O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a navegar o site, você aceita o uso de cookies. Leia nosso Contrato do Usuário e nossa Política de Privacidade.
O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a utilizar o site, você aceita o uso de cookies. Leia nossa Política de Privacidade e nosso Contrato do Usuário para obter mais detalhes.
This course provides a broad introduction to the methods and practice
of statistical machine learning, which is concerned with the development
of algorithms and techniques that learn from observed data by
constructing stochastic models that can be used for making predictions
and decisions. Topics covered include Bayesian inference and maximum
likelihood modeling; regression, classi¯cation, density estimation,
clustering, principal component analysis; parametric, semi-parametric,
and non-parametric models; basis functions, neural networks, kernel
methods, and graphical models; deterministic and stochastic
optimization; over¯tting, regularization, and validation.
Parece que você já adicionou este slide ao painel
Entre para ver os comentários