SlideShare a Scribd company logo
1 of 84
Complex Numbers
Complex Numbers
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
Complex Numbers
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
We make up a new number called an imaginary number
–1
to be a solution of this equation
Complex Numbers
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
We make up a new number called an imaginary number
–1 ↔ i
to be a solution of this equation and we name it “ i ”,
Complex Numbers
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
We make up a new number called an imaginary number
–1 ↔ i
to be a solution of this equation and we name it “ i ”, i.e.
(±i)2 = –1
Complex Numbers
Using i, the “solutions” of the equations of the form
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
We make up a new number called an imaginary number
–1 ↔ i
to be a solution of this equation and we name it “ i ”, i.e.
(±i)2 = –1
x2 = –r
Complex Numbers
Using i, the “solutions” of the equations of the form
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
We make up a new number called an imaginary number
–1 ↔ i
to be a solution of this equation and we name it “ i ”, i.e.
(±i)2 = –1
x2 = –r
are x = ± ir
Complex Numbers
Using i, the “solutions” of the equations of the form
Example A. Solve x2 + 49 = 0 using imaginary numbers.
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
We make up a new number called an imaginary number
–1 ↔ i
to be a solution of this equation and we name it “ i ”, i.e.
(±i)2 = –1
x2 = –r
are x = ± ir
Complex Numbers
Using i, the “solutions” of the equations of the form
Example A. Solve x2 + 49 = 0 using imaginary numbers.
Using the square-root method:
x2 + 49 = 0 → x2 = –49
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
We make up a new number called an imaginary number
–1 ↔ i
to be a solution of this equation and we name it “ i ”, i.e.
(±i)2 = –1
x2 = –r
are x = ± ir
Complex Numbers
Using i, the “solutions” of the equations of the form
Example A. Solve x2 + 49 = 0 using imaginary numbers.
Using the square-root method:
x2 + 49 = 0 → x2 = –49 so
x = ±–49
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
We make up a new number called an imaginary number
–1 ↔ i
to be a solution of this equation and we name it “ i ”, i.e.
(±i)2 = –1
x2 = –r
are x = ± ir
Complex Numbers
Using i, the “solutions” of the equations of the form
Example A. Solve x2 + 49 = 0 using imaginary numbers.
Using the square-root method:
x2 + 49 = 0 → x2 = –49 so
x = ±–49
x = ±49–1
x = ±7i
Because the square of any real number can't be negative,
the equation x2 = –1 does not have any real solution.
We make up a new number called an imaginary number
–1 ↔ i
to be a solution of this equation and we name it “ i ”, i.e.
(±i)2 = –1
x2 = –r
are x = ± ir
A complex number is a number of the form
a + bi
where a and b are real numbers,
Complex Numbers
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part
Complex Numbers
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number.
Complex Numbers
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number.
Complex Numbers
Example B. 5 – 3i, 6i, –17 are complex numbers.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number.
Complex Numbers
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number.
Complex Numbers
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number.
Complex Numbers
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
Any real number a is also complex because a = a + 0i
hence –17 = –17 + 0i.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
Any real number a is also complex because a = a + 0i
hence –17 = –17 + 0i.
Complex Numbers
(Addition and subtraction of complex numbers)
Treat the "i" as a variable when adding or subtracting complex
numbers.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number
Complex Numbers
(Addition and subtraction of complex numbers)
Treat the "i" as a variable when adding or subtracting complex
numbers.
Example C.
(7 + 4i) + (5 – 3i)
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
Any real number a is also complex because a = a + 0i
hence –17 = –17 + 0i.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number
Complex Numbers
(Addition and subtraction of complex numbers)
Treat the "i" as a variable when adding or subtracting complex
numbers.
Example C.
(7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
Any real number a is also complex because a = a + 0i
hence –17 = –17 + 0i.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number
Complex Numbers
(Addition and subtraction of complex numbers)
Treat the "i" as a variable when adding or subtracting complex
numbers.
Example C.
(7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i = 12 + i
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
Any real number a is also complex because a = a + 0i
hence –17 = –17 + 0i.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number
Complex Numbers
(Addition and subtraction of complex numbers)
Treat the "i" as a variable when adding or subtracting complex
numbers.
Example C.
(7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i = 12 + i
(7 + 4i) – (5 – 3i)
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
Any real number a is also complex because a = a + 0i
hence –17 = –17 + 0i.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number
Complex Numbers
(Addition and subtraction of complex numbers)
Treat the "i" as a variable when adding or subtracting complex
numbers.
Example C.
(7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i = 12 + i
(7 + 4i) – (5 – 3i) = 7 + 4i – 5 + 3i
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
Any real number a is also complex because a = a + 0i
hence –17 = –17 + 0i.
A complex number is a number of the form
a + bi
where a and b are real numbers, a is called the real part and
bi is called the imaginary part of the complex number
Complex Numbers
(Addition and subtraction of complex numbers)
Treat the "i" as a variable when adding or subtracting complex
numbers.
Example C.
(7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i = 12 + i
(7 + 4i) – (5 – 3i) = 7 + 4i – 5 + 3i = 2 + 7i
Example B. 5 – 3i, 6i, –17 are complex numbers.
The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
Any real number a is also complex because a = a + 0i
hence –17 = –17 + 0i.
(Multiplication of complex numbers)
