SlideShare uma empresa Scribd logo
1 de 28
Baixar para ler offline
Submitted by: Submitted to:
Mayank Sharma(10EJCEE032) Mr. S.N. Jhanwar
VIIIth Sem. H.O.D.(EE Dept.)
J.E.C.R.C.,Jaipur
Introduction:
 The electrical load schedule is an estimate of the
instantaneous electrical loads operating in a facility, in
terms of active, reactive and apparent power (measured in
kW, kVAR and kVA respectively).
 The load schedule is usually categorised by switchboard
or occasionally by sub-facility / area.
 A key feature of this divisible load distribution scheduling
theory (known as DLT) is that it uses a linear
mathematical model.
Need Of load Scheduling:
 Essential for some of the key electrical design activities
(such as equipment sizing and power system studies)
 It provides the preliminary details of process / building /
Organisation Load.
 The electrical load schedule can typically be started with a
preliminary key single line diagram (or at least an idea of
the main voltage levels in the system)
Procedure to calculate the load
Scheduling:
 Step 1: Collect a list of the expected electrical loads in the
facility
 Step 2: For each load, collect the electrical parameters,
e.g. nominal / absorbed ratings, power factor, efficiency,
etc
 Step 3: Classify each of the loads in terms of switchboard
location, load duty and load criticality
 Step 4: For each load, calculate the expected consumed
load
 Step 5: For each switchboard and the overall system,
calculate operating, peak and design load
Step 1: Collect list of loads
 Process loads - are the loads that are directly relevant to
the facility.
Example-Motors, Heaters, Compressors, Conveyors.
• Non-process loads - are the auxiliary loads that are
necessary to run the facility.
• Example-lighting, utility systems (power and water),
DCS/PLC control systems, fire safety systems
Step 2: Collect electrical load
parameters
 Rated power is the full load or nameplate rating of the load
and represents the maximum continuous power output of the
load. For motor loads, the rated power corresponds to the
standard motor size (e.g. 11kW, 37kW, 75kW, etc).
 Absorbed power is the expected power that will be drawn by
the load.
 Power factor of the load is necessary to determine the reactive
components of the load schedule. Typically 0.85 for motor
loads >7.5kW, 1.0 for heater loads and 0.8 for all other loads).
 Efficiency accounts for the losses incurred when converting
electrical energy to mechanical energy. Typically 0.85 or 0.9 is
used when efficiencies are unknown.
Step 3: Classify the loads
 Voltage Level :What voltage level and which switchboard
should the load be located?
Loads <150kW-LV System (400V - 690V)
150KW<Load<10 MW- MV System (3.3kV - 6.6kV)
Loads >10MW-HV Distribution System (11kV - 33kV)
 Load duty-
Continuous loads -are those that normally operate
continuously over a 24 hour period.eg. process loads,
control systems, lighting and small power distribution
boards, UPS systems.
Step 3(2):
Intermittent loads -only operate a fraction of a 24 hour period,
e.g. intermittent pumps and process loads, automatic doors and
gates.
Standby loads -are those that are on standby or rarely operate
under normal conditions, e.g. standby loads, emergency systems.
 Load criticality-
Normal loads-run under normal operating conditions.
Essential loads are those necessary under emergency conditions,
when the main power supply is disconnected and the system is
being supported by an emergency generator, e.g. emergency
lighting, key process loads that operate during emergency
conditions, fire and safety systems
Critical Loads-are those critical for the operation of safety systems
and normally supplied through a U.P.S. Battery.eg. Escape
lightning .
Step 4: Calculate consumed load
 The consumed load is the quantity of electrical power that
the load is expected to consume. For each load, calculate
the consumed active and reactive loading, derived as
follows:
;
Step 5: Calculate operating, peak
and design loads
 Operating load -The operating load is the expected
load during normal operation.
Peak load -The peak load is the expected maximum
