SlideShare a Scribd company logo
1 of 28
Download to read offline
Automatic high order absorption layers by M.Storti et.al.




                          Automatic high order absorption layers for
                           advective-diffusive systems of equations
                                                         by Mario Storti, Laura Battaglia, and Rodrigo Paz



                                                                                ´
                                                       Centro Internacional de Metodos Computacionales
                                                                     en Ingenier´a - CIMEC
                                                                                ı
                                                          INTEC, (CONICET-UNL), Santa Fe, Argentina
                                                              <mario.storti at gmail.com>
                                                            http://www.cimec.org.ar/mstorti




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                  1
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                              Motivation for Absorbing Boundary Conditions
                    In wave-like propagation problems, not
                    including ABC may lead to
                       non-convergent solutions .

                         utt = c2 ∆u, in Ω
                             u = u(x, t), at Γb , u = 0, at Γ∞ v
                                 ¯

                              u doesn’t converge to the correct
                              solution irradiating energy from the
                              source, even if Γ∞ → ∞. A standing
                              wave is always found.
                              u is unbounded if u emits in an
                                                ¯
                              eigenfrequency which is a resonance
                              mode of the closed cavity.

                    Absorbing boundary conditions must be
                    added to the outer boundary in order to let
                    energy be extracted from the domain.
                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                  2
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                   Motivation for Absorbing Boundary Conditions (cont.)


                          If a dissipative region is large
                          enough so that many wavelengths
                          are included in the region may act
                          as an absorbing layer, i.e. as an
                          absorbing boundary condition.


                                                                                                                          dissipative
                          However, it is a common
                          misconception to assume that a
                          coarse mesh adds dissipation and
                                                                                                              fine mesh   coarse mesh
                          consequently may improve
                          absorption. For instance for the                                                                dissipative??
                          wave equation a coarse mesh may
                          lead to evanescent solutions and
                          then to act as a fully reflecting
                          boundary.

                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                      3
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                     Boundary conditions for advective diffusive systems


                    Well known theory and practice for advective systems say that at a boundary
                    the number of Dirichlet conditions should be equal to the
                      number of incoming characteristics .


                                            ∂U ∂Fc,j (U)
                                                 +           =0
                                             ∂t      ∂xj
                                                   ∂Fc,j (U)
                                            Ac,j =           , advective Jacobian
                                                     ∂U
                                            Nbr. of incoming characteristics                                  = sum(eig(A · n) < 0)
                                                                                                                            ˆ
                    ˆ
                    n is the exterior normal.
                    Adding extra Dirichlet conditions leads to spurious shocks, and lack of
                    enough Dirichlet conditions leads to instability.



                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                          4
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                          Boundary conditions for advective diffusive systems (cont.)


                    For simple scalar advection problems the Jacobian is the transport velocity.
                    The rule is then to check the projection of velocity onto the exterior normal.

                    For more complex flows (i.e. with non diagonalizable Jacobians , as gas
                    dynamics or shallow water eqs.) the number of incoming characteristics may
                    be approx. predicted from the flow conditions.
                                        subsonic flow (Minf<1)                                                            supersonic flow (Minf>1)
                                                                                                                                               supersonic outgoing
                subsonic incoming                                                                                                                 (no fields imposed)
                 rho,u,v                                                                                      rho,u,v,p
                                                                                                                                          ck
                                                                                                                                        ho
                                                                                                                                     ws
                                                                                                                            M>1    bo
                                                                                                                                        M<1
                                                 1111111
                                                 0000000
                                                 1111111
                                                 0000000                                                                          111111
                                                                                                                                  000000
                                                                                                                                  111111
                                                                                                                                  000000
                                                 1111111
                                                 0000000                                                                          111111
                                                                                                                                  000000
                                                 1111111
                                                 0000000                                                                          111111
                                                                                                                                  000000




                                                                                         p                                                              p
                                                                             subsonic outgoing                                                       subsonic outgoing



                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                                            5
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                                     Absorbing boundary conditions

                    However, this kind of conditions are, generally, reflective . Consider a pure
                    advective system of equations in 1D, i.e., Fd,j ≡ 0

                                          ∂H(U) ∂Fc,x (U)
                                                     +           = 0, in [0, L].          (1)
                                             ∂t             ∂x
                    If the system is “linear”, i.e., Fc,x (U) = AU, H(U) = CU (A and C do
                    not depend on U), a first order linear system is obtained
                                                                                             ∂U    ∂U
                                                                                           C    +A    = 0.           (2)
                                                                                             ∂t    ∂x
                    The system is “hyperbolic” if C is invertible, C−1 A is diagonalizable with
                    real eigenvalues. If this is the case, it is possible to make the following
                    eigenvalue decomposition for C−1 A

                                                                                               C−1 A = SΛS−1 ,       (3)

                    where S is real and invertible and Λ is real and diagonal. If new variables are


                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                     6
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                    defined V                    = S−1 U, then equation (2) becomes
                                                                                                ∂V    ∂V
                                                                                                   +Λ    = 0.       (4)
                                                                                                ∂t    ∂x
                    Now, each equation is a linear scalar advection equation

                                                             ∂vk      ∂vk
                                                                 + λk     = 0, (no summation over k ).              (5)
                                                              ∂t      ∂x
                    vk are the “characteristic components” and λk are the “characteristic
                    velocities” of propagation.




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                    7
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                      Linear 1D absorbing boundary conditions


                    Assuming λk                         = 0, the absorbing boundary conditions are, depending on the
                    sign of λk ,

                                             if λk        > 0: vk (0) = vk0 ;
                                                                        ¯                                     no boundary condition at x   =L
                                                                                                                                                (6)
                                           if λk         < 0: vk (L) = vkL ; no boundary condition at x = 0
                                                                       ¯

                    This can be put in compact form as

                                                                                     ¯
                                                                             Π+ (V − V0 ) = 0;                          at x   =0
                                                                              V
                                                                                                                                                (7)
                                                                            Π− (V
                                                                             V
                                                                                                  ¯
                                                                                                − VL ) = 0;             at x   =L




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                                8
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                           Linear 1D absorbing boundary conditions (cont.)

