Ecuaciones cuadraticas

Ecuaciones cuadraticas
OBJETIVOS DE LA SESIÒN
Que puedan comprender la teoría acerca de las ecuaciones
cuadráticas o primer grado
Que puedan recordar la formula principal de la ecuación
Que sean capaces de resolver ejercicios de este tipo de
ecuaciones
¿QUE ES UNA ECUACION CUADRÁTICA?
Una ecuación cuadrática o de segundo grado es aquella en la cual la variable o
incógnita esta elevada al cuadrado y tiene la siguiente forma:
• (a, b y c pueden tener cualquier valor, excepto que a no puede ser 0)
Coeficiente
Término cuadrático
Término lineal
Término Independiente
EJEMPLOS DE ECUACIONES CUADRÁTICAS
2x² + 5x + 3 = 0
• Donde a = 2, b = 5 y c = 3
x² - 3x = 0
Aquí hay un poco más complicada
• ¿Dónde está a? En realidad a = 1, porque normalmente no escribimos
“1x²”
• b = -3
• ¿Y dónde está c? Bueno, c = 0, así que no se ve
5x – 3 = 0
¡Ups! Esta no es una ecuación cuadrática, porque le falta el x² (es
decir a = 0, y por eso no puede ser cuadrática)
¿QUÉ TIENEN DE ESPECIAL?
Las ecuaciones cuadráticas se pueden resolver usando una
fórmula especial llamada fórmula cuadrática:
"OJO”
 El “±” quiere decir que tiene que hacer más Y menos, ¡ así que
normalmente hay dos soluciones!
 La parte azul (b² - 4ac) se llama discriminante, porque sirve para
“discriminar” (decidir) entre los tipos posibles de respuesta:
EJEMPLO
Resuelve: 5x² + 6x² + 1 = 0
Fórmula cuadrática: 𝒙 =
−𝒃± 𝒃 𝟐−𝟒𝒂𝒄
𝟐𝒂
Los coeficientes son: a = 5, b = 6, c = 1
Sustituye a, b, c : 𝒙 =
−𝟔± 𝟔 𝟐−𝟒𝒙𝟓𝒙𝟏
𝟐𝒙𝟓
Resuelve: : 𝒙 =
−𝟔± 𝟔 𝟐−𝟒𝒙𝟓𝒙𝟏
𝟐𝒙𝟓
=
−𝟔± 𝟑𝟔−𝟐𝟎
𝟏𝟎
=
−𝟔± 𝟏𝟔
𝟏𝟎
=
−𝟔±𝟒
𝟏𝟎
Respuesta: x = -0.2 y -1
−𝒃 ± 𝒃 𝟐 − 𝟒𝒂𝒄
𝟐𝒂
DISCRIMINANTE(Δ)
b² - 4ac se llama discriminante de la ecuación y
permite averiguar en cada ecuación el número de
soluciones.
RESPUESTAS:
Si es positivo, hay dos soluciones
Si es cero sólo hay una solución,
Y si es negativo hay dos soluciones que incluyen
números imaginarios
𝑥 =
−𝑏 ±
2𝑎
Ejemplo:
Ejemplo:
Ejemplo: X² + X + 1 = 0
b² - 4ac > 0
b² - 4ac = 0
b² - 4ac < 0
X² - 5X + 6 = 0
X² - 2X + 1 = 0
Ejemplo
1. Halle la discriminante de la ecuación 3x² - 5x + 7 = 0
Resolución:
Identificamos los coeficientes : A=3, B=-5, C=7
Fórmula: Δ= B² - 4AC
Reemplazamos: Δ= (-5)² - 4(3)(7)
Resolvemos: Δ= (-5)² - 4(3)(7) = 25 – 84
Respuesta: Δ = - 59
Δ= B² - 4AC
Fórmula
ECUACIONES CUADRÁTICAS DISFRASADAS
Algunas ecuaciones no parece que sean cuadráticas, pero
con manipulaciones astutas se pueden transformar en una:
Disfrazadas Qué hacer En forma estándar a, b y c
x2 = 3x -1
Mueve todos los términos
a la izquierda
x2 - 3x + 1 = 0 a=1, b=-3, c=1
2(x2 - 2x) = 5 Desarrolla paréntesis 2x2 - 4x - 5 = 0 a=2, b=-4, c=-5
x(x-1) = 3 Desarrolla paréntesis x2 - x - 3 = 0 a=1, b=-1, c=-3
5 + 1/x - 1/x2 = 0 Multiplica por x2 5x2 + x - 1 = 0 a=5, b=1, c=-1
CONCLUSIONES
Las ecuaciones cuadráticas son importantes en la
resolución de ejercicios
La formula permite hacer a la ecuación mas sencilla y
fácil
BIBLIOGRAFÍA
• http://www.disfrutalasmatematicas.com/algebra/
• https://es.slideshare.net/danceerart/ecuaciones-lineales-15970174
• http://inst-mat.utalca.cl/tem/sitiolmde/octavo/guiasoctavo/8-guia-
materia-ec-lineales-jp.pdf
1 de 12