load during normal operation.
Step 5(2):
 Design load -The design load is the load to be used for
the design for equipment sizing, electrical studies.
or
Parts of Load Scheduling:
Coordination
(Yearly,Monthly
Or Weekly)
Unit Commitment
(Weekly Or Daily)
Economic Load
Dispatch
(Hourly)
Hydrothermal Coordination
problem:
 It is the first stage in the solution of the hydrothermal
generation scheduling problem. The HCP consists of
determining the optimal amounts of hydro and
thermal generation to be used during a scheduling
period .The HCP is also decomposed in three Parts.
depending on the reservoirs storage capacity.
1.Long Term
2.Mid Term
3.Short Term
Unit Commitment-
 The electrical unit commitment problem is the
problem of deciding which electricity generating units
should be running in each period so as to satisfy
predictibly varying demand of electricity.
 Load of power system varies through out of the
demand reaches a different peak value from one day to
another. so which generator to start up and the
sequence in which units should be operate and for
how long.The computational procedure for making
such decision is called unit commitment
Economic Load Dispatch
 In power generation our main aim is to generate the
required amount of power with minimum cost.
 Economic load dispatch means that the generator’s
real and reactive power are allowed to vary within
certain limits so as to meet a particular load demand
with minimum fuel cost
 This allocation of loads are based on some
constraints.
DIFFERENT CONSTRAINTS IN
ECONOMIC LOAD DISPATCH
 INEQUALITY CONSTRAINTS
 Voltage constraints
Vmin ≤ V ≤ Vmax ,
δmin ≤ δ ≤ δmax
 Generator constraints
KVA loading of generator should not exceed prescribed
value
Pmin ≤ P ≤ Pmax
Qmin ≤ Q ≤ Qmax
 Running spare capacity constraints
This constraints are needed to meet forced outage of
one or more alternators in the system and also
unexpected load on the system
 Transmission line constraints
flow of power through transmission line should less
than its thermal capacity
 Transformer tap set
for autotransformer tap t should between 0 & 1
For two winding transformer – between 0& k
 Equality constraints
 Real power
Pp= Vp Σ Ypq Vq cos(θpq-(δp+δq))
 Reactive power
Qp= Vp Σ Ypq Vq sin(θpq-(δp+δq))
OPERATING COST OF THERMAL
PLANT
 The factors influencing power generation at minimum
cost are operating efficiencies of generators, fuel cost,
and transmission losses.
 The most efficient generator in the system does not
guarantee minimum cost as it may be located in an
area where fuel cost is high.
 If the plant is located far from the load center,
transmission losses may be considerably higher and
hence the plant may be overly uneconomical.
 The input to the thermal plant is generally measured
in Btu/h, and the output is measured in MW
 In all practical cases, the fuel cost of generator can be
represented as a quadratic function of real power
generation
a) Heat rate curve b) Fuel cost curve
• By plotting the derivative of the fuel-cost curve versus
the real power we get the incremental fuel-cost curve
Incremental fuel-cost curve
The incremental fuel-cost curve is a measure of how
costly it will be to produce the next increment of
power.
ECONOMIC DISPATCH NEGLECTING
LOSSES
 It is the simplest economic dispatch problem
 Assume that the system is only one bus with all
generation and loads connected to it
 A cost function Ci is assumed to be known for each
plant
 The problem is to find the real power generation for
each plant such that the objective function (i.e., total
production cost) as defined by the equation
Is minimum ,subjected to the constraints
Optimal load scheduling
Optimal load scheduling
 when losses are neglected with no generator limits, for
most economic operation. all plants must operate at
equal incremental production cost
 Production from each plant can be found by
This equation is known as the coordination equation
For analytic solution we can find λ by
REFERENCES
 Power System Analysis - Hadi Saadat
 Power system Analysis - Nagrath and Kothari
 Openelectrical.org/load scheduling
THANKS

