This reaction requires a net input of 198 kJ of energy in order to occur: If you held this reaction in your hand, your hand would feel colder because the energy required for the reaction to occur would be taken from the surroundings, in this case your hand.
  • 26. Heat & Its Measurement: Calorimetry
  • 27. All chemical reactions involve energy changes, often in the form of heat. How can you measure the amount of heat exchanged during a reaction?
  • 28. An instrument called a calorimeter is used. A very simple calorimeter that may be used is shown here. We will use a calorimeter like this one in order to measure the amount of heat exchanged during our next experiment.
  • 29. In our next lab we will dissolve some salts in water. If the reaction is an exothermic reaction , energy is given off, or released, causing the temperature of the water in the calorimeter to rise. If, however, the reaction is endothermic , energy will be required for the reaction to occur. This energy will be removed from the water, causing the water temperature to drop. By noting the temperature change of the water in our calorimeter we will be able to calculate how much energy was exchanged.
  • 30. We also need to know the specific heat of water. Specific heat is the amount of energy required to raise the temperature of 1 g of a substance by 1 0 C Water's specific heat is 4.184 J/(g x 0 C). This means it take 4.184 J of energy to raise the temperature of 1 g of water by 1 0 C.
  • 31. This value is not a constant, but changes under various conditions. The table on your page lists the specific heats of various substances, including the specific heat of water under a variety of conditions. Water has a relatively high specific heat which allows it to absorb and release large quantities of heat. This is why temperature changes are often more moderate in areas near large lakes and other large bodies of water. The water absorbs large amounts of heat during hot weather, thus keeping the surrounding area cooler. At night, the water slowly releases heat, thereby warming the air of the surrounding area.
  • 33. Once we know the mass of water used, the temperature change, and the specific heat of water, the amount of heat transferred by the chemical reaction can now be calculated using the following formula:
  • 34. Q = mcΔT Where…. Q = amount of heat transferred, in kJ m = mass of the sample in grams C = the specific heat of water ΔT= change in temperature, in 0 C
  • 35. Q = mcΔT Note - by convention, we indicate an increase in temperature as a positive change and we indicate a decrease in temperature as a negative change. So, if the temperature started at 50 0 C and ended at 40 0 C, then ΔT will have a value of -10 0 C.
  • 36. Example 1 2,000.0 g of water in calorimeter has its temperature raised 3.0 0 C by an exothermic chemical reaction. How much heat was transferred?
  • 37. There was a net release of 25 kJ of energy released by the reaction.
  • 38. Example 2 A 1000.0 g mass of water whose temp was 50 0 C lost 33,600 J of heat over a 5-min period. What was the temperature of the water at the end of the 5-min period?
  • 40. As we have seen, whenever a chemical reaction occurs, there is always a change in energy. Where does this energy come from?
  • 41. In any chemical substance, energy is stored in the chemical bonds that hold atoms together to form molecules (intramolecular bonds), and in the bonds that hold individual molecules together in the solid and liquid state (intermolecular bonds). During a chemical change, these bonds are rearranged - some bonds are broken, other bonds are formed
  • 42. Energy is required
to break chemical bonds Energy is released
when new bonds form
  • 43. Almost all chemical reactions involve changes in which some bonds are both broken and formed. Thus, some energy will be needed to break bonds, but energy will also be released as new bonds form. When we write a chemical equation that includes the energy change, the equation shows the net difference in energy change.
  • 44. During exothermic reactions there is a net release of energy. More energy is given off than is put into the reaction. Endothermic reactions require a net input of energy. More energy is needed to break bonds than is given off when new bonds form.