Recomendados

ECUACIONES DE SEGUNDO GRADO por
ECUACIONES DE SEGUNDO GRADOECUACIONES DE SEGUNDO GRADO
ECUACIONES DE SEGUNDO GRADOmatematicasec29
20K visualizações17 slides
Presentacion sistemas de ecuaciones por
Presentacion sistemas de ecuacionesPresentacion sistemas de ecuaciones
Presentacion sistemas de ecuacionesBeatriz Fernández
34K visualizações12 slides
Presentación inecuaciones por
Presentación inecuacionesPresentación inecuaciones
Presentación inecuacionesalfonnavarro
15.4K visualizações17 slides
Presentacion ecuaciones primer grado por
Presentacion ecuaciones primer gradoPresentacion ecuaciones primer grado
Presentacion ecuaciones primer gradoBeatriz Fernández
41.9K visualizações16 slides
Ecuaciones presentación por
Ecuaciones presentaciónEcuaciones presentación
Ecuaciones presentaciónUPAEP
29.9K visualizações43 slides
Ecuaciones de primer grado por
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer gradoalevehe11
11K visualizações8 slides

Mais conteúdo relacionado

Mais procurados

Ecuaciones lineales y cuadraticas por
Ecuaciones lineales y cuadraticasEcuaciones lineales y cuadraticas
Ecuaciones lineales y cuadraticasAnnie Quintero Correa
48.4K visualizações19 slides
Factorizacion por
FactorizacionFactorizacion
FactorizacionMaria Angélica Jiménez
29.2K visualizações26 slides
Ejercicios resueltos ecuacion de la recta por
Ejercicios resueltos ecuacion de la rectaEjercicios resueltos ecuacion de la recta
Ejercicios resueltos ecuacion de la rectaMagiserio
79.8K visualizações7 slides
Funcion lineal por
Funcion linealFuncion lineal
Funcion linealSabrina Dechima
37K visualizações21 slides
Diapositivas funciones 1 por
Diapositivas funciones 1Diapositivas funciones 1
Diapositivas funciones 1silvanalazarte
14.7K visualizações17 slides
Diapositivas de limites y derivadas por
Diapositivas de limites y derivadasDiapositivas de limites y derivadas
Diapositivas de limites y derivadasluzmi25
16.8K visualizações26 slides

Mais procurados(20)

