Anúncio
Anúncio

Mais conteúdo relacionado

Anúncio
Anúncio

Asignacion1.deximarboza

  1. Proposiciones UNIVERSIDAD FERMÍN TORO VICE - RECTORADO ACADÉMICO DECANATO DE INGENIERÍA ESCUELA DE ELÉCTRICA Alumna: Deximar Boza C.I: 18.705.948 Profesora: Alba Espinoza
  2. Proposición Es un enunciado cuyo contenido está sujeto a ser calificado como "verdadero" o "falso", pero no ambas cosas a la vez. Toda proposición tiene una y solamente una alternativa. 1: Verdadero 0: Falso
  3. •Notación: Las proposiciones se notarán con letras minúsculas p, q, r, s, t, ya que las letras mayúsculas las usaremos para denotar los conjuntos. Ejemplos P: La matemática es una ciencia. q: 2 es un número impar. r: mañana es 27 de junio. Llamaremos valor lógico de una proposición, el cual denotaremos por VL, al valor 1 si la proposición es verdadera; y 0 si es falsa. Como ejemplo de las proposiciones anteriores, podemos decir que VL(P)=1, VL(q)=0.
  4. Operaciones Veritativas Los Conectivos u Operadores Lógicos son símbolos o conectivos que nos permiten construir otras proposiones; o simplemente unir dos o más proposiciones, a partir de proposiciones dadas. Cuando una proposición no contiene conectivos lógicos diremos que es una proposición atómica o simple; y en el caso contrario, diremos que es una proposición molecular o compuesta.
  5. TABLA DE LOS CONECTIVOS
  6. Conectivos lógicos: La negación Sea p una proposición, la negación de p es otra proposición identificada por: ~ p, que se lee "no p", "no es cierto que p", "es falso que p", y cuyo valor lógico está dado por la negación de dicha proposición. La tabla anterior dice, que ~ p es falsa cuando p es verdadera y que ~ p es verdadera cuando p es falsa.
  7. Forma analítica La tabla anterior dice, que ~ p es falsa cuando p es verdadera y que ~ p es verdadera cuando p es falsa. Este mismo resultado lo podemos expresar en forma analítica mediante la siguiente igualdad: VL (p)= 1- VL(~ p) En efecto Si VL(~ p) = 1, entonces VL(p) = 1 - VL(~ p) = 1-1 = 0 Si VL(~ p) = 0, entonces VL(p) = 1 - VL(~ p) = 1- 0 = 1 Si p es la proposición
  8. La conjunción Definición: Sean p y q dos proposiciones. La conjunción de p y q es la proposición p Ù q, que se lee "p y q", y cuyo valor lógico está dado con la tabla o igualdad siguiente: Ejemplo Si, p: El Negro Primero peleó en Carabobo. q: Bolívar murió en Colombia. r: Miranda nació en Coro. Entonces 1. p ^ q: El Negro Primero peleó en Carabobo y Bolívar murió en Colombia. Además, VL(p ^ q) = 1, ya que VL(p)= 1 y VL(q)= 1. 2. q ^ r: Bolívar murió en Colombia y Miranda nació en Coro. Además, VL(q ^ r) = 0, ya que VL(q)= 1 y VL(r)= 0. VL(p^q) = min (VL(p), VL(q)) en otras palabras el menor valor de los números dados.
  9. La disyunción inclusiva Definición: Sean p y q dos proposiciones. La disyunción de p y q es la proposición p vq, que se lee "p o q", y cuyo valor lógico está dado por la tabla siguiente: VL(pvq)=máximo valor(VL(p),VL(q)).
  10. La disyunción inclusiva Definición: Sean p y q dos proposiciones. La disyunción de p y q es la proposición p v q, que se lee "p o q", y cuyo valor lógico está dado por la tabla siguiente: VL(pvq)=máximo valor(VL(p),VL(q)).
  11. El condicional Definición: Sean p y q dos proposiciones. El condicional con antecedente p y consecuente q es la proposición p ® q, que se lee "si p, entonces q", y cuyo valor lógico está dado por la siguiente tabla: Ejemplo a. Observe las proposiciones condicionales siguientes: 1. Si 5 es primo, entonces 2 + 1 = 3 (Verdadera). 2. Si 5 es primo, entonces 2 + 1 = 4 (Falsa). 3. Si 6 es primo, entonces 2 + 1 = 3 (Verdadera). 4. Si 6 es primo, entonces 2 + 1 = 4 (Verdadera).
  12. El bicondicional Definición: Sean p y q dos proposiciones. Se llama Bicondicional de p y q a la proposición p « q, que se lee "p si sólo si q", o "p es condición necesaria y suficiente para q", y cuyo valor lógico es dado por la siguiente tabla. o en otras palabras el VL (P « q ) = 1 si VL (p) = VL (q) La tabla nos dice que p « q es verdadero cuando VL(p) = VL(q), y esa falsa cuando VL(p) ¹ VL(q) p q P « q 1 1 0 0 1 0 1 0 1 0 0 1