Complex Numbers
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i)
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
The conjugate of (a + bi) is (a – bi) and vice–versa.
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
The conjugate of (a + bi) is (a – bi) and vice–versa.
The most important complex number multiplication formula is
the product of a pair of conjugate numbers.
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
(Conjugate Multiplication)
The conjugate of (a + bi) is (a – bi) and vice–versa.
The most important complex number multiplication formula is
the product of a pair of conjugate numbers.
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
(Conjugate Multiplication) The nonzero conjugate product is
(a + bi)(a – bi) = a2 + b2 which is always positive.
The conjugate of (a + bi) is (a – bi) and vice–versa.
The most important complex number multiplication formula is
the product of a pair of conjugate numbers.
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
Example E.
(4 – 3i)(4 + 3i)
The conjugate of (a + bi) is (a – bi) and vice–versa.
The most important complex number multiplication formula is
the product of a pair of conjugate numbers.
(Conjugate Multiplication) The nonzero conjugate product is
(a + bi)(a – bi) = a2 + b2 which is always positive.
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
Example E.
(4 – 3i)(4 + 3i) = 42 + 32 = 25
The conjugate of (a + bi) is (a – bi) and vice–versa.
The most important complex number multiplication formula is
the product of a pair of conjugate numbers.
(Conjugate Multiplication) The nonzero conjugate product is
(a + bi)(a – bi) = a2 + b2 which is always positive.
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
Example E.
(4 – 3i)(4 + 3i) = 42 + 32 = 25
(5 – 7i)(5 + 7i)
The conjugate of (a + bi) is (a – bi) and vice–versa.
The most important complex number multiplication formula is
the product of a pair of conjugate numbers.
(Conjugate Multiplication) The nonzero conjugate product is
(a + bi)(a – bi) = a2 + b2 which is always positive.
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
Example E.
(4 – 3i)(4 + 3i) = 42 + 32 = 25
(5 – 7i)(5 + 7i) = (5)2 + 72
The conjugate of (a + bi) is (a – bi) and vice–versa.
The most important complex number multiplication formula is
the product of a pair of conjugate numbers.
(Conjugate Multiplication) The nonzero conjugate product is
(a + bi)(a – bi) = a2 + b2 which is always positive.
(Multiplication of complex numbers)
To multiply complex numbers, use FOIL, then set i2 to be (-1)
and simplify the result.
Complex Numbers
Example D. (4 – 3i)(2 + 7i) FOIL
= 8 – 6i + 28i – 21i2 set i2 = (-1)
= 8 – 6i + 28i + 21
= 29 + 22i
Example E.
(4 – 3i)(4 + 3i) = 42 + 32 = 25
(5 – 7i)(5 + 7i) = (5)2 + 72 = 54
The conjugate of (a + bi) is (a – bi) and vice–versa.
The most important complex number multiplication formula is
the product of a pair of conjugate numbers.
(Conjugate Multiplication) The nonzero conjugate product is
(a + bi)(a – bi) = a2 + b2 which is always positive.
Complex Numbers
(Division of Complex Numbers)
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
*
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
4 + 3i
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
–6
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
–6
6 – 17i
=
25
6
25
17i
–
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
–6
6 – 17i
=
25
6
25
17i
–
Using the quadratic formula, we can solve all 2nd degree
equations and obtain their complex number solutions.
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
–6
6 – 17i
=
25
6
25
17i
–
Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers.
Using the quadratic formula, we can solve all 2nd degree
equations and obtain their complex number solutions.
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
–6
6 – 17i
=
25
6
25
17i
–
Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers.
To find b2 – 4ac first: a = 2, b = –2, c = 3,
Using the quadratic formula, we can solve all 2nd degree
equations and obtain their complex number solutions.
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
–6
6 – 17i
=
25
6
25
17i
–
Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers.
To find b2 – 4ac first: a = 2, b = –2, c = 3, so b2 – 4ac = –20.
Using the quadratic formula, we can solve all 2nd degree
equations and obtain their complex number solutions.
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
–6
6 – 17i
=
25
6
25
17i
–
Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers.
To find b2 – 4ac first: a = 2, b = –2, c = 3, so b2 – 4ac = –20.
x =
2 ± –20
4
Using the quadratic formula, we can solve all 2nd degree
equations and obtain their complex number solutions.
Hence
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
–6
6 – 17i
=
25
6
25
17i
–
Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers.
To find b2 – 4ac first: a = 2, b = –2, c = 3, so b2 – 4ac = –20.
x =
2 ± –20
4 =
2 ± 2–5
4
Using the quadratic formula, we can solve all 2nd degree
equations and obtain their complex number solutions.
Hence
Complex Numbers
(Division of Complex Numbers)
To divide complex numbers, we write the division as a fraction,
then multiply the top and the bottom of the fraction by the
conjugate of the denominator.
3 – 2i
4 + 3i
Example F. Simplify
Multiply the conjugate of the denominator (4 – 3i) to the top
and the bottom.
(3 – 2i)
(4 + 3i)
=
(4 – 3i)
(4 – 3i)
* 42 + 32 =
25
12 – 8i – 9i + 6i2
–6
6 – 17i
=
25
6
25
17i
–
Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers.
To find b2 – 4ac first: a = 2, b = –2, c = 3, so b2 – 4ac = –20.
x =
2 ± –20
4 =
2 ± 2–5
4 =
2(1 ± i5)
4 =
1 ± i5
2
Using the quadratic formula, we can solve all 2nd degree
equations and obtain their complex number solutions.
Hence
Powers of i
The powers of i go in a cycle as shown below:
The powers of i go in a cycle as shown below:
i
-1 = i2
Powers of i
The powers of i go in a cycle as shown below:
i
-1 = i2
-i = i3
Powers of i
The powers of i go in a cycle as shown below:
i
-1 = i2
-i = i3
1 = i4
Powers of i
The powers of i go in a cycle as shown below:
i = i5
-1 = i2
-i = i3
1 = i4
Powers of i
Complex Numbers
Exercise D. Divide by rationalizing the denominators.
2 + 3i
i
24.
3 – 4i
i
25.
3 – 4i
i
26.
1 + i
1 – i
27. 2 – i
3 – i
28. 3 – 2i
2 + i
29.
2 + 3i
2 – 3i
30.
3 – 4i
3 – 2i
31.
3 – 4i