                    Π± are the projection matrices onto the right/left-going characteristic modes
                       V
                    in the V basis,              
                                                 1; if j = k and λ > 0
                                                                        k
                                        Π+ =
                                          V,jk
                                                 0; otherwise,                                (8)

                                                                         Π+ + Π− = I.
                    It can be easily shown that they are effectively projection matrices, i.e.,
                    Π± Π± = Π± and Π+ Π− = 0. Coming back to the boundary condition at
                    x = L in the U basis, it can be written
                                                                                        Π− S−1 (U − UL ) = 0
                                                                                         V
                                                                                                    ¯                 (9)

                    or, multiplying by S at the left

                                                                        Π± (U − U0,L ) = 0, at x = 0, L,
                                                                         U
                                                                                ¯                                    (10)

                    where
                                                                                               Π± = S Π± S−1 ,
                                                                                                U      V             (11)
                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                     9
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                           Linear 1D absorbing boundary conditions (cont.)



                                                                         Π± (U − U0,L ) = 0, at x = 0, L,
                                                                          U
                                                                                 ¯
                                                                                                                            (12)
                                                                         Π±
                                                                          U          =      S Π±
                                                                                               V
                                                                                                              −1
                                                                                                              S    ,
                    These conditions are completely absorbing for 1D linear advection system of
                    equations (2).
                                                        +
                    The rank of Π is equal to the number n+ of positive eigenvalues, i.e., the
                    number of right-going waves. Recall that the right-going waves are incoming
                    at the x = 0 boundary and outgoing at the x = L boundary. Conversely, the
                              −
                    rank of Π is equal to the number n− of negative eigenvalues, i.e., the
                    number of left-going waves (incoming at x = L and outgoing at the x = 0
                    boundary).




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                           10
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                                            ABC for nonlinear problems

                    First order absorbing boundary conditions may be constructed by imposing
                    exactly the components along the incoming characteristics.

                                                                                   Π− (Uref ) (U − Uref ) = 0.
                    Π− is the projection operator onto incoming characteristics. It can be
                    obtained straightforwardly from the projected Jacobian.
                    What for non-linear problems? A posisble strategy is to linearize the state
                    around the last state or a predictor state.
                             Storti, M.; Nigro, N.; Paz, R.R.; Dalcin, L. “Dynamic boundary conditions in
                             Computational Fluid Dynamics” Computer Methods in Applied Mechanics
                             and Engineering 197(13-16), pp. 1219-1232 (2008)
                             Paz, R.R.; Storti, M.; Garelli, L. “Local Absorbent Boundary Condition for
                             Nonlinear Hyperbolic Problems with Unknown Riemann Invariants”
                             Computers and Fluids 40, pp. 52-67 (2011)
                    (launch video cylabso-xoffset015-Rext10)



                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                     11
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                  Higher order absorbing boundary conditions
                                                                                   irregular geometries:




                                                                                                                        emitter



                    In 2D or 3D a first order
                    ABC will be partially
                    reflecting for                                                  regular geometries:
                                                                                                                  wall (reflecting)
                    non-normal incidence.
                    This can lead to large
                    errors, speciall for very




                                                                                                                                       1st order ABC
                                                                                                  1st order ABC




                    regular geometries like
                    a channel.                                                                                            emitter




                                                                                                                   wall (reflecting)

                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                                           12
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                       Higher order absorbing boundary conditions (cont.)

                    There are several approaches for higher order aborbing layers, among them a
                    popular approach is the Perfectly Matched Layer (PML, Makefile. J-P
                    Berenger, J. Comput. Phys. 114, 185 (1994)). However,

                             It is addhoc for each physical problem.
                             It is formulated only on rectangular domains .
                             It’s not very robust .
                             It requires additional variables to be defined in the program in the
                             absorbing layer.
                    The first is the most concerning us. We want an absorbing numerical device
                    with the following characteristics

                             To be automatically computable from the flux function (and perhaps the
                             Jacobian of the fluxes).
                             To be adjustable higher order (more probably first and second order).
                             To be robust .

                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                  13
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                             If auxiliary variables are needed, they must be easily computable in the
                             actual context.




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                  14
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                      Advective/diffusive systems implemented


                             Navier-Stokes compressible flow (                                                       ),

                             Shallow water equations (                                                    ),

                             Stratified shallow water equations (                                                     ),

                             1D shallow water equations in channels of arbitrary section (                                ),

                             Scalar advection/diffusion (                                                      ),

                             Scalar wave equation (                                               )

                             Maxwell equations (                                           )

                    (           = implemented in PETSc-FEM)




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                              15
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                                      A second order absorbing layer

                    If, for the first order aborbing boundary condition we condense the Lagrange
                    multiplier version, we get a penalized version of the form


                                            Un+1 − Un   Un+1 − Un+1  1
                                          C  0      0
                                                      +A 1      0
                                                                    + CΠ+ Un+1 = 0.
                                                                        U 0                                                       (13)
                                               ∆t            h
                    Assuming that we want to add an absorbing layer in 0                                      ≤ x ≤ L, then the
                    equation would be

                                                                        ∂U          ∂U    ∂U
                                                                      C    + HU + A    +B    = 0,                                 (14)
                                                                        ∂t          ∂x    ∂y

                    where H is the matrix of absorbing coefficients to be yet defined. We now
                    transform Fourier in t and y with associated variables iω and iky , i.e. we
                    assume
                                                                                  ˆ
                                                                     U(x, y, t) = U(x)exp {i(ky y − ωt)}.                         (15)


                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                              16
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.



                                                                         ˆ
                    Then, we get (for simplicity we drop the hat symbol (U                                                     → U),
                                                                ∂U
                                                              A    + (−iωC + H + iky B)U = 0,
                                                                ∂x                                                                          (16)
                                                                    ∂U
                                                               =⇒       + (A−1 H − iωM(z))U = 0,
                                                                     ∂x
                    where
                                                                                                   z = ky /ω,
                                                                                                              −1
                                                                                                                                            (17)
                                                                                       M(z) = A                    (C − zB).

                    In order to not have reflections A−1 H must have the same eigenvectors
                    that M(z). One possibility is then to diagonalize M(z)

                                                                                               M(z) = QΛQ−1 ,                               (18)

                    and then to force A−1 H to be diagonal in the same basis

                                                                                           A−1 H = QΛH Q−1 .                                (19)


                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                           17
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.