Mais conteúdo relacionado

Mais procurados

Wind farm grid issues
Wind farm grid issuesWind farm grid issues
Wind farm grid issuesRohil Kumar
 
What are Ancillary Services In Power System ?
What are Ancillary Services In Power System ?What are Ancillary Services In Power System ?
What are Ancillary Services In Power System ?Power System Operation
 
Distributed generation b 3
Distributed generation b 3Distributed generation b 3
Distributed generation b 3Naresh Thakur
 
Power System Planning
Power System PlanningPower System Planning
Power System Planninglinsstalex
 
Introduction to power system analysis
Introduction to power system analysisIntroduction to power system analysis
Introduction to power system analysisRevathi Subramaniam
 
Economic load dispatch
Economic load  dispatchEconomic load  dispatch
Economic load dispatchDeepak John
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation ControlBirju Besra
 
Unit 4 Automatic Generation Control
Unit 4 Automatic Generation ControlUnit 4 Automatic Generation Control
Unit 4 Automatic Generation ControlSANTOSH GADEKAR
 
Directional over current relay
Directional over current relayDirectional over current relay
Directional over current relayCS V
 
Congestion management
Congestion managementCongestion management
Congestion managementGAURAV KUMAR
 
Symmetrical Fault Analysis
Symmetrical Fault AnalysisSymmetrical Fault Analysis
Symmetrical Fault AnalysisSANTOSH GADEKAR
 
Seminar on load scheduling and load shedding
Seminar on load scheduling and load sheddingSeminar on load scheduling and load shedding
Seminar on load scheduling and load sheddingBIJAY NAYAK
 
Control of active power &amp; reactive power
Control of active power &amp; reactive powerControl of active power &amp; reactive power
Control of active power &amp; reactive powerPavithran Selvam
 
POWER QUALITY IMPROVEMENT AND FAULT RIDE THROUGH OF GRID CONNECTED WIND ENE...
POWER QUALITY IMPROVEMENT AND FAULT RIDE THROUGH OF   GRID CONNECTED WIND ENE...POWER QUALITY IMPROVEMENT AND FAULT RIDE THROUGH OF   GRID CONNECTED WIND ENE...
POWER QUALITY IMPROVEMENT AND FAULT RIDE THROUGH OF GRID CONNECTED WIND ENE...Bharadwaj S
 

Mais procurados (20)

Wind farm grid issues
Wind farm grid issuesWind farm grid issues
Wind farm grid issues
 
What are Ancillary Services In Power System ?
What are Ancillary Services In Power System ?What are Ancillary Services In Power System ?
What are Ancillary Services In Power System ?
 
PPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITYPPT ON POWER SYSTEM STABILITY
PPT ON POWER SYSTEM STABILITY
 
Distributed generation b 3
Distributed generation b 3Distributed generation b 3
Distributed generation b 3
 
Power System Planning
Power System PlanningPower System Planning
Power System Planning
 
Introduction to power system analysis
Introduction to power system analysisIntroduction to power system analysis
Introduction to power system analysis
 
Economic load dispatch
Economic load  dispatchEconomic load  dispatch
Economic load dispatch
 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation Control
 
Power Quality Standards
Power Quality StandardsPower Quality Standards
Power Quality Standards
 
EXCITATION SYSTEMS
EXCITATION SYSTEMSEXCITATION SYSTEMS
EXCITATION SYSTEMS
 
Unit 4 Automatic Generation Control
Unit 4 Automatic Generation ControlUnit 4 Automatic Generation Control
Unit 4 Automatic Generation Control
 
Directional over current relay
Directional over current relayDirectional over current relay
Directional over current relay
 
Congestion management
Congestion managementCongestion management
Congestion management
 
Symmetrical Fault Analysis
Symmetrical Fault AnalysisSymmetrical Fault Analysis
Symmetrical Fault Analysis
 
Unit commitment
Unit commitmentUnit commitment
Unit commitment
 
Power Quality Audit.pptx
Power Quality Audit.pptxPower Quality Audit.pptx
Power Quality Audit.pptx
 
Seminar on load scheduling and load shedding
Seminar on load scheduling and load sheddingSeminar on load scheduling and load shedding
Seminar on load scheduling and load shedding
 
Control of active power &amp; reactive power
Control of active power &amp; reactive powerControl of active power &amp; reactive power
Control of active power &amp; reactive power
 
Load flow studies 19
Load flow studies 19Load flow studies 19
Load flow studies 19
 
POWER QUALITY IMPROVEMENT AND FAULT RIDE THROUGH OF GRID CONNECTED WIND ENE...
POWER QUALITY IMPROVEMENT AND FAULT RIDE THROUGH OF   GRID CONNECTED WIND ENE...POWER QUALITY IMPROVEMENT AND FAULT RIDE THROUGH OF   GRID CONNECTED WIND ENE...
POWER QUALITY IMPROVEMENT AND FAULT RIDE THROUGH OF GRID CONNECTED WIND ENE...
 