2 + 5i
32.
33. Is there a difference between √4i and 2i?
The powers of i go in a cycle as shown below:
i = i5
-1 = i2 = i6 ..
-i = i3
1 = i4
Powers of i
The powers of i go in a cycle as shown below:
i = i5
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4
Powers of i
The powers of i go in a cycle as shown below:
i = i5
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4 = i8 ..
Powers of i
The powers of i go in a cycle as shown below:
i = i5 = i9 ..
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4 = i8 ..
Powers of i
The powers of i go in a cycle as shown below:
i = i5 = i9 ..
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4 = i8 ..
Example H. Simplify i59
Powers of i
The powers of i go in a cycle as shown below:
i = i5 = i9 ..
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4 = i8 ..
Example H. Simplify i59
59 = 4*14 + 3,
Powers of i
The powers of i go in a cycle as shown below:
i = i5 = i9 ..
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4 = i8 ..
Example H. Simplify i59
59 = 4*14 + 3,
hence i59 = i4*14+3
Powers of i
The powers of i go in a cycle as shown below:
i = i5 = i9 ..
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4 = i8 ..
Example H. Simplify i59
59 = 4*14 + 3,
hence i59 = i4*14+3 = i4*14+3
Powers of i
The powers of i go in a cycle as shown below:
i = i5 = i9 ..
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4 = i8 ..
Example H. Simplify i59
59 = 4*14 + 3,
hence i59 = i4*14+3 = i4*14+3 = (i4)14 i3
Powers of i
The powers of i go in a cycle as shown below:
i = i5 = i9 ..
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4 = i8 ..
Example H. Simplify i59
59 = 4*14 + 3,
hence i59 = i4*14+3 = i4*14+3 = (i4)14 i3 = 114 i3
Powers of i
The powers of i go in a cycle as shown below:
i = i5 = i9 ..
-1 = i2 = i6 ..
-i = i3 = i7 ..
1 = i4 = i8 ..
Example H. Simplify i59
59 = 4*14 + 3,
hence i59 = i4*14+3 = i4*14+3 = (i4)14 i3 = 114 i3 = i3 = -i
Powers of i
Quadratic Formula and Complex Numbers
and
From example G, the solutions of 2x2 – 2x + 3 = 0 are
x =
1 + i5
2
x = 1 – i5
2
because b2 – 4ac = –20 < 0.
Quadratic Formula and Complex Numbers
and
From example G, the solutions of 2x2 – 2x + 3 = 0 are
x =
1 + i5
2
x = 1 – i5
2
because b2 – 4ac = –20 < 0.
Therefore we have a complex conjugate pair as solutions.
Quadratic Formula and Complex Numbers
and
From example G, the solutions of 2x2 – 2x + 3 = 0 are
x =
1 + i5
2
x = 1 – i5
2
In general, for ax2 + bx + c = 0 with a, b, and c real numbers,
and b2 – 4ac < 0,
because b2 – 4ac = –20 < 0.
Therefore we have a complex conjugate pair as solutions.
Quadratic Formula and Complex Numbers
x =
–b +b2 – 4ac
2a
x =
–b –b2 – 4ac
2a
and
From example G, the solutions of 2x2 – 2x + 3 = 0 are
x =
1 + i5
2
x = 1 – i5
2
and
In general, for ax2 + bx + c = 0 with a, b, and c real numbers,
and b2 – 4ac < 0, then its two roots:
because b2 – 4ac = –20 < 0.
are of the form A + Bi and A – Bi, a conjugate pair.
Therefore we have a complex conjugate pair as solutions.
Quadratic Formula and Complex Numbers
x =
–b +b2 – 4ac
2a
x =
–b –b2 – 4ac
2a
and
If a, b, and c are real numbers, then the complex roots* for
ax2 + bx + c = 0
are a complex conjugates pair. ( * if b2 – 4ac < 0).
From example G, the solutions of 2x2 – 2x + 3 = 0 are
x =
1 + i5
2
x = 1 – i5
2
and
In general, for ax2 + bx + c = 0 with a, b, and c real numbers,
and b2 – 4ac < 0, then its two roots:
because b2 – 4ac = –20 < 0.
are of the form A + Bi and A – Bi, a conjugate pair.
Therefore we have a complex conjugate pair as solutions.
Quadratic Formula and Complex Numbers
x =
–b +b2 – 4ac
2a
x =
–b –b2 – 4ac
2a
and
If a, b, and c are real numbers, then the complex roots* for
ax2 + bx + c = 0
are a complex conjugates pair. ( * if b2 – 4ac < 0).
From example G, the solutions of 2x2 – 2x + 3 = 0 are
x =
1 + i5
2
For example, if x = i is a solution of #x2 + # x + # = 0,
then automatically x = – i is the other root (# real numbers.)
x = 1 – i5
2
and
In general, for ax2 + bx + c = 0 with a, b, and c real numbers,
and b2 – 4ac < 0, then its two roots:
because b2 – 4ac = –20 < 0.
are of the form A + Bi and A – Bi, a conjugate pair.
Therefore we have a complex conjugate pair as solutions.
Complex Numbers
In what sense are the complex numbers, numbers?
Real numbers are physically measurable quantities (or the
lack of such quantities in the case of the negative numbers).
Theoretically, we can forever improve upon the construction of
a stick with length exactly 2. But how do we make a stick of
length 3i, or a cookie that weighs 3i oz? Well, we can’t.
Imaginary numbers and complex numbers in general are not
physically measurable in the traditional sense. Only the real
numbers, which are a part of the complex numbers, are
tangible in the traditional sense.
Complex numbers are directional measurements.
They keep track of measurements and directions,
i.e. how much and in what direction (hence the two–
component form of the complex numbers).
Google the terms “complex numbers, 2D vectors” for further
information.
Complex Numbers
Exercise A. Write the complex numbers in i’s. Combine the
following expressions.
1. 2 – 2i + 3 + √–4 2. 4 – 5i – (4 – √–9) 3. 3 + 2i + (4 – i√5)
4. 4 – 2i + (–6 + i√3) 5. 4 – √–25 – (9 – √–16)
6. 11 – 9i + (–7 + i√12) 7. ½ – (√–49)/3 – (3/4 – √–16)
Exercise B. Do by inspection.
8. (1 – 2i)(1 + 2i) 9. (1 + 3i)(1 – 3i) 10. (2 + 3i)(2 – 3i)
11. (3 – 4i)(3 + 4i) 12. (9 + i√3)(9 – √3i) 13. (7 – i√5)(7 + i√5)
14. (9 + i√3) (7 – i√5)(9 – i√3) (7 + i√5)
15. (√3 + i√3) (√7 – i√5)(√3 – i√3)(√7 + i√5)
Exercise C. Expand and simplify.
16. (1 – 3i)(1 + 2i) 17. (2 + 3i)(1 – 3i) 18. (2 + 3i)(3 – 2i)
19. (4 – 3i)(3 – 4i) 20. (5 + 3i)(5 + 3i) 21. (1 – i)2
22. (2 + 3i)2 23. (5 + 2i)2
Complex Numbers
Exercise D. Divide by rationalizing the denominators.
2 + 3i
i
24.
3 – 4i
i
25.
3 + 4i
i
26.
1 + i
1 – i
27. 2 – i
3 – i
28. 3 – 2i
2 + i
29.
2 + 3i
2 – 3i
30.
3 – 4i
3 – 2i
31.
3 – 4i
2 + 5i
32.
Simplify
33. i92
38. Find a and b if (a + bi) 2 = i.
34. i –25 36. i 205
37. i –102
39. Is there a difference between √4i and 2i?
Complex Numbers
(Answers to odd problems) Exercise A.
1. 5 3. 7 + (2 – √5) i
Exercise B.
9. 10 11. 25
Exercise C.
17. 11 – 3i 19. – 25i
5. –5 – i 7. –1/4 + 5/3 i
13. 54 15. 72
21. – 2i 23. 21 + 20i
Exercise D.
– 4 – 3i
25. 27.
33. 1
i 29.
1
5
(4 – 7i) 31.
1
13
(17 – 6i)
37. – 1 39. There is no difference