                    In order to have an absorbing layer we must have

                                                                                sign(λ(A−1 H)j ) = sign(λj ),                     (20)

                    Transforming Fourier back to t and y we obtain the desired absorbing layer.
                    However, Q depends on z and so will H so it would be non-local . In order to
                    have a local operator we perform an expansion of it in powers of z . For
                    instance if we can approximate it to

                                                                                             H(z) ≈ H0 + zδH,                     (21)

                    then the absorbing term would be

                                                                 H0 U + zδHU = H0 U + (iky /iω)δHU.                               (22)

                    Transforming Fourier back to (t, y) we get

                                                                       ∂U              ∂U    ∂U
                                                                C         + H({U}) + A    +B    = 0,
                                                                       ∂t              ∂x    ∂y
                                                                                                               t                  (23)
                                                                                                                    ∂U
                                                                H({U}) = H0 U + δH                                     dt.
                                                                                                              t=0   ∂y

                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                 18
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                    The simplest choice for (29) is λ(A−1 H)j =                                                      Kλj , and we get H0 = KC,
                    H1 = −KB, so that the absorbing layer is
                                                                                                       t
                                   ∂U                                                                         ∂U        ∂U    ∂U
                                 C    + K CU − B                                                                 dt + A    +B    = 0,        (24)
                                   ∂t                                                               t=0       ∂y        ∂x    ∂y

                    Note that in the first order case we get a local operator .




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                           19
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                              Numerical evaluation of the absorbing operator


                             It involves an integral over time , that involves storing an auxiliary
                             variable say W and then updating with
                                                                 t
                                                                         ∂U
                                          W=                                dt,
                                                          t=0            ∂y
                                                                                                                                                    (25)
                                                        n+1                           n                  n−1                              n+1
                                          (3W                        − 4W + W                                  )jk       (Uj,k+1 − Uj,k−1 )
                                                                                                                     =                          .
                                                                        2∆t                                                      2∆y
                             The derivative with respect to y is computed by standard finite difference
                             approximations (j(k) indices is along x(y) axis).
                             The operator can be easily evaluated in the context of an
                                unstructured grid solver (FEM for instance).
                             K[=]T−1 but if a velocity scale v is available then we get a length scale
                                                             ¯
                             ¯
                             Labso = v /K
                                     ¯


                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                                  20
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                              Examples. The scalar wave equation


                    The standard representation of the scalar wave equation is

                                                                                                        φtt = c2 ∆φ                              (26)

                    In 2D we can put it in the form of an advective-diffusive as

                                                                                         ut + c(ux + vy ) = 0,
                                                                                                                                                 (27)
                                                                                         vt + c(−vx + uy ) = 0.
                    and the corresponding vectorial form is
                                                                                                                                       
                                                              u                                               1   0                   0 1
                                        U=                           , Ax = c                                        , Ay = c          ,   (28)
                                                               v                                              0   −1                  1 0

                    u and v satisfy the wave equation, and the dispersion relation is ω = ck (the
                    same as for the wave equation).


                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                                21
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                                                    Reflection coefficients
                                 1




                                                                                                                        1st order , K=0
                               0.8                                                                                      1st order , K=5
                                                                                                                        1st order , K=10
                                                                                                                        1st order , K=20
                                                                                                                        2nd order , K=5
                               0.6
                                                                                                                        2nd order , K=10
                                                                                                                        2nd order , K=20

                               0.4




                               0.2




                                 0
                                     0                                0.5                                     1   1.5      2




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                      22
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                                            Reflection coefficients (cont.)
                                                                 1st order layer                                                                              2nd order layer
                                                                                                                                                1




                                                                                                                      wave amplitude
                                  wave amplitude

                                                   1
                  u,v variables

                                                                                                                                       0.9

                                                                                                                                       0.8
                                               0.8
                                                                                                                                       0.7

                                                                                                                                                                         u
                                                                            u
                                               0.6                                                                                     0.6

                                                                                                                                       0.5
                                               0.4
                                                                                                                                       0.4

                                               0.2
                                                                  v                                                                    0.3

                                                                                                                                       0.2
                                                                                                                                                              v
                                                   0                                                                                   0.1
                                                       0   0.2        0.4           0.6             0.8
                                                                                                              x   1                                 0   0.2     0.4       0.6    0.8
                                                                                                                                                                                           x   1
                   charact. vrbles




                                                                                                                               wave amplitude
                                  wave amplitude




                                                   1                                                                                            1


                                             0.8                                                                                           0.8

                                                                                                                                                                         V1
                                             0.6
                                                                            V1                                                             0.6


                                             0.4                                                                                           0.4


                                             0.2
                                                             V2                                                                            0.2


                                                   0                                                                                            0
                                                                                                                                                              V2
                                                                                                                                                                                           x
                                                       0   0.2        0.4          0.6              0.8           1                                 0   0.2        0.4    0.6        0.8       1
                                                                                                              x

                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                                                                    23
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                                      Decaying perturbation example
                                                                                                                              wall (perfectly reflecting)




                                                                                                                                                                            1st order ABC
                                                                                                              1st order ABC
                           10
                                                                                                                                                                absorbing
                                                                                                                                                                  layer



                             1                                                                                                wall (perfectly reflecting)


                                                                                                                                       1st order surf
                                                                                                                                               [4300 step/OM]

                                                                                                                                    1st order surf
                                                                                                                                    + 1st order layer
                                                                                                                                             [4000 step/OM]
                          0.1


                                                                                                                                     1st order surf
                                                                                                                                     2nd order + layer
                                                                                                                                           [1200 step/OM]


                         0.01
                                 0                                 500                                1000                          1500                      2000
                                                                                                                                            time step

                    (launch video fsabso2d-pertini)

                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                                                           24
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                                                         Diffraction by a slit

                                                                                                              wall (perfectly reflecting)




                                                                                                                                                   1st order ABC
                                                                     Lslit=0.5




                                                                                                                                       absorbing
                                                         Ly=1




                                                                                                                                         layer
                                              omega=25.7                                                       wall (perfectly reflecting)
                                              lambda = 0.25                                                       Lx=1
                                              c=1
                                                                                                                                   Labso=0.25
                    (launch video fsabso2d-slit-best)




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                                                       25
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                          Other choices for the absorbing matrix coefficient


                    Recall that the requirement on H is

                                                                                sign(λ(A−1 H)j ) = sign(λj ),                            (29)

                    some possible choices are

                                                  λ(A−1 H)j ) = λj                                            =⇒   H0 = C,
                                                  λ(A−1 H)j ) = sign(λj )                                     =⇒   H0 = A|A−1 C|,        (30)

                                                  λ(A−1 H)j ) = 1/λj                                          =⇒   H0 = A|C−1 A|,

                    The expansion H(z) ≈ H0 + zδH can be donde numerically if it is not
                    possible to do analytically, i.e. compute H(z) for several z and fit with
                    polynomials for each entry in H.