Destaque

Ohm’s law
Ohm’s lawOhm’s law
Ohm’s lawaichikun
 
Ohms law
Ohms lawOhms law
Ohms laww1nds
 
Electrical symbols
Electrical symbolsElectrical symbols
Electrical symbolsSolas Lagua
 
Iec symbol reference
Iec symbol referenceIec symbol reference
Iec symbol referenceVamsi Krishna
 
Nation and State in the Age of Globalization
Nation and State in the Age of GlobalizationNation and State in the Age of Globalization
Nation and State in the Age of GlobalizationKent Saldaña
 
Guidelines for electrical wiring in residential buildings
Guidelines for electrical wiring in residential buildings Guidelines for electrical wiring in residential buildings
Guidelines for electrical wiring in residential buildings Vijay Kumar
 
Electricity and ohm’s law
Electricity and ohm’s lawElectricity and ohm’s law
Electricity and ohm’s lawitutor
 
2 History of Philippine Art
2 History of Philippine Art2 History of Philippine Art
2 History of Philippine ArtOphelynn Cano
 
Electric load patterns for (residential/commercial /industrial) usage
Electric load patterns for (residential/commercial /industrial) usageElectric load patterns for (residential/commercial /industrial) usage
Electric load patterns for (residential/commercial /industrial) usageMuhammad Abdulhadi
 
Preliminary electrical load calculation course share
Preliminary electrical load calculation course sharePreliminary electrical load calculation course share
Preliminary electrical load calculation course shareAli Hassan
 
Philippine Contemporary Arts
Philippine Contemporary ArtsPhilippine Contemporary Arts
Philippine Contemporary ArtsKent Saldaña
 

Destaque (20)

Load list calculation
Load list calculationLoad list calculation
Load list calculation
 
Energy calculation
Energy calculationEnergy calculation
Energy calculation
 
Ohm’s law
Ohm’s lawOhm’s law
Ohm’s law
 
Ohms law
Ohms lawOhms law
Ohms law
 
electrical symbol v2
electrical  symbol v2electrical  symbol v2
electrical symbol v2
 
Electrical symbols
Electrical symbolsElectrical symbols
Electrical symbols
 
Iec symbol reference
Iec symbol referenceIec symbol reference
Iec symbol reference
 
Electrical symbols
Electrical symbolsElectrical symbols
Electrical symbols
 
Climate change
Climate changeClimate change
Climate change
 
Nation and State in the Age of Globalization
Nation and State in the Age of GlobalizationNation and State in the Age of Globalization
Nation and State in the Age of Globalization
 
Guidelines for electrical wiring in residential buildings
Guidelines for electrical wiring in residential buildings Guidelines for electrical wiring in residential buildings
Guidelines for electrical wiring in residential buildings
 
Day 7 6.25
Day 7 6.25Day 7 6.25
Day 7 6.25
 
Ohm's Law
Ohm's Law Ohm's Law
Ohm's Law
 
Electricity and ohm’s law
Electricity and ohm’s lawElectricity and ohm’s law
Electricity and ohm’s law
 
2 History of Philippine Art
2 History of Philippine Art2 History of Philippine Art
2 History of Philippine Art
 
Day 2.6.13.16
Day 2.6.13.16Day 2.6.13.16
Day 2.6.13.16
 
Electric load patterns for (residential/commercial /industrial) usage
Electric load patterns for (residential/commercial /industrial) usageElectric load patterns for (residential/commercial /industrial) usage
Electric load patterns for (residential/commercial /industrial) usage
 
Preliminary electrical load calculation course share
Preliminary electrical load calculation course sharePreliminary electrical load calculation course share
Preliminary electrical load calculation course share
 
Philippine Contemporary Arts
Philippine Contemporary ArtsPhilippine Contemporary Arts
Philippine Contemporary Arts
 
Day 1. 6.12.16
Day 1. 6.12.16Day 1. 6.12.16
Day 1. 6.12.16
 

Semelhante a Optimal load scheduling

Energy Efficiency in Electrical Systems.pptx
Energy  Efficiency in Electrical Systems.pptxEnergy  Efficiency in Electrical Systems.pptx
Energy Efficiency in Electrical Systems.pptxPoojaAnupGarg
 
Economicloaddispatch 111213025406-phpapp01
Economicloaddispatch 111213025406-phpapp01Economicloaddispatch 111213025406-phpapp01
Economicloaddispatch 111213025406-phpapp01vikram anand
 