More Related Content

What's hot

6.3 matrix algebra
6.3 matrix algebra6.3 matrix algebra
6.3 matrix algebra
math260
 
6.4 inverse matrices
6.4 inverse matrices6.4 inverse matrices
6.4 inverse matrices
math260
 

What's hot (20)

9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions x
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
12 graphs of second degree functions x
12 graphs of second degree functions x12 graphs of second degree functions x
12 graphs of second degree functions x
 
20 methods of division x
20 methods of division x20 methods of division x
20 methods of division x
 
15 translations of graphs x
15 translations of graphs x15 translations of graphs x
15 translations of graphs x
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient x
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
26 the logarithm functions x
26 the logarithm functions x26 the logarithm functions x
26 the logarithm functions x
 
24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina x24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina x
 
6.3 matrix algebra
6.3 matrix algebra6.3 matrix algebra
6.3 matrix algebra
 
1.1 exponents t
1.1 exponents t1.1 exponents t
1.1 exponents t
 
28 more on log and exponential equations x
28 more on log and exponential equations x28 more on log and exponential equations x
28 more on log and exponential equations x
 
21 properties of division and roots x
21 properties of division and roots x21 properties of division and roots x
21 properties of division and roots x
 
29 inverse functions x
29 inverse functions  x29 inverse functions  x
29 inverse functions x
 
1.0 factoring trinomials the ac method and making lists-t
1.0 factoring trinomials  the ac method and making lists-t1.0 factoring trinomials  the ac method and making lists-t
1.0 factoring trinomials the ac method and making lists-t
 
6.5 determinant x
6.5 determinant x6.5 determinant x
6.5 determinant x
 
1.2 algebraic expressions t
1.2 algebraic expressions t1.2 algebraic expressions t
1.2 algebraic expressions t
 
6.4 inverse matrices
6.4 inverse matrices6.4 inverse matrices
6.4 inverse matrices
 

Similar to 5 complex numbers y

5.4 Complex Numbers
5.4 Complex Numbers5.4 Complex Numbers
5.4 Complex Numbers
hisema01
 
A combination of a real and an imaginary number in the form
A combination of a real and an imaginary number in the formA combination of a real and an imaginary number in the form
A combination of a real and an imaginary number in the form
parassini
 
Complex operations
Complex operationsComplex operations
Complex operations
mstf mstf
 
1.3 Complex Numbers, Quadratic Equations In The Complex Number System
1.3 Complex Numbers, Quadratic Equations In The Complex Number System1.3 Complex Numbers, Quadratic Equations In The Complex Number System
1.3 Complex Numbers, Quadratic Equations In The Complex Number System
guest620260
 
Alg II Unit 4-8 Quadratic Equations and Complex Numbers
Alg II Unit 4-8 Quadratic Equations and Complex NumbersAlg II Unit 4-8 Quadratic Equations and Complex Numbers
Alg II Unit 4-8 Quadratic Equations and Complex Numbers
jtentinger
 

Similar to 5 complex numbers y (20)

5 1 complex numbers
5 1 complex numbers5 1 complex numbers
5 1 complex numbers
 
5 1 complex numbers-x
5 1 complex numbers-x5 1 complex numbers-x
5 1 complex numbers-x
 