                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                                        26
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                                                                   Conclusions


                             An aborbing high order layer has been presented.

                             It can be automatically computed programatically from the flux function

                             and its Jacobians                                         .

                             It requires an auxiliary variable that is basically the integral over time of

                             the lateral derivatives. (It’s non-local in time)                                   .

                             Several examples for the wave equation have been shown with the
                             simplest choice H = C − zB.

                             Other choices for H may be computed by polynomial fitting on z .

                             Computational cost is negligible (but results on the absorbing layer must

                             be discarded) (                                  /            )



                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                         27
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
Automatic high order absorption layers by M.Storti et.al.




                                                                                            Acknowledgment


                    This work has received financial support from Universidad Nacional del
                    Litoral (UNL, Argentina, grants CAI+D 2005-10-64) and Agencia Nacional de
                              ´                    ´
                    Promocion Cient´fica y Tecnologica (ANPCyT, Argentina, grants PICT PME
                                     ı
                    209/2003, PICT-1141/2007, PICT-1506/2006).
                    We made extensive use of Free Software (http://www.gnu.org) as
                    GNU/Linux OS, MPI, PETSc, GCC/G++ compilers, Octave, VTK, Python, Git,
                    among many others. In addition, many ideas from these packages have been
                    inspiring to us.




                         ´
Centro Internacional de Metodos Computacionales en Ingenier´a
                                                           ı                                                  28
((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))

More Related Content

What's hot

Caltech Composite Inelastic Dark Matter
Caltech Composite Inelastic Dark MatterCaltech Composite Inelastic Dark Matter
Caltech Composite Inelastic Dark MatterJay Wacker
 
16.40 o10 d wiltshire
16.40 o10 d wiltshire16.40 o10 d wiltshire
16.40 o10 d wiltshireNZIP
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : WaveletsGabriel Peyré
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
Quantum Information with Continuous Variable systems
Quantum Information with Continuous Variable systemsQuantum Information with Continuous Variable systems
Quantum Information with Continuous Variable systemskarl3s
 
Introduction to compressive sensing
Introduction to compressive sensingIntroduction to compressive sensing
Introduction to compressive sensingMohammed Musfir N N
 

What's hot (10)

Cd Simon
Cd SimonCd Simon
Cd Simon
 
Caltech Composite Inelastic Dark Matter
Caltech Composite Inelastic Dark MatterCaltech Composite Inelastic Dark Matter
Caltech Composite Inelastic Dark Matter
 
16.40 o10 d wiltshire
16.40 o10 d wiltshire16.40 o10 d wiltshire
16.40 o10 d wiltshire
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...
Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...
Friedrich Workshop on Modelling and Simulation of Coal-fired Power Generation...
 
Quantum Information with Continuous Variable systems
Quantum Information with Continuous Variable systemsQuantum Information with Continuous Variable systems
Quantum Information with Continuous Variable systems
 
NC time seminar
NC time seminarNC time seminar
NC time seminar
 
15WCEE_620_Craifaleanu&Borcia
15WCEE_620_Craifaleanu&Borcia15WCEE_620_Craifaleanu&Borcia
15WCEE_620_Craifaleanu&Borcia
 
Introduction to compressive sensing
Introduction to compressive sensingIntroduction to compressive sensing
Introduction to compressive sensing
 

Viewers also liked

Advances in the Solution of NS Eqs. in GPGPU Hardware. Second order scheme an...
Advances in the Solution of NS Eqs. in GPGPU Hardware. Second order scheme an...Advances in the Solution of NS Eqs. in GPGPU Hardware. Second order scheme an...
Advances in the Solution of NS Eqs. in GPGPU Hardware. Second order scheme an...Storti Mario
 
Comparison of Different Absorbing Boundary Conditions for GPR Simulation by t...
Comparison of Different Absorbing Boundary Conditions for GPR Simulation by t...Comparison of Different Absorbing Boundary Conditions for GPR Simulation by t...
Comparison of Different Absorbing Boundary Conditions for GPR Simulation by t...IJMER
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)IJMER
 
Air pulse fruit harvester
Air pulse fruit harvesterAir pulse fruit harvester
Air pulse fruit harvesterStorti Mario
 
Programacion en C++ para Ciencia e Ingeniería
Programacion en C++ para Ciencia e IngenieríaProgramacion en C++ para Ciencia e Ingeniería
Programacion en C++ para Ciencia e IngenieríaStorti Mario
 
Advances in the Solution of Navier-Stokes Eqs. in GPGPU Hardware. Modelling F...
Advances in the Solution of Navier-Stokes Eqs. in GPGPU Hardware. Modelling F...Advances in the Solution of Navier-Stokes Eqs. in GPGPU Hardware. Modelling F...
Advances in the Solution of Navier-Stokes Eqs. in GPGPU Hardware. Modelling F...Storti Mario
 

Viewers also liked (6)

Advances in the Solution of NS Eqs. in GPGPU Hardware. Second order scheme an...
Advances in the Solution of NS Eqs. in GPGPU Hardware. Second order scheme an...Advances in the Solution of NS Eqs. in GPGPU Hardware. Second order scheme an...
Advances in the Solution of NS Eqs. in GPGPU Hardware. Second order scheme an...
 
Comparison of Different Absorbing Boundary Conditions for GPR Simulation by t...
Comparison of Different Absorbing Boundary Conditions for GPR Simulation by t...Comparison of Different Absorbing Boundary Conditions for GPR Simulation by t...
Comparison of Different Absorbing Boundary Conditions for GPR Simulation by t...
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
 
Air pulse fruit harvester
Air pulse fruit harvesterAir pulse fruit harvester
Air pulse fruit harvester
 
Programacion en C++ para Ciencia e Ingeniería
Programacion en C++ para Ciencia e IngenieríaProgramacion en C++ para Ciencia e Ingeniería
Programacion en C++ para Ciencia e Ingeniería
 
Advances in the Solution of Navier-Stokes Eqs. in GPGPU Hardware. Modelling F...
Advances in the Solution of Navier-Stokes Eqs. in GPGPU Hardware. Modelling F...Advances in the Solution of Navier-Stokes Eqs. in GPGPU Hardware. Modelling F...
Advances in the Solution of Navier-Stokes Eqs. in GPGPU Hardware. Modelling F...
 