Chapter-2.-Variable-Load-Problem_2.pdf
Chapter-2.-Variable-Load-Problem_2.pdfChapter-2.-Variable-Load-Problem_2.pdf
Chapter-2.-Variable-Load-Problem_2.pdfTheBlank5
 
UPS_Sizing_Calculation__170450556677.pdf
UPS_Sizing_Calculation__170450556677.pdfUPS_Sizing_Calculation__170450556677.pdf
UPS_Sizing_Calculation__170450556677.pdfFarukPatel9
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
Importance of Power Factor.pptx
Importance of Power Factor.pptxImportance of Power Factor.pptx
Importance of Power Factor.pptxVineet Shekhar
 
Module1-Power-System-operation and-control
Module1-Power-System-operation and-controlModule1-Power-System-operation and-control
Module1-Power-System-operation and-controlkvvbapiraju2
 
Reactive Power : Problems and Solutions
Reactive Power : Problems and SolutionsReactive Power : Problems and Solutions
Reactive Power : Problems and SolutionsAbhinav Dubey
 
REACTIVE POWER
REACTIVE POWERREACTIVE POWER
REACTIVE POWERJeetDatta3
 
Battery Aware Dynamic Scheduling for Periodic Task Graphs
Battery Aware Dynamic Scheduling for Periodic Task GraphsBattery Aware Dynamic Scheduling for Periodic Task Graphs
Battery Aware Dynamic Scheduling for Periodic Task GraphsNicolas Navet
 
Electrical Plan Electrical System Electrical Design
Electrical Plan Electrical System Electrical Design Electrical Plan Electrical System Electrical Design
Electrical Plan Electrical System Electrical Design Marcep Inc.
 

Semelhante a Optimal load scheduling (20)

Energy Efficiency in Electrical Systems.pptx
Energy  Efficiency in Electrical Systems.pptxEnergy  Efficiency in Electrical Systems.pptx
Energy Efficiency in Electrical Systems.pptx
 
Economicloaddispatch 111213025406-phpapp01
Economicloaddispatch 111213025406-phpapp01Economicloaddispatch 111213025406-phpapp01
Economicloaddispatch 111213025406-phpapp01
 
Chapter-2.-Variable-Load-Problem_2.pdf
Chapter-2.-Variable-Load-Problem_2.pdfChapter-2.-Variable-Load-Problem_2.pdf
Chapter-2.-Variable-Load-Problem_2.pdf
 
Unit 5.pptx
Unit 5.pptxUnit 5.pptx
Unit 5.pptx
 
UPS Sizing
UPS SizingUPS Sizing
UPS Sizing
 
Economic dipatch
Economic dipatch Economic dipatch
Economic dipatch
 
UPS_Sizing_Calculation__170450556677.pdf
UPS_Sizing_Calculation__170450556677.pdfUPS_Sizing_Calculation__170450556677.pdf
UPS_Sizing_Calculation__170450556677.pdf
 
Power system planing and operation (pce5312) chapter five
Power system planing and operation (pce5312) chapter fivePower system planing and operation (pce5312) chapter five
Power system planing and operation (pce5312) chapter five
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
UNIT-4-PPT.ppt
UNIT-4-PPT.pptUNIT-4-PPT.ppt
UNIT-4-PPT.ppt
 
Economic load dispatch
Economic load  dispatchEconomic load  dispatch
Economic load dispatch
 
Power System Review
Power System ReviewPower System Review
Power System Review
 
Economic_Dispatch_in_power_systems.pdf
Economic_Dispatch_in_power_systems.pdfEconomic_Dispatch_in_power_systems.pdf
Economic_Dispatch_in_power_systems.pdf
 
Importance of Power Factor.pptx
Importance of Power Factor.pptxImportance of Power Factor.pptx
Importance of Power Factor.pptx
 
Module1-Power-System-operation and-control
Module1-Power-System-operation and-controlModule1-Power-System-operation and-control
Module1-Power-System-operation and-control
 
Reactive Power : Problems and Solutions
Reactive Power : Problems and SolutionsReactive Power : Problems and Solutions
Reactive Power : Problems and Solutions
 
REACTIVE POWER
REACTIVE POWERREACTIVE POWER
REACTIVE POWER
 
Battery Aware Dynamic Scheduling for Periodic Task Graphs
Battery Aware Dynamic Scheduling for Periodic Task GraphsBattery Aware Dynamic Scheduling for Periodic Task Graphs
Battery Aware Dynamic Scheduling for Periodic Task Graphs
 