5.4 Complex Numbers
5.4 Complex Numbers5.4 Complex Numbers
5.4 Complex Numbers
 
complex numbers
complex numberscomplex numbers
complex numbers
 
Complex nos demo 2
Complex nos demo 2Complex nos demo 2
Complex nos demo 2
 
Math1000 section1.6
Math1000 section1.6Math1000 section1.6
Math1000 section1.6
 
A combination of a real and an imaginary number in the form
A combination of a real and an imaginary number in the formA combination of a real and an imaginary number in the form
A combination of a real and an imaginary number in the form
 
complex numbers 1
complex numbers 1complex numbers 1
complex numbers 1
 
Complex numbers
Complex numbersComplex numbers
Complex numbers
 
Complex operations
Complex operationsComplex operations
Complex operations
 
1.3 Complex Numbers, Quadratic Equations In The Complex Number System
1.3 Complex Numbers, Quadratic Equations In The Complex Number System1.3 Complex Numbers, Quadratic Equations In The Complex Number System
1.3 Complex Numbers, Quadratic Equations In The Complex Number System
 
0305 ch 3 day 5
0305 ch 3 day 50305 ch 3 day 5
0305 ch 3 day 5
 
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbersMIT Math Syllabus 10-3 Lesson 5: Complex numbers
MIT Math Syllabus 10-3 Lesson 5: Complex numbers
 
Alg II Unit 4-8 Quadratic Equations and Complex Numbers
Alg II Unit 4-8 Quadratic Equations and Complex NumbersAlg II Unit 4-8 Quadratic Equations and Complex Numbers
Alg II Unit 4-8 Quadratic Equations and Complex Numbers
 
1.3 Complex Numbers
1.3 Complex Numbers1.3 Complex Numbers
1.3 Complex Numbers
 
Complex number multiplication
Complex number multiplicationComplex number multiplication
Complex number multiplication
 
An introdcution to complex numbers jcw
An introdcution to complex numbers jcwAn introdcution to complex numbers jcw
An introdcution to complex numbers jcw
 
complex numbers
complex numberscomplex numbers
complex numbers
 
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsxLECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
LECTURE 18 MARCH 2024- LEVEL 3 -2 Complex Numbers.ppsx
 
Complex numbers- College Algebra
Complex numbers- College AlgebraComplex numbers- College Algebra
Complex numbers- College Algebra
 

More from math260 (12)

36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx
 
35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx
 
18Ellipses-x.pptx
18Ellipses-x.pptx18Ellipses-x.pptx
18Ellipses-x.pptx
 
19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) x19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) x
 
18 ellipses x
18 ellipses x18 ellipses x
18 ellipses x
 
17 conic sections circles-x
17 conic sections circles-x17 conic sections circles-x
17 conic sections circles-x
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp x
 
25 continuous compound interests perta x
25 continuous compound interests perta  x25 continuous compound interests perta  x
25 continuous compound interests perta x
 
23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x23 looking for real roots of real polynomials x
23 looking for real roots of real polynomials x
 
22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x22 the fundamental theorem of algebra x
22 the fundamental theorem of algebra x
 

Recently uploaded

Recently uploaded (20)

Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 

5 complex numbers y

  • 2. Complex Numbers Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution.
  • 3. Complex Numbers Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution. We make up a new number called an imaginary number –1 to be a solution of this equation
  • 4. Complex Numbers Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution. We make up a new number called an imaginary number –1 ↔ i to be a solution of this equation and we name it “ i ”,
  • 5. Complex Numbers Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution. We make up a new number called an imaginary number –1 ↔ i to be a solution of this equation and we name it “ i ”, i.e. (±i)2 = –1
  • 6. Complex Numbers Using i, the “solutions” of the equations of the form Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution. We make up a new number called an imaginary number –1 ↔ i to be a solution of this equation and we name it “ i ”, i.e. (±i)2 = –1 x2 = –r
  • 7. Complex Numbers Using i, the “solutions” of the equations of the form Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution. We make up a new number called an imaginary number –1 ↔ i to be a solution of this equation and we name it “ i ”, i.e. (±i)2 = –1 x2 = –r are x = ± ir
  • 8. Complex Numbers Using i, the “solutions” of the equations of the form Example A. Solve x2 + 49 = 0 using imaginary numbers. Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution. We make up a new number called an imaginary number –1 ↔ i to be a solution of this equation and we name it “ i ”, i.e. (±i)2 = –1 x2 = –r are x = ± ir
  • 9. Complex Numbers Using i, the “solutions” of the equations of the form Example A. Solve x2 + 49 = 0 using imaginary numbers. Using the square-root method: x2 + 49 = 0 → x2 = –49 Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution. We make up a new number called an imaginary number –1 ↔ i to be a solution of this equation and we name it “ i ”, i.e. (±i)2 = –1 x2 = –r are x = ± ir
  • 10. Complex Numbers Using i, the “solutions” of the equations of the form Example A. Solve x2 + 49 = 0 using imaginary numbers. Using the square-root method: x2 + 49 = 0 → x2 = –49 so x = ±–49 Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution. We make up a new number called an imaginary number –1 ↔ i to be a solution of this equation and we name it “ i ”, i.e. (±i)2 = –1 x2 = –r are x = ± ir
  • 11. Complex Numbers Using i, the “solutions” of the equations of the form Example A. Solve x2 + 49 = 0 using imaginary numbers. Using the square-root method: x2 + 49 = 0 → x2 = –49 so x = ±–49 x = ±49–1 x = ±7i Because the square of any real number can't be negative, the equation x2 = –1 does not have any real solution. We make up a new number called an imaginary number –1 ↔ i to be a solution of this equation and we name it “ i ”, i.e. (±i)2 = –1 x2 = –r are x = ± ir
  • 12. A complex number is a number of the form a + bi where a and b are real numbers, Complex Numbers
  • 13. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part Complex Numbers
  • 14. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number. Complex Numbers
  • 15. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number. Complex Numbers Example B. 5 – 3i, 6i, –17 are complex numbers.
  • 16. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number. Complex Numbers Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i.
  • 17. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number. Complex Numbers Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i. The real part of 6i is 0.
  • 18. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number. Complex Numbers Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i. The real part of 6i is 0. Any real number a is also complex because a = a + 0i hence –17 = –17 + 0i.
  • 19. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i. The real part of 6i is 0. Any real number a is also complex because a = a + 0i hence –17 = –17 + 0i. Complex Numbers (Addition and subtraction of complex numbers) Treat the "i" as a variable when adding or subtracting complex numbers.
  • 20. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number Complex Numbers (Addition and subtraction of complex numbers) Treat the "i" as a variable when adding or subtracting complex numbers. Example C. (7 + 4i) + (5 – 3i) Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i. The real part of 6i is 0. Any real number a is also complex because a = a + 0i hence –17 = –17 + 0i.
  • 21. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number Complex Numbers (Addition and subtraction of complex numbers) Treat the "i" as a variable when adding or subtracting complex numbers. Example C. (7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i. The real part of 6i is 0. Any real number a is also complex because a = a + 0i hence –17 = –17 + 0i.
  • 22. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number Complex Numbers (Addition and subtraction of complex numbers) Treat the "i" as a variable when adding or subtracting complex numbers. Example C. (7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i = 12 + i Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i. The real part of 6i is 0. Any real number a is also complex because a = a + 0i hence –17 = –17 + 0i.
  • 23. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number Complex Numbers (Addition and subtraction of complex numbers) Treat the "i" as a variable when adding or subtracting complex numbers. Example C. (7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i = 12 + i (7 + 4i) – (5 – 3i) Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i. The real part of 6i is 0. Any real number a is also complex because a = a + 0i hence –17 = –17 + 0i.
  • 24. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number Complex Numbers (Addition and subtraction of complex numbers) Treat the "i" as a variable when adding or subtracting complex numbers. Example C. (7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i = 12 + i (7 + 4i) – (5 – 3i) = 7 + 4i – 5 + 3i Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i. The real part of 6i is 0. Any real number a is also complex because a = a + 0i hence –17 = –17 + 0i.
  • 25. A complex number is a number of the form a + bi where a and b are real numbers, a is called the real part and bi is called the imaginary part of the complex number Complex Numbers (Addition and subtraction of complex numbers) Treat the "i" as a variable when adding or subtracting complex numbers. Example C. (7 + 4i) + (5 – 3i) = 7 + 4i + 5 – 3i = 12 + i (7 + 4i) – (5 – 3i) = 7 + 4i – 5 + 3i = 2 + 7i Example B. 5 – 3i, 6i, –17 are complex numbers. The imaginary part of 5 – 3i is –3i. The real part of 6i is 0. Any real number a is also complex because a = a + 0i hence –17 = –17 + 0i.