Similar to Automatic high order absorption layers for advective-diffusive systems of equations

Quantum information technology
Quantum information technologyQuantum information technology
Quantum information technologymitchellwalls1
 
Methods of Preventing Decoherence in Quantum Bits
Methods of Preventing Decoherence in Quantum BitsMethods of Preventing Decoherence in Quantum Bits
Methods of Preventing Decoherence in Quantum BitsDurham Abric
 
ProceedingForBloisConf_StefanoPerasso
ProceedingForBloisConf_StefanoPerassoProceedingForBloisConf_StefanoPerasso
ProceedingForBloisConf_StefanoPerassoStefano Perasso
 
Pres110811
Pres110811Pres110811
Pres110811shotlub
 
Machine Learning at the (sub)Atomic Scale (or Are The Nanobots Nigh?)
Machine Learning at the (sub)Atomic Scale (or Are The Nanobots Nigh?)Machine Learning at the (sub)Atomic Scale (or Are The Nanobots Nigh?)
Machine Learning at the (sub)Atomic Scale (or Are The Nanobots Nigh?)Philip Moriarty
 
Vibration energy harvesting under uncertainty
Vibration energy harvesting under uncertaintyVibration energy harvesting under uncertainty
Vibration energy harvesting under uncertaintyUniversity of Glasgow
 
Investigation of repeated blasts at Aitik mine using waveform cross correlation
Investigation of repeated blasts at Aitik mine using waveform cross correlationInvestigation of repeated blasts at Aitik mine using waveform cross correlation
Investigation of repeated blasts at Aitik mine using waveform cross correlationIvan Kitov
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsAlexander Decker
 
Bloco2 produtos gerados_pelo_inpe
Bloco2 produtos gerados_pelo_inpeBloco2 produtos gerados_pelo_inpe
Bloco2 produtos gerados_pelo_inpeDafmet Ufpel
 
Radiation Hardening by Design
Radiation Hardening by DesignRadiation Hardening by Design
Radiation Hardening by DesignJay Baxi
 
Chester Nov08 Terry Lynch
Chester Nov08 Terry LynchChester Nov08 Terry Lynch
Chester Nov08 Terry LynchTerry Lynch
 
Jets and Missing Energy at the LHC
Jets and Missing Energy at the LHCJets and Missing Energy at the LHC
Jets and Missing Energy at the LHCJay Wacker
 
this is density functional theory in pdf
this is density functional theory in pdfthis is density functional theory in pdf
this is density functional theory in pdfBramhanandgiri
 
Physics 101 Learning Object #7 Interference of Waves and Beats
Physics 101 Learning Object #7 Interference of Waves and BeatsPhysics 101 Learning Object #7 Interference of Waves and Beats
Physics 101 Learning Object #7 Interference of Waves and Beatstony808
 
Lect5 Diffusion
Lect5 DiffusionLect5 Diffusion
Lect5 DiffusionLalit Garg
 

Similar to Automatic high order absorption layers for advective-diffusive systems of equations (20)

Quantum information technology
Quantum information technologyQuantum information technology
Quantum information technology
 
PhD defense talk slides
PhD  defense talk slidesPhD  defense talk slides
PhD defense talk slides
 
Methods of Preventing Decoherence in Quantum Bits
Methods of Preventing Decoherence in Quantum BitsMethods of Preventing Decoherence in Quantum Bits
Methods of Preventing Decoherence in Quantum Bits
 
ProceedingForBloisConf_StefanoPerasso
ProceedingForBloisConf_StefanoPerassoProceedingForBloisConf_StefanoPerasso
ProceedingForBloisConf_StefanoPerasso
 
Pres110811
Pres110811Pres110811
Pres110811
 
Machine Learning at the (sub)Atomic Scale (or Are The Nanobots Nigh?)
Machine Learning at the (sub)Atomic Scale (or Are The Nanobots Nigh?)Machine Learning at the (sub)Atomic Scale (or Are The Nanobots Nigh?)
Machine Learning at the (sub)Atomic Scale (or Are The Nanobots Nigh?)
 
Vibration energy harvesting under uncertainty
Vibration energy harvesting under uncertaintyVibration energy harvesting under uncertainty
Vibration energy harvesting under uncertainty
 
Investigation of repeated blasts at Aitik mine using waveform cross correlation
Investigation of repeated blasts at Aitik mine using waveform cross correlationInvestigation of repeated blasts at Aitik mine using waveform cross correlation
Investigation of repeated blasts at Aitik mine using waveform cross correlation
 
10.1.1.2.9988
10.1.1.2.998810.1.1.2.9988
10.1.1.2.9988
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
004
004004
004
 
004
004004
004
 
Bloco2 produtos gerados_pelo_inpe
Bloco2 produtos gerados_pelo_inpeBloco2 produtos gerados_pelo_inpe
Bloco2 produtos gerados_pelo_inpe
 
Radiation Hardening by Design
Radiation Hardening by DesignRadiation Hardening by Design
Radiation Hardening by Design
 
Chester Nov08 Terry Lynch
Chester Nov08 Terry LynchChester Nov08 Terry Lynch
Chester Nov08 Terry Lynch
 
Jets and Missing Energy at the LHC
Jets and Missing Energy at the LHCJets and Missing Energy at the LHC
Jets and Missing Energy at the LHC
 
this is density functional theory in pdf
this is density functional theory in pdfthis is density functional theory in pdf
this is density functional theory in pdf
 
Physics 101 Learning Object #7 Interference of Waves and Beats
Physics 101 Learning Object #7 Interference of Waves and BeatsPhysics 101 Learning Object #7 Interference of Waves and Beats
Physics 101 Learning Object #7 Interference of Waves and Beats
 