White paper
White paperWhite paper
White paper
 
Electrical Plan Electrical System Electrical Design
Electrical Plan Electrical System Electrical Design Electrical Plan Electrical System Electrical Design
Electrical Plan Electrical System Electrical Design
 

Último

Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...soginsider
 
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS Bahzad5
 
nvidia AI-gtc 2024 partial slide deck.pptx
nvidia AI-gtc 2024 partial slide deck.pptxnvidia AI-gtc 2024 partial slide deck.pptx
nvidia AI-gtc 2024 partial slide deck.pptxjasonsedano2
 
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...Amil baba
 
ASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderjuancarlos286641
 
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Sean Meyn
 
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdfRenewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdfodunowoeminence2019
 
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....santhyamuthu1
 
Basic Principle of Electrochemical Sensor
Basic Principle of  Electrochemical SensorBasic Principle of  Electrochemical Sensor
Basic Principle of Electrochemical SensorTanvir Moin
 
solar wireless electric vechicle charging system
solar wireless electric vechicle charging systemsolar wireless electric vechicle charging system
solar wireless electric vechicle charging systemgokuldongala
 
How to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdfHow to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdfRedhwan Qasem Shaddad
 
Summer training report on BUILDING CONSTRUCTION for DIPLOMA Students.pdf
Summer training report on BUILDING CONSTRUCTION for DIPLOMA Students.pdfSummer training report on BUILDING CONSTRUCTION for DIPLOMA Students.pdf
Summer training report on BUILDING CONSTRUCTION for DIPLOMA Students.pdfNaveenVerma126
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxLMW Machine Tool Division
 
Design of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptxDesign of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptxYogeshKumarKJMIT
 
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...Amil baba
 
The relationship between iot and communication technology
The relationship between iot and communication technologyThe relationship between iot and communication technology
The relationship between iot and communication technologyabdulkadirmukarram03
 
me3493 manufacturing technology unit 1 Part A
me3493 manufacturing technology unit 1 Part Ame3493 manufacturing technology unit 1 Part A
me3493 manufacturing technology unit 1 Part Akarthi keyan
 
Technology Features of Apollo HDD Machine, Its Technical Specification with C...
Technology Features of Apollo HDD Machine, Its Technical Specification with C...Technology Features of Apollo HDD Machine, Its Technical Specification with C...
Technology Features of Apollo HDD Machine, Its Technical Specification with C...Apollo Techno Industries Pvt Ltd
 

Último (20)

Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
 
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
 
nvidia AI-gtc 2024 partial slide deck.pptx
nvidia AI-gtc 2024 partial slide deck.pptxnvidia AI-gtc 2024 partial slide deck.pptx
nvidia AI-gtc 2024 partial slide deck.pptx
 
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
Best-NO1 Best Rohani Amil In Lahore Kala Ilam In Lahore Kala Jadu Amil In Lah...
 
ASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entender
 
Lecture 2 .pptx
Lecture 2                            .pptxLecture 2                            .pptx
Lecture 2 .pptx
 
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
Quasi-Stochastic Approximation: Algorithm Design Principles with Applications...
 
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdfRenewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
Renewable Energy & Entrepreneurship Workshop_21Feb2024.pdf
 
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
SATELITE COMMUNICATION UNIT 1 CEC352 REGULATION 2021 PPT BASICS OF SATELITE ....
 
Basic Principle of Electrochemical Sensor
Basic Principle of  Electrochemical SensorBasic Principle of  Electrochemical Sensor
Basic Principle of Electrochemical Sensor
 
solar wireless electric vechicle charging system
solar wireless electric vechicle charging systemsolar wireless electric vechicle charging system
solar wireless electric vechicle charging system
 
How to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdfHow to Write a Good Scientific Paper.pdf
How to Write a Good Scientific Paper.pdf
 
Summer training report on BUILDING CONSTRUCTION for DIPLOMA Students.pdf
Summer training report on BUILDING CONSTRUCTION for DIPLOMA Students.pdfSummer training report on BUILDING CONSTRUCTION for DIPLOMA Students.pdf
Summer training report on BUILDING CONSTRUCTION for DIPLOMA Students.pdf
 
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptxVertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
Vertical- Machining - Center - VMC -LMW-Machine-Tool-Division.pptx
 
Design of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptxDesign of Clutches and Brakes in Design of Machine Elements.pptx
Design of Clutches and Brakes in Design of Machine Elements.pptx
 
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
Popular-NO1 Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialis...
 