  • 26. (Multiplication of complex numbers) Complex Numbers
  • 27. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers
  • 28. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i)
  • 29. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2
  • 30. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21
  • 31. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i
  • 32. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i The conjugate of (a + bi) is (a – bi) and vice–versa.
  • 33. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i The conjugate of (a + bi) is (a – bi) and vice–versa. The most important complex number multiplication formula is the product of a pair of conjugate numbers.
  • 34. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i (Conjugate Multiplication) The conjugate of (a + bi) is (a – bi) and vice–versa. The most important complex number multiplication formula is the product of a pair of conjugate numbers.
  • 35. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i (Conjugate Multiplication) The nonzero conjugate product is (a + bi)(a – bi) = a2 + b2 which is always positive. The conjugate of (a + bi) is (a – bi) and vice–versa. The most important complex number multiplication formula is the product of a pair of conjugate numbers.
  • 36. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i Example E. (4 – 3i)(4 + 3i) The conjugate of (a + bi) is (a – bi) and vice–versa. The most important complex number multiplication formula is the product of a pair of conjugate numbers. (Conjugate Multiplication) The nonzero conjugate product is (a + bi)(a – bi) = a2 + b2 which is always positive.
  • 37. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i Example E. (4 – 3i)(4 + 3i) = 42 + 32 = 25 The conjugate of (a + bi) is (a – bi) and vice–versa. The most important complex number multiplication formula is the product of a pair of conjugate numbers. (Conjugate Multiplication) The nonzero conjugate product is (a + bi)(a – bi) = a2 + b2 which is always positive.
  • 38. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i Example E. (4 – 3i)(4 + 3i) = 42 + 32 = 25 (5 – 7i)(5 + 7i) The conjugate of (a + bi) is (a – bi) and vice–versa. The most important complex number multiplication formula is the product of a pair of conjugate numbers. (Conjugate Multiplication) The nonzero conjugate product is (a + bi)(a – bi) = a2 + b2 which is always positive.
  • 39. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i Example E. (4 – 3i)(4 + 3i) = 42 + 32 = 25 (5 – 7i)(5 + 7i) = (5)2 + 72 The conjugate of (a + bi) is (a – bi) and vice–versa. The most important complex number multiplication formula is the product of a pair of conjugate numbers. (Conjugate Multiplication) The nonzero conjugate product is (a + bi)(a – bi) = a2 + b2 which is always positive.
  • 40. (Multiplication of complex numbers) To multiply complex numbers, use FOIL, then set i2 to be (-1) and simplify the result. Complex Numbers Example D. (4 – 3i)(2 + 7i) FOIL = 8 – 6i + 28i – 21i2 set i2 = (-1) = 8 – 6i + 28i + 21 = 29 + 22i Example E. (4 – 3i)(4 + 3i) = 42 + 32 = 25 (5 – 7i)(5 + 7i) = (5)2 + 72 = 54 The conjugate of (a + bi) is (a – bi) and vice–versa. The most important complex number multiplication formula is the product of a pair of conjugate numbers. (Conjugate Multiplication) The nonzero conjugate product is (a + bi)(a – bi) = a2 + b2 which is always positive.
  • 41. Complex Numbers (Division of Complex Numbers)
  • 42. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator.
  • 43. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify
  • 44. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i)
  • 45. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) *
  • 46. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32
  • 47. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 4 + 3i
  • 48. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2
  • 49. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2 –6
  • 50. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2 –6 6 – 17i = 25 6 25 17i –
  • 51. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2 –6 6 – 17i = 25 6 25 17i – Using the quadratic formula, we can solve all 2nd degree equations and obtain their complex number solutions.
  • 52. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2 –6 6 – 17i = 25 6 25 17i – Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers. Using the quadratic formula, we can solve all 2nd degree equations and obtain their complex number solutions.
  • 53. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2 –6 6 – 17i = 25 6 25 17i – Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers. To find b2 – 4ac first: a = 2, b = –2, c = 3, Using the quadratic formula, we can solve all 2nd degree equations and obtain their complex number solutions.
  • 54. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2 –6 6 – 17i = 25 6 25 17i – Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers. To find b2 – 4ac first: a = 2, b = –2, c = 3, so b2 – 4ac = –20. Using the quadratic formula, we can solve all 2nd degree equations and obtain their complex number solutions.
  • 55. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2 –6 6 – 17i = 25 6 25 17i – Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers. To find b2 – 4ac first: a = 2, b = –2, c = 3, so b2 – 4ac = –20. x = 2 ± –20 4 Using the quadratic formula, we can solve all 2nd degree equations and obtain their complex number solutions. Hence
  • 56. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2 –6 6 – 17i = 25 6 25 17i – Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers. To find b2 – 4ac first: a = 2, b = –2, c = 3, so b2 – 4ac = –20. x = 2 ± –20 4 = 2 ± 2–5 4 Using the quadratic formula, we can solve all 2nd degree equations and obtain their complex number solutions. Hence
  • 57. Complex Numbers (Division of Complex Numbers) To divide complex numbers, we write the division as a fraction, then multiply the top and the bottom of the fraction by the conjugate of the denominator. 3 – 2i 4 + 3i Example F. Simplify Multiply the conjugate of the denominator (4 – 3i) to the top and the bottom. (3 – 2i) (4 + 3i) = (4 – 3i) (4 – 3i) * 42 + 32 = 25 12 – 8i – 9i + 6i2 –6 6 – 17i = 25 6 25 17i – Example G. Solve 2x2 – 2x + 3 = 0 and simplify the answers. To find b2 – 4ac first: a = 2, b = –2, c = 3, so b2 – 4ac = –20. x = 2 ± –20 4 = 2 ± 2–5 4 = 2(1 ± i5) 4 = 1 ± i5 2 Using the quadratic formula, we can solve all 2nd degree equations and obtain their complex number solutions. Hence
  • 58. Powers of i The powers of i go in a cycle as shown below:
  • 59. The powers of i go in a cycle as shown below: i -1 = i2 Powers of i
  • 60. The powers of i go in a cycle as shown below: i -1 = i2 -i = i3 Powers of i
  • 61. The powers of i go in a cycle as shown below: i -1 = i2 -i = i3 1 = i4 Powers of i