IJET-V3I2P9
IJET-V3I2P9IJET-V3I2P9
IJET-V3I2P9
 
Lect5 Diffusion
Lect5 DiffusionLect5 Diffusion
Lect5 Diffusion
 

More from Storti Mario

Avances en la modelización computacional de problemas de interacción Fluido-E...
Avances en la modelización computacional de problemas de interacción Fluido-E...Avances en la modelización computacional de problemas de interacción Fluido-E...
Avances en la modelización computacional de problemas de interacción Fluido-E...Storti Mario
 
El Método Científico
El Método CientíficoEl Método Científico
El Método CientíficoStorti Mario
 
Supercomputadoras en carrera
Supercomputadoras en carreraSupercomputadoras en carrera
Supercomputadoras en carreraStorti Mario
 
Cosechadora Innovar
Cosechadora InnovarCosechadora Innovar
Cosechadora InnovarStorti Mario
 
HPC course on MPI, PETSC, and OpenMP
HPC course on MPI, PETSC, and OpenMPHPC course on MPI, PETSC, and OpenMP
HPC course on MPI, PETSC, and OpenMPStorti Mario
 
Actividades de Transferencia en CIMEC
Actividades de Transferencia en CIMECActividades de Transferencia en CIMEC
Actividades de Transferencia en CIMECStorti Mario
 
Algoritmos y Estructuras de Datos
Algoritmos y Estructuras de DatosAlgoritmos y Estructuras de Datos
Algoritmos y Estructuras de DatosStorti Mario
 

More from Storti Mario (8)

Avances en la modelización computacional de problemas de interacción Fluido-E...
Avances en la modelización computacional de problemas de interacción Fluido-E...Avances en la modelización computacional de problemas de interacción Fluido-E...
Avances en la modelización computacional de problemas de interacción Fluido-E...
 
El Método Científico
El Método CientíficoEl Método Científico
El Método Científico
 
Gpuslides
GpuslidesGpuslides
Gpuslides
 
Supercomputadoras en carrera
Supercomputadoras en carreraSupercomputadoras en carrera
Supercomputadoras en carrera
 
Cosechadora Innovar
Cosechadora InnovarCosechadora Innovar
Cosechadora Innovar
 
HPC course on MPI, PETSC, and OpenMP
HPC course on MPI, PETSC, and OpenMPHPC course on MPI, PETSC, and OpenMP
HPC course on MPI, PETSC, and OpenMP
 
Actividades de Transferencia en CIMEC
Actividades de Transferencia en CIMECActividades de Transferencia en CIMEC
Actividades de Transferencia en CIMEC
 
Algoritmos y Estructuras de Datos
Algoritmos y Estructuras de DatosAlgoritmos y Estructuras de Datos
Algoritmos y Estructuras de Datos
 

Recently uploaded

2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 

Recently uploaded (20)

2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 

Automatic high order absorption layers for advective-diffusive systems of equations