The relationship between iot and communication technology
The relationship between iot and communication technologyThe relationship between iot and communication technology
The relationship between iot and communication technology
 
me3493 manufacturing technology unit 1 Part A
me3493 manufacturing technology unit 1 Part Ame3493 manufacturing technology unit 1 Part A
me3493 manufacturing technology unit 1 Part A
 
Technology Features of Apollo HDD Machine, Its Technical Specification with C...
Technology Features of Apollo HDD Machine, Its Technical Specification with C...Technology Features of Apollo HDD Machine, Its Technical Specification with C...
Technology Features of Apollo HDD Machine, Its Technical Specification with C...
 
Litature Review: Research Paper work for Engineering
Litature Review: Research Paper work for EngineeringLitature Review: Research Paper work for Engineering
Litature Review: Research Paper work for Engineering
 

Optimal load scheduling

  • 1. Submitted by: Submitted to: Mayank Sharma(10EJCEE032) Mr. S.N. Jhanwar VIIIth Sem. H.O.D.(EE Dept.) J.E.C.R.C.,Jaipur
  • 2. Introduction:  The electrical load schedule is an estimate of the instantaneous electrical loads operating in a facility, in terms of active, reactive and apparent power (measured in kW, kVAR and kVA respectively).  The load schedule is usually categorised by switchboard or occasionally by sub-facility / area.  A key feature of this divisible load distribution scheduling theory (known as DLT) is that it uses a linear mathematical model.
  • 3. Need Of load Scheduling:  Essential for some of the key electrical design activities (such as equipment sizing and power system studies)  It provides the preliminary details of process / building / Organisation Load.  The electrical load schedule can typically be started with a preliminary key single line diagram (or at least an idea of the main voltage levels in the system)
  • 4. Procedure to calculate the load Scheduling:  Step 1: Collect a list of the expected electrical loads in the facility  Step 2: For each load, collect the electrical parameters, e.g. nominal / absorbed ratings, power factor, efficiency, etc  Step 3: Classify each of the loads in terms of switchboard location, load duty and load criticality  Step 4: For each load, calculate the expected consumed load  Step 5: For each switchboard and the overall system, calculate operating, peak and design load
  • 5. Step 1: Collect list of loads  Process loads - are the loads that are directly relevant to the facility. Example-Motors, Heaters, Compressors, Conveyors. • Non-process loads - are the auxiliary loads that are necessary to run the facility. • Example-lighting, utility systems (power and water), DCS/PLC control systems, fire safety systems
  • 6. Step 2: Collect electrical load parameters  Rated power is the full load or nameplate rating of the load and represents the maximum continuous power output of the load. For motor loads, the rated power corresponds to the standard motor size (e.g. 11kW, 37kW, 75kW, etc).  Absorbed power is the expected power that will be drawn by the load.  Power factor of the load is necessary to determine the reactive components of the load schedule. Typically 0.85 for motor loads >7.5kW, 1.0 for heater loads and 0.8 for all other loads).  Efficiency accounts for the losses incurred when converting electrical energy to mechanical energy. Typically 0.85 or 0.9 is used when efficiencies are unknown.
  • 7. Step 3: Classify the loads  Voltage Level :What voltage level and which switchboard should the load be located? Loads <150kW-LV System (400V - 690V) 150KW<Load<10 MW- MV System (3.3kV - 6.6kV) Loads >10MW-HV Distribution System (11kV - 33kV)  Load duty- Continuous loads -are those that normally operate continuously over a 24 hour period.eg. process loads, control systems, lighting and small power distribution boards, UPS systems.
  • 8. Step 3(2): Intermittent loads -only operate a fraction of a 24 hour period, e.g. intermittent pumps and process loads, automatic doors and gates. Standby loads -are those that are on standby or rarely operate under normal conditions, e.g. standby loads, emergency systems.  Load criticality- Normal loads-run under normal operating conditions. Essential loads are those necessary under emergency conditions, when the main power supply is disconnected and the system is being supported by an emergency generator, e.g. emergency lighting, key process loads that operate during emergency conditions, fire and safety systems Critical Loads-are those critical for the operation of safety systems and normally supplied through a U.P.S. Battery.eg. Escape lightning .