Ecuaciones lineales y cuadraticas por Annie Quintero Correa
Ecuaciones lineales y cuadraticasEcuaciones lineales y cuadraticas
Ecuaciones lineales y cuadraticas
Annie Quintero Correa48.4K visualizações
Ejercicios resueltos ecuacion de la recta por Magiserio
Ejercicios resueltos ecuacion de la rectaEjercicios resueltos ecuacion de la recta
Ejercicios resueltos ecuacion de la recta
Magiserio79.8K visualizações
Funcion lineal por Sabrina Dechima
Funcion linealFuncion lineal
Funcion lineal
Sabrina Dechima 37K visualizações
Diapositivas funciones 1 por silvanalazarte
Diapositivas funciones 1Diapositivas funciones 1
Diapositivas funciones 1
silvanalazarte14.7K visualizações
Diapositivas de limites y derivadas por luzmi25
Diapositivas de limites y derivadasDiapositivas de limites y derivadas
Diapositivas de limites y derivadas
luzmi2516.8K visualizações
Diapositivas valor absoluto por yulipaola19
Diapositivas valor absolutoDiapositivas valor absoluto
Diapositivas valor absoluto
yulipaola198.7K visualizações
Demostraciones de Identidades trigonométricas por Elkin J. Navarro
Demostraciones de Identidades trigonométricasDemostraciones de Identidades trigonométricas
Demostraciones de Identidades trigonométricas
Elkin J. Navarro17.3K visualizações
Funcion inversa por paolo zapata
Funcion inversaFuncion inversa
Funcion inversa
paolo zapata4.3K visualizações
Progresiones aritméticas y geométricas por jcremiro
Progresiones aritméticas y geométricasProgresiones aritméticas y geométricas
Progresiones aritméticas y geométricas
jcremiro26.6K visualizações
Diapositivas limites por rosayariher
Diapositivas limitesDiapositivas limites
Diapositivas limites
rosayariher25.9K visualizações
Ecuaciones lineales en dos variables por Alma Vega
Ecuaciones lineales en dos variablesEcuaciones lineales en dos variables
Ecuaciones lineales en dos variables
Alma Vega109.2K visualizações
Ecuaciones de segundo grado por Michel Lizarazo
Ecuaciones de segundo gradoEcuaciones de segundo grado
Ecuaciones de segundo grado
Michel Lizarazo22.8K visualizações
Ecuaciones lineales por Elideth Nolasco
Ecuaciones linealesEcuaciones lineales
Ecuaciones lineales
Elideth Nolasco72.5K visualizações
Power point polinomios por cataberroara
Power point polinomiosPower point polinomios
Power point polinomios
cataberroara13K visualizações
Inecuaciones por sitayanis
InecuacionesInecuaciones
Inecuaciones
sitayanis20K visualizações
Ecuaciones de primer grado por Marcos Llanes
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
Marcos Llanes1.7K visualizações

Similar a Ecuaciones cuadraticas

ECUACIONES CUADRÁTICAS por
ECUACIONES CUADRÁTICASECUACIONES CUADRÁTICAS
ECUACIONES CUADRÁTICASmarco-campos
8.4K visualizações12 slides
ECUACIONES CUDRÁTICAS por
ECUACIONES CUDRÁTICASECUACIONES CUDRÁTICAS
ECUACIONES CUDRÁTICASmarco-campos
607 visualizações11 slides
ecuacion de formula general por
ecuacion de formula generalecuacion de formula general
ecuacion de formula generalmatematicasec29
49.8K visualizações12 slides
Bloque 4 informatica cobao por
Bloque 4 informatica cobaoBloque 4 informatica cobao
Bloque 4 informatica cobao10091995
339 visualizações6 slides
Bloque 4 informatica cobao por
Bloque 4 informatica cobaoBloque 4 informatica cobao
Bloque 4 informatica cobao10091995
161 visualizações6 slides
ecuaciones_cuadraticas.pdf por
ecuaciones_cuadraticas.pdfecuaciones_cuadraticas.pdf
ecuaciones_cuadraticas.pdfAnthonySanchez419562
20 visualizações8 slides

Similar a Ecuaciones cuadraticas(20)