  • 1. Automatic high order absorption layers by M.Storti et.al. Automatic high order absorption layers for advective-diffusive systems of equations by Mario Storti, Laura Battaglia, and Rodrigo Paz ´ Centro Internacional de Metodos Computacionales en Ingenier´a - CIMEC ı INTEC, (CONICET-UNL), Santa Fe, Argentina <mario.storti at gmail.com> http://www.cimec.org.ar/mstorti ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 1 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 2. Automatic high order absorption layers by M.Storti et.al. Motivation for Absorbing Boundary Conditions In wave-like propagation problems, not including ABC may lead to non-convergent solutions . utt = c2 ∆u, in Ω u = u(x, t), at Γb , u = 0, at Γ∞ v ¯ u doesn’t converge to the correct solution irradiating energy from the source, even if Γ∞ → ∞. A standing wave is always found. u is unbounded if u emits in an ¯ eigenfrequency which is a resonance mode of the closed cavity. Absorbing boundary conditions must be added to the outer boundary in order to let energy be extracted from the domain. ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 2 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 3. Automatic high order absorption layers by M.Storti et.al. Motivation for Absorbing Boundary Conditions (cont.) If a dissipative region is large enough so that many wavelengths are included in the region may act as an absorbing layer, i.e. as an absorbing boundary condition. dissipative However, it is a common misconception to assume that a coarse mesh adds dissipation and fine mesh coarse mesh consequently may improve absorption. For instance for the dissipative?? wave equation a coarse mesh may lead to evanescent solutions and then to act as a fully reflecting boundary. ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 3 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 4. Automatic high order absorption layers by M.Storti et.al. Boundary conditions for advective diffusive systems Well known theory and practice for advective systems say that at a boundary the number of Dirichlet conditions should be equal to the number of incoming characteristics . ∂U ∂Fc,j (U) + =0 ∂t ∂xj ∂Fc,j (U) Ac,j = , advective Jacobian ∂U Nbr. of incoming characteristics = sum(eig(A · n) < 0) ˆ ˆ n is the exterior normal. Adding extra Dirichlet conditions leads to spurious shocks, and lack of enough Dirichlet conditions leads to instability. ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 4 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 5. Automatic high order absorption layers by M.Storti et.al. Boundary conditions for advective diffusive systems (cont.) For simple scalar advection problems the Jacobian is the transport velocity. The rule is then to check the projection of velocity onto the exterior normal. For more complex flows (i.e. with non diagonalizable Jacobians , as gas dynamics or shallow water eqs.) the number of incoming characteristics may be approx. predicted from the flow conditions. subsonic flow (Minf<1) supersonic flow (Minf>1) supersonic outgoing subsonic incoming (no fields imposed) rho,u,v rho,u,v,p ck ho ws M>1 bo M<1 1111111 0000000 1111111 0000000 111111 000000 111111 000000 1111111 0000000 111111 000000 1111111 0000000 111111 000000 p p subsonic outgoing subsonic outgoing ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 5 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 6. Automatic high order absorption layers by M.Storti et.al. Absorbing boundary conditions However, this kind of conditions are, generally, reflective . Consider a pure advective system of equations in 1D, i.e., Fd,j ≡ 0 ∂H(U) ∂Fc,x (U) + = 0, in [0, L]. (1) ∂t ∂x If the system is “linear”, i.e., Fc,x (U) = AU, H(U) = CU (A and C do not depend on U), a first order linear system is obtained ∂U ∂U C +A = 0. (2) ∂t ∂x The system is “hyperbolic” if C is invertible, C−1 A is diagonalizable with real eigenvalues. If this is the case, it is possible to make the following eigenvalue decomposition for C−1 A C−1 A = SΛS−1 , (3) where S is real and invertible and Λ is real and diagonal. If new variables are ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 6 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 7. Automatic high order absorption layers by M.Storti et.al. defined V = S−1 U, then equation (2) becomes ∂V ∂V +Λ = 0. (4) ∂t ∂x Now, each equation is a linear scalar advection equation ∂vk ∂vk + λk = 0, (no summation over k ). (5) ∂t ∂x vk are the “characteristic components” and λk are the “characteristic velocities” of propagation. ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 7 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 8. Automatic high order absorption layers by M.Storti et.al. Linear 1D absorbing boundary conditions Assuming λk = 0, the absorbing boundary conditions are, depending on the sign of λk , if λk > 0: vk (0) = vk0 ; ¯ no boundary condition at x =L (6) if λk < 0: vk (L) = vkL ; no boundary condition at x = 0 ¯ This can be put in compact form as ¯ Π+ (V − V0 ) = 0; at x =0 V (7) Π− (V V ¯ − VL ) = 0; at x =L ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 8 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 9. Automatic high order absorption layers by M.Storti et.al. Linear 1D absorbing boundary conditions (cont.) Π± are the projection matrices onto the right/left-going characteristic modes V in the V basis,  1; if j = k and λ > 0 k Π+ = V,jk 0; otherwise, (8) Π+ + Π− = I. It can be easily shown that they are effectively projection matrices, i.e., Π± Π± = Π± and Π+ Π− = 0. Coming back to the boundary condition at x = L in the U basis, it can be written Π− S−1 (U − UL ) = 0 V ¯ (9) or, multiplying by S at the left Π± (U − U0,L ) = 0, at x = 0, L, U ¯ (10) where Π± = S Π± S−1 , U V (11) ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 9 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 10. Automatic high order absorption layers by M.Storti et.al. Linear 1D absorbing boundary conditions (cont.) Π± (U − U0,L ) = 0, at x = 0, L, U ¯ (12) Π± U = S Π± V −1 S , These conditions are completely absorbing for 1D linear advection system of equations (2). + The rank of Π is equal to the number n+ of positive eigenvalues, i.e., the number of right-going waves. Recall that the right-going waves are incoming at the x = 0 boundary and outgoing at the x = L boundary. Conversely, the − rank of Π is equal to the number n− of negative eigenvalues, i.e., the number of left-going waves (incoming at x = L and outgoing at the x = 0 boundary). ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 10 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 11. Automatic high order absorption layers by M.Storti et.al. ABC for nonlinear problems First order absorbing boundary conditions may be constructed by imposing exactly the components along the incoming characteristics. Π− (Uref ) (U − Uref ) = 0. Π− is the projection operator onto incoming characteristics. It can be obtained straightforwardly from the projected Jacobian. What for non-linear problems? A posisble strategy is to linearize the state around the last state or a predictor state. Storti, M.; Nigro, N.; Paz, R.R.; Dalcin, L. “Dynamic boundary conditions in Computational Fluid Dynamics” Computer Methods in Applied Mechanics and Engineering 197(13-16), pp. 1219-1232 (2008) Paz, R.R.; Storti, M.; Garelli, L. “Local Absorbent Boundary Condition for Nonlinear Hyperbolic Problems with Unknown Riemann Invariants” Computers and Fluids 40, pp. 52-67 (2011) (launch video cylabso-xoffset015-Rext10) ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 11 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 12. Automatic high order absorption layers by M.Storti et.al. Higher order absorbing boundary conditions irregular geometries: emitter In 2D or 3D a first order ABC will be partially reflecting for regular geometries: wall (reflecting) non-normal incidence. This can lead to large errors, speciall for very 1st order ABC 1st order ABC regular geometries like a channel. emitter wall (reflecting) ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 12 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 13. Automatic high order absorption layers by M.Storti et.al. Higher order absorbing boundary conditions (cont.) There are several approaches for higher order aborbing layers, among them a popular approach is the Perfectly Matched Layer (PML, Makefile. J-P Berenger, J. Comput. Phys. 114, 185 (1994)). However, It is addhoc for each physical problem. It is formulated only on rectangular domains . It’s not very robust . It requires additional variables to be defined in the program in the absorbing layer. The first is the most concerning us. We want an absorbing numerical device with the following characteristics To be automatically computable from the flux function (and perhaps the Jacobian of the fluxes). To be adjustable higher order (more probably first and second order). To be robust . ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 13 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 14. Automatic high order absorption layers by M.Storti et.al. If auxiliary variables are needed, they must be easily computable in the actual context. ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 14 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 15. Automatic high order absorption layers by M.Storti et.al. Advective/diffusive systems implemented Navier-Stokes compressible flow ( ), Shallow water equations ( ), Stratified shallow water equations ( ), 1D shallow water equations in channels of arbitrary section ( ), Scalar advection/diffusion ( ), Scalar wave equation ( ) Maxwell equations ( ) ( = implemented in PETSc-FEM) ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 15 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 16. Automatic high order absorption layers by M.Storti et.al. A second order absorbing layer If, for the first order aborbing boundary condition we condense the Lagrange multiplier version, we get a penalized version of the form Un+1 − Un Un+1 − Un+1 1 C 0 0 +A 1 0 + CΠ+ Un+1 = 0. U 0 (13) ∆t h Assuming that we want to add an absorbing layer in 0 ≤ x ≤ L, then the equation would be ∂U ∂U ∂U C + HU + A +B = 0, (14) ∂t ∂x ∂y where H is the matrix of absorbing coefficients to be yet defined. We now transform Fourier in t and y with associated variables iω and iky , i.e. we assume ˆ U(x, y, t) = U(x)exp {i(ky y − ωt)}. (15) ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 16 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 17. Automatic high order absorption layers by M.Storti et.al. ˆ Then, we get (for simplicity we drop the hat symbol (U → U), ∂U A + (−iωC + H + iky B)U = 0, ∂x (16) ∂U =⇒ + (A−1 H − iωM(z))U = 0, ∂x where z = ky /ω, −1 (17) M(z) = A (C − zB). In order to not have reflections A−1 H must have the same eigenvectors that M(z). One possibility is then to diagonalize M(z) M(z) = QΛQ−1 , (18) and then to force A−1 H to be diagonal in the same basis A−1 H = QΛH Q−1 . (19) ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 17 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 18. Automatic high order absorption layers by M.Storti et.al. In order to have an absorbing layer we must have sign(λ(A−1 H)j ) = sign(λj ), (20) Transforming Fourier back to t and y we obtain the desired absorbing layer. However, Q depends on z and so will H so it would be non-local . In order to have a local operator we perform an expansion of it in powers of z . For instance if we can approximate it to H(z) ≈ H0 + zδH, (21) then the absorbing term would be H0 U + zδHU = H0 U + (iky /iω)δHU. (22) Transforming Fourier back to (t, y) we get ∂U ∂U ∂U C + H({U}) + A +B = 0, ∂t ∂x ∂y t (23) ∂U H({U}) = H0 U + δH dt. t=0 ∂y ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 18 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 19. Automatic high order absorption layers by M.Storti et.al. The simplest choice for (29) is λ(A−1 H)j = Kλj , and we get H0 = KC, H1 = −KB, so that the absorbing layer is t ∂U ∂U ∂U ∂U C + K CU − B dt + A +B = 0, (24) ∂t t=0 ∂y ∂x ∂y Note that in the first order case we get a local operator . ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 19 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 20. Automatic high order absorption layers by M.Storti et.al. Numerical evaluation of the absorbing operator It involves an integral over time , that involves storing an auxiliary variable say W and then updating with t ∂U W= dt, t=0 ∂y (25) n+1 n n−1 n+1 (3W − 4W + W )jk (Uj,k+1 − Uj,k−1 ) = . 2∆t 2∆y The derivative with respect to y is computed by standard finite difference approximations (j(k) indices is along x(y) axis). The operator can be easily evaluated in the context of an unstructured grid solver (FEM for instance). K[=]T−1 but if a velocity scale v is available then we get a length scale ¯ ¯ Labso = v /K ¯ ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 20 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 21. Automatic high order absorption layers by M.Storti et.al. Examples. The scalar wave equation The standard representation of the scalar wave equation is φtt = c2 ∆φ (26) In 2D we can put it in the form of an advective-diffusive as ut + c(ux + vy ) = 0, (27) vt + c(−vx + uy ) = 0. and the corresponding vectorial form is       u 1 0 0 1 U=  , Ax = c   , Ay = c  , (28) v 0 −1 1 0 u and v satisfy the wave equation, and the dispersion relation is ω = ck (the same as for the wave equation). ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 21 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 22. Automatic high order absorption layers by M.Storti et.al. Reflection coefficients 1 1st order , K=0 0.8 1st order , K=5 1st order , K=10 1st order , K=20 2nd order , K=5 0.6 2nd order , K=10 2nd order , K=20 0.4 0.2 0 0 0.5 1 1.5 2 ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 22 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 23. Automatic high order absorption layers by M.Storti et.al. Reflection coefficients (cont.) 1st order layer 2nd order layer 1 wave amplitude wave amplitude 1 u,v variables 0.9 0.8 0.8 0.7 u u 0.6 0.6 0.5 0.4 0.4 0.2 v 0.3 0.2 v 0 0.1 0 0.2 0.4 0.6 0.8 x 1 0 0.2 0.4 0.6 0.8 x 1 charact. vrbles wave amplitude wave amplitude 1 1 0.8 0.8 V1 0.6 V1 0.6 0.4 0.4 0.2 V2 0.2 0 0 V2 x 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 x ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 23 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 24. Automatic high order absorption layers by M.Storti et.al. Decaying perturbation example wall (perfectly reflecting) 1st order ABC 1st order ABC 10 absorbing layer 1 wall (perfectly reflecting) 1st order surf [4300 step/OM] 1st order surf + 1st order layer [4000 step/OM] 0.1 1st order surf 2nd order + layer [1200 step/OM] 0.01 0 500 1000 1500 2000 time step (launch video fsabso2d-pertini) ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 24 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 25. Automatic high order absorption layers by M.Storti et.al. Diffraction by a slit wall (perfectly reflecting) 1st order ABC Lslit=0.5 absorbing Ly=1 layer omega=25.7 wall (perfectly reflecting) lambda = 0.25 Lx=1 c=1 Labso=0.25 (launch video fsabso2d-slit-best) ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 25 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 26. Automatic high order absorption layers by M.Storti et.al. Other choices for the absorbing matrix coefficient Recall that the requirement on H is sign(λ(A−1 H)j ) = sign(λj ), (29) some possible choices are λ(A−1 H)j ) = λj =⇒ H0 = C, λ(A−1 H)j ) = sign(λj ) =⇒ H0 = A|A−1 C|, (30) λ(A−1 H)j ) = 1/λj =⇒ H0 = A|C−1 A|, The expansion H(z) ≈ H0 + zδH can be donde numerically if it is not possible to do analytically, i.e. compute H(z) for several z and fit with polynomials for each entry in H. ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 26 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 27. Automatic high order absorption layers by M.Storti et.al. Conclusions An aborbing high order layer has been presented. It can be automatically computed programatically from the flux function and its Jacobians . It requires an auxiliary variable that is basically the integral over time of the lateral derivatives. (It’s non-local in time) . Several examples for the wave equation have been shown with the simplest choice H = C − zB. Other choices for H may be computed by polynomial fitting on z . Computational cost is negligible (but results on the absorbing layer must be discarded) ( / ) ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 27 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))
  • 28. Automatic high order absorption layers by M.Storti et.al. Acknowledgment This work has received financial support from Universidad Nacional del Litoral (UNL, Argentina, grants CAI+D 2005-10-64) and Agencia Nacional de ´ ´ Promocion Cient´fica y Tecnologica (ANPCyT, Argentina, grants PICT PME ı 209/2003, PICT-1141/2007, PICT-1506/2006). We made extensive use of Free Software (http://www.gnu.org) as GNU/Linux OS, MPI, PETSc, GCC/G++ compilers, Octave, VTK, Python, Git, among many others. In addition, many ideas from these packages have been inspiring to us. ´ Centro Internacional de Metodos Computacionales en Ingenier´a ı 28 ((version texstuff-1.0.36-102-gdb116be Thu Nov 3 09:14:55 2011 -0300) (date Thu Nov 3 09:15:35 2011 -0300))