
Seja a primeira pessoa a gostar disto
O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a navegar o site, você aceita o uso de cookies. Leia nosso Contrato do Usuário e nossa Política de Privacidade.
O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a utilizar o site, você aceita o uso de cookies. Leia nossa Política de Privacidade e nosso Contrato do Usuário para obter mais detalhes.
Publicada em
A NavierStokes solver based on Cartesian structured finite volume
discretization with embedded bodies is presented. Fluid structure
interaction with solid bodies is performed with an explicit
partitioned strategy. The NavierStokes equations are solved in the
whole domain via a SemiImplicit Method for Pressure Linked Equations
(SIMPLE) using a colocated finite volume scheme, stabilized
via the RhieChow discretization. As uniform Cartesian grids are used,
the solid interface usually do not coincide with the mesh, and then a
second order Immersed Boundary Method is proposed, in order to avoid
the loss of precision due to the staircase representation of the
surface. This fact also affects the computation of fluid forces on the
solid wall and, accordingly, the results in the fluidstructure
analysis. In the present work, first and second order approximations
for computing the fluid forces at the interface are studied and
compared. The solver is specially oriented to General Purpose Graphic
Processing Units (GPGPU) hardware and the efficiency is
discussed. Moreover, a novel submerged buoy experiment is also
reported and serves to validate the presented fluidstructure
algorithm. The experiment consists of a sphere with positive buoyancy
fully submerged in a cubic tank, subject to harmonic displacements
imposed by a shake table. The sphere is attached to the bottom of
the tank with a string. Position of the buoy is determined from video
records with a Motion Capture algorithm. The obtained amplitude and
phase curves allow a precise determination of the added mass and drag
forces. Due to this aspect the experimental data can be of interest
for the validation of fluidstructure interaction codes. Finally, the
numerical results are compared with the experiments, and allows the
validation of the numerically predicted drag and added mass of the
body.
Seja a primeira pessoa a gostar disto
Parece que você já adicionou este slide ao painel
Seja o primeiro a comentar