ECUACIONES CUADRÁTICAS por marco-campos
ECUACIONES CUADRÁTICASECUACIONES CUADRÁTICAS
ECUACIONES CUADRÁTICAS
marco-campos8.4K visualizações
ECUACIONES CUDRÁTICAS por marco-campos
ECUACIONES CUDRÁTICASECUACIONES CUDRÁTICAS
ECUACIONES CUDRÁTICAS
marco-campos607 visualizações
ecuacion de formula general por matematicasec29
ecuacion de formula generalecuacion de formula general
ecuacion de formula general
matematicasec2949.8K visualizações
Bloque 4 informatica cobao por 10091995
Bloque 4 informatica cobaoBloque 4 informatica cobao
Bloque 4 informatica cobao
10091995339 visualizações
Bloque 4 informatica cobao por 10091995
Bloque 4 informatica cobaoBloque 4 informatica cobao
Bloque 4 informatica cobao
10091995161 visualizações
ECUCION CUADRATICA por Rocio Quijano
ECUCION CUADRATICA ECUCION CUADRATICA
ECUCION CUADRATICA
Rocio Quijano167 visualizações
01 Ecuaciones CuadráTicas por Alejandro Rivera
01 Ecuaciones CuadráTicas01 Ecuaciones CuadráTicas
01 Ecuaciones CuadráTicas
Alejandro Rivera20K visualizações
Educ@vo2 no te mates con las mates por Ricardo Duran
Educ@vo2 no te mates con las matesEduc@vo2 no te mates con las mates
Educ@vo2 no te mates con las mates
Ricardo Duran112 visualizações
Educ@vo2 no te mates con las mates por Ricardo Duran
Educ@vo2 no te mates con las matesEduc@vo2 no te mates con las mates
Educ@vo2 no te mates con las mates
Ricardo Duran341 visualizações
Teoría y Problemas de Función Cuadrática II ccesa007 por Demetrio Ccesa Rayme
Teoría y Problemas de Función Cuadrática II  ccesa007Teoría y Problemas de Función Cuadrática II  ccesa007
Teoría y Problemas de Función Cuadrática II ccesa007
Demetrio Ccesa Rayme421 visualizações
Ecuaciones por matematicasec29
EcuacionesEcuaciones
Ecuaciones
matematicasec294.1K visualizações
Juan carlos useche mendez- INECUACIONES CUADRATICAS por juancarlosusechemendez
Juan carlos useche mendez- INECUACIONES CUADRATICASJuan carlos useche mendez- INECUACIONES CUADRATICAS
Juan carlos useche mendez- INECUACIONES CUADRATICAS
juancarlosusechemendez1.1K visualizações
Funciones CuadráTicas por Carmen Batiz
Funciones CuadráTicas Funciones CuadráTicas
Funciones CuadráTicas
Carmen Batiz12.9K visualizações

Último

Caso clinico VIH sida tb.pptx por
Caso clinico VIH sida tb.pptxCaso clinico VIH sida tb.pptx
Caso clinico VIH sida tb.pptxAGUSTIN VEGA VERA
39 visualizações17 slides
Mujeres privadas de libertad en Bolivia 2022 por
Mujeres privadas de libertad en Bolivia 2022Mujeres privadas de libertad en Bolivia 2022
Mujeres privadas de libertad en Bolivia 2022LuisFernando672460
124 visualizações170 slides
receta.pdf por
receta.pdfreceta.pdf
receta.pdfcarmenhuallpa45
410 visualizações1 slide
Ficha sesión discapacidad visual.doc por
Ficha sesión discapacidad visual.docFicha sesión discapacidad visual.doc
Ficha sesión discapacidad visual.docricardo2010colegio
111 visualizações2 slides
1701704307_UpdWfY.pdf por
1701704307_UpdWfY.pdf1701704307_UpdWfY.pdf
1701704307_UpdWfY.pdfWilliam Henry Vegazo Muro
82 visualizações1 slide
Meta 1.3. Comparar las definiciones y caracterìsticas de la cultura sorda. por
Meta 1.3. Comparar las definiciones y caracterìsticas de la cultura sorda. Meta 1.3. Comparar las definiciones y caracterìsticas de la cultura sorda.
Meta 1.3. Comparar las definiciones y caracterìsticas de la cultura sorda. IvanLechuga
63 visualizações4 slides

Último(20)