  • 9. Step 4: Calculate consumed load  The consumed load is the quantity of electrical power that the load is expected to consume. For each load, calculate the consumed active and reactive loading, derived as follows: ;
  • 10. Step 5: Calculate operating, peak and design loads  Operating load -The operating load is the expected load during normal operation. Peak load -The peak load is the expected maximum load during normal operation.
  • 11. Step 5(2):  Design load -The design load is the load to be used for the design for equipment sizing, electrical studies. or
  • 12. Parts of Load Scheduling: Coordination (Yearly,Monthly Or Weekly) Unit Commitment (Weekly Or Daily) Economic Load Dispatch (Hourly)
  • 13. Hydrothermal Coordination problem:  It is the first stage in the solution of the hydrothermal generation scheduling problem. The HCP consists of determining the optimal amounts of hydro and thermal generation to be used during a scheduling period .The HCP is also decomposed in three Parts. depending on the reservoirs storage capacity. 1.Long Term 2.Mid Term 3.Short Term
  • 14. Unit Commitment-  The electrical unit commitment problem is the problem of deciding which electricity generating units should be running in each period so as to satisfy predictibly varying demand of electricity.  Load of power system varies through out of the demand reaches a different peak value from one day to another. so which generator to start up and the sequence in which units should be operate and for how long.The computational procedure for making such decision is called unit commitment
  • 15. Economic Load Dispatch  In power generation our main aim is to generate the required amount of power with minimum cost.  Economic load dispatch means that the generator’s real and reactive power are allowed to vary within certain limits so as to meet a particular load demand with minimum fuel cost  This allocation of loads are based on some constraints.
  • 16. DIFFERENT CONSTRAINTS IN ECONOMIC LOAD DISPATCH  INEQUALITY CONSTRAINTS  Voltage constraints Vmin ≤ V ≤ Vmax , δmin ≤ δ ≤ δmax  Generator constraints KVA loading of generator should not exceed prescribed value Pmin ≤ P ≤ Pmax Qmin ≤ Q ≤ Qmax
  • 17.  Running spare capacity constraints This constraints are needed to meet forced outage of one or more alternators in the system and also unexpected load on the system  Transmission line constraints flow of power through transmission line should less than its thermal capacity  Transformer tap set for autotransformer tap t should between 0 & 1 For two winding transformer – between 0& k
  • 18.  Equality constraints  Real power Pp= Vp Σ Ypq Vq cos(θpq-(δp+δq))  Reactive power Qp= Vp Σ Ypq Vq sin(θpq-(δp+δq))
  • 19. OPERATING COST OF THERMAL PLANT  The factors influencing power generation at minimum cost are operating efficiencies of generators, fuel cost, and transmission losses.  The most efficient generator in the system does not guarantee minimum cost as it may be located in an area where fuel cost is high.  If the plant is located far from the load center, transmission losses may be considerably higher and hence the plant may be overly uneconomical.
  • 20.  The input to the thermal plant is generally measured in Btu/h, and the output is measured in MW  In all practical cases, the fuel cost of generator can be represented as a quadratic function of real power generation a) Heat rate curve b) Fuel cost curve
  • 21. • By plotting the derivative of the fuel-cost curve versus the real power we get the incremental fuel-cost curve Incremental fuel-cost curve The incremental fuel-cost curve is a measure of how costly it will be to produce the next increment of power.
  • 22. ECONOMIC DISPATCH NEGLECTING LOSSES  It is the simplest economic dispatch problem  Assume that the system is only one bus with all generation and loads connected to it  A cost function Ci is assumed to be known for each plant
  • 23.  The problem is to find the real power generation for each plant such that the objective function (i.e., total production cost) as defined by the equation Is minimum ,subjected to the constraints
  • 26.  when losses are neglected with no generator limits, for most economic operation. all plants must operate at equal incremental production cost  Production from each plant can be found by This equation is known as the coordination equation For analytic solution we can find λ by
  • 27. REFERENCES  Power System Analysis - Hadi Saadat  Power system Analysis - Nagrath and Kothari  Openelectrical.org/load scheduling