  • 62. The powers of i go in a cycle as shown below: i = i5 -1 = i2 -i = i3 1 = i4 Powers of i
  • 63. Complex Numbers Exercise D. Divide by rationalizing the denominators. 2 + 3i i 24. 3 – 4i i 25. 3 – 4i i 26. 1 + i 1 – i 27. 2 – i 3 – i 28. 3 – 2i 2 + i 29. 2 + 3i 2 – 3i 30. 3 – 4i 3 – 2i 31. 3 – 4i 2 + 5i 32. 33. Is there a difference between √4i and 2i?
  • 64. The powers of i go in a cycle as shown below: i = i5 -1 = i2 = i6 .. -i = i3 1 = i4 Powers of i
  • 65. The powers of i go in a cycle as shown below: i = i5 -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 Powers of i
  • 66. The powers of i go in a cycle as shown below: i = i5 -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 = i8 .. Powers of i
  • 67. The powers of i go in a cycle as shown below: i = i5 = i9 .. -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 = i8 .. Powers of i
  • 68. The powers of i go in a cycle as shown below: i = i5 = i9 .. -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 = i8 .. Example H. Simplify i59 Powers of i
  • 69. The powers of i go in a cycle as shown below: i = i5 = i9 .. -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 = i8 .. Example H. Simplify i59 59 = 4*14 + 3, Powers of i
  • 70. The powers of i go in a cycle as shown below: i = i5 = i9 .. -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 = i8 .. Example H. Simplify i59 59 = 4*14 + 3, hence i59 = i4*14+3 Powers of i
  • 71. The powers of i go in a cycle as shown below: i = i5 = i9 .. -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 = i8 .. Example H. Simplify i59 59 = 4*14 + 3, hence i59 = i4*14+3 = i4*14+3 Powers of i
  • 72. The powers of i go in a cycle as shown below: i = i5 = i9 .. -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 = i8 .. Example H. Simplify i59 59 = 4*14 + 3, hence i59 = i4*14+3 = i4*14+3 = (i4)14 i3 Powers of i
  • 73. The powers of i go in a cycle as shown below: i = i5 = i9 .. -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 = i8 .. Example H. Simplify i59 59 = 4*14 + 3, hence i59 = i4*14+3 = i4*14+3 = (i4)14 i3 = 114 i3 Powers of i
  • 74. The powers of i go in a cycle as shown below: i = i5 = i9 .. -1 = i2 = i6 .. -i = i3 = i7 .. 1 = i4 = i8 .. Example H. Simplify i59 59 = 4*14 + 3, hence i59 = i4*14+3 = i4*14+3 = (i4)14 i3 = 114 i3 = i3 = -i Powers of i
  • 75. Quadratic Formula and Complex Numbers and From example G, the solutions of 2x2 – 2x + 3 = 0 are x = 1 + i5 2 x = 1 – i5 2 because b2 – 4ac = –20 < 0.
  • 76. Quadratic Formula and Complex Numbers and From example G, the solutions of 2x2 – 2x + 3 = 0 are x = 1 + i5 2 x = 1 – i5 2 because b2 – 4ac = –20 < 0. Therefore we have a complex conjugate pair as solutions.
  • 77. Quadratic Formula and Complex Numbers and From example G, the solutions of 2x2 – 2x + 3 = 0 are x = 1 + i5 2 x = 1 – i5 2 In general, for ax2 + bx + c = 0 with a, b, and c real numbers, and b2 – 4ac < 0, because b2 – 4ac = –20 < 0. Therefore we have a complex conjugate pair as solutions.
  • 78. Quadratic Formula and Complex Numbers x = –b +b2 – 4ac 2a x = –b –b2 – 4ac 2a and From example G, the solutions of 2x2 – 2x + 3 = 0 are x = 1 + i5 2 x = 1 – i5 2 and In general, for ax2 + bx + c = 0 with a, b, and c real numbers, and b2 – 4ac < 0, then its two roots: because b2 – 4ac = –20 < 0. are of the form A + Bi and A – Bi, a conjugate pair. Therefore we have a complex conjugate pair as solutions.
  • 79. Quadratic Formula and Complex Numbers x = –b +b2 – 4ac 2a x = –b –b2 – 4ac 2a and If a, b, and c are real numbers, then the complex roots* for ax2 + bx + c = 0 are a complex conjugates pair. ( * if b2 – 4ac < 0). From example G, the solutions of 2x2 – 2x + 3 = 0 are x = 1 + i5 2 x = 1 – i5 2 and In general, for ax2 + bx + c = 0 with a, b, and c real numbers, and b2 – 4ac < 0, then its two roots: because b2 – 4ac = –20 < 0. are of the form A + Bi and A – Bi, a conjugate pair. Therefore we have a complex conjugate pair as solutions.
  • 80. Quadratic Formula and Complex Numbers x = –b +b2 – 4ac 2a x = –b –b2 – 4ac 2a and If a, b, and c are real numbers, then the complex roots* for ax2 + bx + c = 0 are a complex conjugates pair. ( * if b2 – 4ac < 0). From example G, the solutions of 2x2 – 2x + 3 = 0 are x = 1 + i5 2 For example, if x = i is a solution of #x2 + # x + # = 0, then automatically x = – i is the other root (# real numbers.) x = 1 – i5 2 and In general, for ax2 + bx + c = 0 with a, b, and c real numbers, and b2 – 4ac < 0, then its two roots: because b2 – 4ac = –20 < 0. are of the form A + Bi and A – Bi, a conjugate pair. Therefore we have a complex conjugate pair as solutions.
  • 81. Complex Numbers In what sense are the complex numbers, numbers? Real numbers are physically measurable quantities (or the lack of such quantities in the case of the negative numbers). Theoretically, we can forever improve upon the construction of a stick with length exactly 2. But how do we make a stick of length 3i, or a cookie that weighs 3i oz? Well, we can’t. Imaginary numbers and complex numbers in general are not physically measurable in the traditional sense. Only the real numbers, which are a part of the complex numbers, are tangible in the traditional sense. Complex numbers are directional measurements. They keep track of measurements and directions, i.e. how much and in what direction (hence the two– component form of the complex numbers). Google the terms “complex numbers, 2D vectors” for further information.
  • 82. Complex Numbers Exercise A. Write the complex numbers in i’s. Combine the following expressions. 1. 2 – 2i + 3 + √–4 2. 4 – 5i – (4 – √–9) 3. 3 + 2i + (4 – i√5) 4. 4 – 2i + (–6 + i√3) 5. 4 – √–25 – (9 – √–16) 6. 11 – 9i + (–7 + i√12) 7. ½ – (√–49)/3 – (3/4 – √–16) Exercise B. Do by inspection. 8. (1 – 2i)(1 + 2i) 9. (1 + 3i)(1 – 3i) 10. (2 + 3i)(2 – 3i) 11. (3 – 4i)(3 + 4i) 12. (9 + i√3)(9 – √3i) 13. (7 – i√5)(7 + i√5) 14. (9 + i√3) (7 – i√5)(9 – i√3) (7 + i√5) 15. (√3 + i√3) (√7 – i√5)(√3 – i√3)(√7 + i√5) Exercise C. Expand and simplify. 16. (1 – 3i)(1 + 2i) 17. (2 + 3i)(1 – 3i) 18. (2 + 3i)(3 – 2i) 19. (4 – 3i)(3 – 4i) 20. (5 + 3i)(5 + 3i) 21. (1 – i)2 22. (2 + 3i)2 23. (5 + 2i)2
  • 83. Complex Numbers Exercise D. Divide by rationalizing the denominators. 2 + 3i i 24. 3 – 4i i 25. 3 + 4i i 26. 1 + i 1 – i 27. 2 – i 3 – i 28. 3 – 2i 2 + i 29. 2 + 3i 2 – 3i 30. 3 – 4i 3 – 2i 31. 3 – 4i 2 + 5i 32. Simplify 33. i92 38. Find a and b if (a + bi) 2 = i. 34. i –25 36. i 205 37. i –102 39. Is there a difference between √4i and 2i?
  • 84. Complex Numbers (Answers to odd problems) Exercise A. 1. 5 3. 7 + (2 – √5) i Exercise B. 9. 10 11. 25 Exercise C. 17. 11 – 3i 19. – 25i 5. –5 – i 7. –1/4 + 5/3 i 13. 54 15. 72 21. – 2i 23. 21 + 20i Exercise D. – 4 – 3i 25. 27. 33. 1 i 29. 1 5 (4 – 7i) 31. 1 13 (17 – 6i) 37. – 1 39. There is no difference