Caso clinico VIH sida tb.pptx por AGUSTIN VEGA VERA
Caso clinico VIH sida tb.pptxCaso clinico VIH sida tb.pptx
Caso clinico VIH sida tb.pptx
AGUSTIN VEGA VERA39 visualizações
Mujeres privadas de libertad en Bolivia 2022 por LuisFernando672460
Mujeres privadas de libertad en Bolivia 2022Mujeres privadas de libertad en Bolivia 2022
Mujeres privadas de libertad en Bolivia 2022
LuisFernando672460124 visualizações
receta.pdf por carmenhuallpa45
receta.pdfreceta.pdf
receta.pdf
carmenhuallpa45410 visualizações
Ficha sesión discapacidad visual.doc por ricardo2010colegio
Ficha sesión discapacidad visual.docFicha sesión discapacidad visual.doc
Ficha sesión discapacidad visual.doc
ricardo2010colegio111 visualizações
Meta 1.3. Comparar las definiciones y caracterìsticas de la cultura sorda. por IvanLechuga
Meta 1.3. Comparar las definiciones y caracterìsticas de la cultura sorda. Meta 1.3. Comparar las definiciones y caracterìsticas de la cultura sorda.
Meta 1.3. Comparar las definiciones y caracterìsticas de la cultura sorda.
IvanLechuga63 visualizações
componente de calidad. por JeniferLopez95
componente de calidad.componente de calidad.
componente de calidad.
JeniferLopez9528 visualizações
0 - Organología - Presentación.pptx por VICENTEJIMENEZAYALA
0 - Organología - Presentación.pptx0 - Organología - Presentación.pptx
0 - Organología - Presentación.pptx
VICENTEJIMENEZAYALA130 visualizações
Inteligencia Artificial en las aulas por Lorena Fernández
Inteligencia Artificial en las aulasInteligencia Artificial en las aulas
Inteligencia Artificial en las aulas
Lorena Fernández147 visualizações
Tema 3-El átomo.pptx por fatimasilvacabral
Tema 3-El átomo.pptxTema 3-El átomo.pptx
Tema 3-El átomo.pptx
fatimasilvacabral47 visualizações
Caso clìnico VIH.pptx por AGUSTIN VEGA VERA
Caso clìnico VIH.pptxCaso clìnico VIH.pptx
Caso clìnico VIH.pptx
AGUSTIN VEGA VERA35 visualizações
Fase 4- Estudio de la geometría analítica.pptx por blogdealgebraunad
Fase 4- Estudio de la geometría analítica.pptxFase 4- Estudio de la geometría analítica.pptx
Fase 4- Estudio de la geometría analítica.pptx
blogdealgebraunad37 visualizações
barreras de la comunicacion.ppt por NohemiCastillo14
barreras de  la comunicacion.pptbarreras de  la comunicacion.ppt
barreras de la comunicacion.ppt
NohemiCastillo1425 visualizações
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx por CarlaFuentesMuoz
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptxPPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx
PPT TECNOLOGIAS PARA LA ENSEÑANZA VIRTUAL.pptx
CarlaFuentesMuoz36 visualizações
DEPORTES DE RAQUETA .pdf por Miguel Lopez Marin
DEPORTES DE RAQUETA .pdfDEPORTES DE RAQUETA .pdf
DEPORTES DE RAQUETA .pdf
Miguel Lopez Marin33 visualizações