  13. Tablas de verdad Las tablas de verdad permiten determinar el valor de verdad de una proposición compuesta y depende de las proposiciones simples y de los operadores que contengan. Es posible que no se conozca un valor de verdad específico para cada proposición; es este caso es necesario elaborar una tabla de verdad que nos indique todas las diferentes combinaciones de valores de verdad que pueden presentarse. Las posibilidades de combinar valores de verdad dependen del número de proposiciones dadas. Para una proposición (n = 1), tenemos 21 = 2combinaciones Para dos proposiciones (n = 2), tenemos 22 = 4 combinaciones Para tres proposiciones (n = 3), tenemos 2 3 = 8 combinaciones Para n proposiciones tenemos 2n combinaciones
  14. p q R V V V V F F F F V V F F V V F F V F V F V F V F Ejemplo: dado el siguiente esquema molecular, construir su tabla de valores de verdad: Pasos para construir la tabla: (Ø p Ù q) Û (p Þ Ør) Determinamos sus valores de verdad 2 3 = 8 combinaciones 2. Determinamos las combinaciones:
  15. 3. Adjuntamos a éste cuadro el esquema molecular y colocamos debajo de cada una de la variables sus valores de verdad : p q R (  p  q )  ( p   r ) V V V V F F F F V V F F V V F F V F V F V F V F F F F F V V V V F F F F V V F F (4) V V F F V V F F V F V F V V F F (6) V V V V F F F F F V F V V V V V (5) F V F V F V F V
  16. Definición: Es aquella proposición molecular que es verdadera (es decir, todos los valores de verdad que aparecen en su tabla de verdad son 1) independientemente de los valores de sus variables. Ejemplo: Probar que P Ú ~ P es una tautología P Ú ~ P 1 1 0 0 1 1 Proposición Tautológica o Tautología Contradicción : Es aquella proposición molecular que siempre es falsa (es decir cuando los valores de verdad que aparecen en su tabla de verdad son todos 0) independientemente de los valores de sus variables proposicionales que la forman. Por ejemplo, la proposición molecular del ejemplo siguiente es una contradicción, p Ù ~ p, para chequearlo recurrimos al método de las tablas de verdad. Ejemplo: Probar que p Ù ~ p es una contradicción p Ù ~ p 1 0 0 0 0 1
  17. Algunas Leyes del Algebra de Proposiciones 1. Leyes Idempotentes 1.1. pÚ p º p 1.2. pÙ p º p 2. Leyes Asociativas 2.1. (P Ú q) Ú r º p Ú (q Ú r) 2.2. (P Ù q) Ù r º p Ù (q Ù r) 3. Leyes Conmutativas 3.1. P Ú q º q Ú p 3.2. P Ù q º q Ù p 4. Leyes Distributivas 4.1. P Ú ( q Ù r ) º ( p Ú q ) Ù (p Ú r) 4.2. P Ù ( q Ú r ) º ( p Ù q ) Ú (p Ù r) 5. Leyes de Identidad 5.1. P Ú F º P 5.2. P Ù F º F 5.3. P Ú V º V 5.4. P Ù V º P 6. Leyes de Complementación 6.1. P Ú ~ P º V (tercio excluido) 6.2. P Ù ~ P º F (contradicción) 6.3. ~ ~ P º P (doble negación) 6.4. ~ V º F, ~ F º V 7. Leyes De Morgan 7.1. ~ ( P Ú q ) º ~ P Ù ~ q 7.2. ~ ( P Ù q ) º ~ P Ú ~ q
  18. Circuitos Lógicos Los circuitos lógicos o redes de conmutación los podemos identificar con una forma proposicional. Es decir, dada una forma proposicional, podemos asociarle un circuito; o dado un circuito podemos asociarle la forma proposicional correspondiente. Además, usando las leyes del álgebra proposicional podemos simplificar los circuitos en otros más sencillos, pero que cumplen la misma función que el original. Veamos los siguientes interruptores en conexión: Conexión en serie Conexión en paralelo
  19. Ejemplo: Construir el circuito correspondiente a cada una de las siguientes expresiones: i) p Ù (q Ú r) (ii) (p Ù q) Ú [( p Ù r) Ú ~ s)] i) p Ù (q Ú r) ii) (p Ù q)Ú [( p Ù r) Ú ~ s)]
  20. Simplificar el siguiente circuito: Sol (pÚ q)Ù (~ pÚ q)Ù (~ pÚ ~ q) = [(p Ú q)Ù (~ p Ú q)] Ù (~ p Ú ~ q) = [(p Ù ~ p) Ú q] Ù (~ p Ú ~ q) = [F Ú q] Ù (~ p Ú ~ q) = q Ù (~ pÚ ~ q) = ( q Ù ~ p) Ú (q Ù ~ q) =( q Ù ~ p) Ú F = ( q Ù ~ p) Así, el circuito se simplifica a:
Anúncio