O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Percentagem

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Porcentagem
Porcentagem
Carregando em…3
×

Confira estes a seguir

1 de 17 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Quem viu também gostou (20)

Anúncio

Semelhante a Percentagem (20)

Anúncio

Mais recentes (20)

Percentagem

  1. 1. Percentagem Luís Veiga/2014
  2. 2. NOÇÃO DE PERCENTAGEM Percentagem pode ser definida como a centésima parte de uma grandeza, ou o cálculo baseado em 100 unidades, ou seja: Percentagem é uma parte de um todo de cem partes, ou seja, uma fração cujo denominador é 100. Significado do sinal de percentagem: % O sinal % é uma mera abreviação da expressão: dividido por 100. De modo que, 800 % é a mesma coisa que 800/100, que é o mesmo que 8 por 1. Ou seja, é a mesma coisa dizermos: 800 % ou 800 por 100, ou 80 por 10, ou 8 por 1, etc. É visto com frequência as pessoas ou o próprio mercado usar expressões de acréscimo ou redução nos preços de produtos ou serviços.
  3. 3. As frações que possuem denominadores (o número de baixo da fração) iguais a 100, são conhecidas por frações centesimais e podem ser representadas pelo símbolo "%". O símbolo "%" é lido como "por cento". "5%" lê-se "5 por cento". "25%" lê-se "25 por cento". O símbolo "%" significa centésimos, assim "5%" é uma outra forma de se escrever 0,05, Vê as seguintes frações. Podemos representá-las na sua forma decimal por: E também na sua forma de percentagens por: ou por exemplo.
  4. 4. Alguns exemplos: Exemplo 1 - O Leite teve um aumento de 25% Quer dizer que de cada €100,00 teve um acréscimo de € 25,00 Exemplo 2- O cliente teve um desconto de 15% na compra de uma calça jeans Quer dizer que em cada € 100,00 a loja deu um desconto de € 15,00 Exemplo 3 - Significa que de cada 100 funcionários, 75 são dedicados ao trabalho ou a empresa- Dos funcionários que trabalham na empresa, 75% são dedicados. Exemplo 4. Em um grupo de 100 garotos, 75 deles gostam de futebol. A fração que representa a quantidade de meninos desse grupo que aprecia futebol é: 75/100 Como essa fração representa uma parte do total de 100 garotos, ela representa uma percentagem desse grupo. Toda fração com denominador 100 pode ser escrita na forma de percentagem. Observa: Podemos afirmar que 75% desses garotos gostam de futebol.
  5. 5. Exemplo 5. De cada 100 crianças nascidas no Brasil, 46 são do sexo feminino. A fração que representa a quantidade de crianças do sexo feminino é: 46/100 Dessa forma, podemos afirmar que: 46% das crianças nascidas no Brasil são do sexo feminino. Como foi dito, toda e qualquer fração com denominador 100 pode ser escrita na forma de percentagem. Essa característica facilita o cálculo da percentagem de um número. Veja o próximo exemplo. Exemplo 6. Numa sorveteria, 30% dos 250 sorvetes vendidos por dia são de sabor morango. Quantos sorvetes de morango são vendidos por dia nessa sorveteria? Solução: O problema afirma que 30% de 250 sorvetes são de morango. Portanto devemos saber quanto é 30% de 250 para responder ao problema.
  6. 6. Na matemática, a palavra “de” representa a operação de multiplicação. Assim, podemos reescrever a afirmação da seguinte forma: 30% de 250 = 30% x 250 Vimos nos exemplos anteriores que: Assim, podemos melhorar a escrita da afirmação mais uma vez: Logo, a sorveteria vende 75 sorvetes de morango por dia. Vimos que percentagem é uma forma diferente de escrever uma fração cujo denominador é 100. Como toda fração pode ser escrita na forma de um número decimal, a percentagem também pode ser escrita. Vejamos como isso ocorre. Escrever a percentagem na forma decimal pode facilitar os cálculos na resolução de alguns problemas. Observe:
  7. 7. Exemplo 7. Pedro guardou 12% de seu salário na poupança. Sabendo que o salário de Pedro é de €1500,00, quanto aplicou ele na poupança? Solução: Segundo o problema, Pedro guardou 12% de 1500 na poupança. Assim, teremos: 12% de 1500 = 12% × 1500 Mas, O cálculo fica da seguinte forma: 12% × 1500 = 0,12 × 1500 = 180 Portanto, Pedro guardou 180 euros na poupança.
  8. 8. Exemplo 8. Quanto é 23% de 500? Solução: Sabemos que: 23% = 0,23 Assim, teremos: 23% de 500 = 0,23 x 500=115
  9. 9. FRAÇÕES EQUIVALÊNCIAS
  10. 10. A unidade está dividida em duas partes iguais. Cada parte representa metade ou 50 % (100% : 2 = 50%). Ou 50 centésimas (0,50)
  11. 11. A unidade está dividida em quatro partes iguais. Cada parte representa a quarta parte ou 25 % (100:4=25). Ou 25 centésimas (0,25)
  12. 12. A unidade está dividida em quatro partes iguais. Cada parte representa a quarta parte ou 25 % (por cento), ou 25 centésimas (0,25) Três partes são: 75% ou 75 centésimas (0,75)
  13. 13. Cavaleiro/2014

×