Ecuaciones cuadraticas

  • 2. OBJETIVOS DE LA SESIÒN Que puedan comprender la teoría acerca de las ecuaciones cuadráticas o primer grado Que puedan recordar la formula principal de la ecuación Que sean capaces de resolver ejercicios de este tipo de ecuaciones
  • 3. ¿QUE ES UNA ECUACION CUADRÁTICA? Una ecuación cuadrática o de segundo grado es aquella en la cual la variable o incógnita esta elevada al cuadrado y tiene la siguiente forma: • (a, b y c pueden tener cualquier valor, excepto que a no puede ser 0) Coeficiente Término cuadrático Término lineal Término Independiente
  • 4. EJEMPLOS DE ECUACIONES CUADRÁTICAS 2x² + 5x + 3 = 0 • Donde a = 2, b = 5 y c = 3 x² - 3x = 0 Aquí hay un poco más complicada • ¿Dónde está a? En realidad a = 1, porque normalmente no escribimos “1x²” • b = -3 • ¿Y dónde está c? Bueno, c = 0, así que no se ve 5x – 3 = 0 ¡Ups! Esta no es una ecuación cuadrática, porque le falta el x² (es decir a = 0, y por eso no puede ser cuadrática)
  • 5. ¿QUÉ TIENEN DE ESPECIAL? Las ecuaciones cuadráticas se pueden resolver usando una fórmula especial llamada fórmula cuadrática: "OJO”  El “±” quiere decir que tiene que hacer más Y menos, ¡ así que normalmente hay dos soluciones!  La parte azul (b² - 4ac) se llama discriminante, porque sirve para “discriminar” (decidir) entre los tipos posibles de respuesta:
  • 6. EJEMPLO Resuelve: 5x² + 6x² + 1 = 0 Fórmula cuadrática: 𝒙 = −𝒃± 𝒃 𝟐−𝟒𝒂𝒄 𝟐𝒂 Los coeficientes son: a = 5, b = 6, c = 1 Sustituye a, b, c : 𝒙 = −𝟔± 𝟔 𝟐−𝟒𝒙𝟓𝒙𝟏 𝟐𝒙𝟓 Resuelve: : 𝒙 = −𝟔± 𝟔 𝟐−𝟒𝒙𝟓𝒙𝟏 𝟐𝒙𝟓 = −𝟔± 𝟑𝟔−𝟐𝟎 𝟏𝟎 = −𝟔± 𝟏𝟔 𝟏𝟎 = −𝟔±𝟒 𝟏𝟎 Respuesta: x = -0.2 y -1 −𝒃 ± 𝒃 𝟐 − 𝟒𝒂𝒄 𝟐𝒂
  • 7. DISCRIMINANTE(Δ) b² - 4ac se llama discriminante de la ecuación y permite averiguar en cada ecuación el número de soluciones. RESPUESTAS: Si es positivo, hay dos soluciones Si es cero sólo hay una solución, Y si es negativo hay dos soluciones que incluyen números imaginarios 𝑥 = −𝑏 ± 2𝑎
  • 8. Ejemplo: Ejemplo: Ejemplo: X² + X + 1 = 0 b² - 4ac > 0 b² - 4ac = 0 b² - 4ac < 0 X² - 5X + 6 = 0 X² - 2X + 1 = 0
  • 9. Ejemplo 1. Halle la discriminante de la ecuación 3x² - 5x + 7 = 0 Resolución: Identificamos los coeficientes : A=3, B=-5, C=7 Fórmula: Δ= B² - 4AC Reemplazamos: Δ= (-5)² - 4(3)(7) Resolvemos: Δ= (-5)² - 4(3)(7) = 25 – 84 Respuesta: Δ = - 59 Δ= B² - 4AC Fórmula
  • 10. ECUACIONES CUADRÁTICAS DISFRASADAS Algunas ecuaciones no parece que sean cuadráticas, pero con manipulaciones astutas se pueden transformar en una: Disfrazadas Qué hacer En forma estándar a, b y c x2 = 3x -1 Mueve todos los términos a la izquierda x2 - 3x + 1 = 0 a=1, b=-3, c=1 2(x2 - 2x) = 5 Desarrolla paréntesis 2x2 - 4x - 5 = 0 a=2, b=-4, c=-5 x(x-1) = 3 Desarrolla paréntesis x2 - x - 3 = 0 a=1, b=-1, c=-3 5 + 1/x - 1/x2 = 0 Multiplica por x2 5x2 + x - 1 = 0 a=5, b=1, c=-1
  • 11. CONCLUSIONES Las ecuaciones cuadráticas son importantes en la resolución de ejercicios La formula permite hacer a la ecuación mas sencilla y fácil
  • 12. BIBLIOGRAFÍA • http://www.disfrutalasmatematicas.com/algebra/ • https://es.slideshare.net/danceerart/ecuaciones-lineales-15970174 • http://inst-mat.utalca.cl/tem/sitiolmde/octavo/guiasoctavo/8-guia- materia-ec-lineales-jp.pdf