O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Thuyet minh ke bao ve bo

Mais Conteúdo rRelacionado

Thuyet minh ke bao ve bo

  1. 1. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 1 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c CHƯƠNG 1: ĐỀ BÀI ĐỒ ÁN. 1. Nhóm: 19 LÊ PHÙNG VĂN – MSSV : 10013.53 LÊ ĐÌNH KIÊN – MSSV : 8980.53 2. Bình đồ: CAM RANH – KHÁNH HÒA. 3. Công trình: Kè bờ 4. Cấp công trình: Công trình cấp II. 5. Mục tiêu. * Mục tiêu chính của kè bảo vệ bờ: + Giữ ổn định đường bờ trước tác dụng của các yếu tố MTB như: sóng, gió, dòng chảy... + Ngăn nước mặn tràn vào khu vực cần bảo vệ... CHƯƠNG 2: CÁC SỐ LIỆU MÔI TRƯỜNG PHỤC VỤ THIẾT KẾ. Các số liệu môi trường cần thiết để phục vụ thiết kế kè bảo vệ bờ đó là số liệu về địa hình, địa chất, số liệu về khí tượng hải văn. *Số liệu về địa hình, địa chất: + Bình đồ địa hình khu vực xây dựng công trình. + Số liệu về địa chất tại khu vực xây dựng công trình. *Số liệu về khí tượng hải văn: + Vận tốc gió tính toán (m/s). + Thời gian gió thổi (giờ). + Hướng gió thổi. + Mực nước: các số liệu về mực nước triều, nước dâng do bão. Thông thường việc tính toán thiết kế cho một tuyến kè với địa hình đồng đều thì thường được thực hiện theo các mặt cắt thiết kế cách nhau khoảng 50m, nếu địa hình phức tạp thì khoảng cách giữa các mặt cắt thiết kế thường lấy dày hơn. 1.Gió tính toán. 1.1. Vận tốc gió tính toán. Việc xác định vận tốc gió tính toán cần tính toán theo chu kỳ lặp theo luật phân bố weibull dựa vào thống kê các cơn bão trong chuỗi số liệu. Trong đồ án có thể chấp nhận gần đúng cách lấy vận tốc gió như sau:
  2. 2. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN +Công trình cấp II tương ứng với gió bão cấp 11.Theo bảng phân cấp gió trong tiêu chuẩn Hướng gió bão được coi như hướng thẳng góc với đường bờ, hướng gió mùa theo số liệu điều tra. 2 ngành 14TCN130-2002 gió bão cấp 11 có tốc độ gió như sau: V = 29m/s. +Tại Nha Trang với tần suất 5% thì vận tốc gió tính toán lớn nhất là 27m/s. Vậy chọn vận tốc gió tính toán V = 29m/s (104,4km/h). Theo số liệu điều tra hướng gió chính là hướng NE (Đông Nam). 1.3.Đà gió tính toán. Trong vùng biển thoáng, đà gió được xác định theo công thức NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c V L   5.1011 (1) Trong đó: - hệ số nhớt động học của không khí =10-5(m2/s) V- Tốc độ gió tính toán (m/s) Trường hợp vùng nước tính toán có địa hình hạn chế, đà gió cần được tính toán theo phương pháp đồ giải. Đà gió tính toán không được vượt đà gió lớn nhất theo bảng 4. Bảng 4: giá trị đà gió lớn nhất Vận tốc gió tt (m/s) 20 25 30 40 50 Đà gió (km) 1600 1200 600 200 100  L = 172,414 km < Lmax = 720 km. 2.Mực nước tính toán. Trong tính toán thiết kế các công trình bảo vệ bờ người ta thường quan tâm đến một số loại mực nước sau: + MNTB: Mực nước trung bình Z = (1/n)ΣZi với (i=1 đến n) + MNTC: Mực nước triều cao - Mực nước đỉnh triều trong một chu kỳ triều + MNTT: Mực nước triều thấp - Mực nước chân triều trong một chu kỳ triều Ngoài các khái niệm mực nước trên trong tính toán thiết kế các công trình bảo vệ bờ người ta phải xét đến các mực nước thiết kế. Mực nước cao thiết kế (MNCTK) xác định theo công thức: MNCTK = MNTC + Hnd (2) Trong đó: + MNTC: Mực nước triều cao thiết kế (m) + Hnd: Chiều cao nước dâng do bão (m)
  3. 3. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 3 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c Mực nước triều cao thiết kế và chiều cao nước dâng do bão được lấy theo suất đảm bảo và phụ thuộc vào cấp công trình (căn cứ theo các quy định hiện hành). 2.1.Mực nước triều tính toán. 2.1.1.Xác định theo tần suất tích lũy. Mực nước triều tính toán (MNTTT) được xác định phụ thuộc vào loại hình công trình và cấp công trình. MNTTT được xác định theo tần suất tích luỹ Pi%. Tần suất tích luỹ i% của mực nước triều là tổng số % của số lần xuất hiện các mực nước từ trị số thứ i trở lên đến m so với tổng số mực nước trong liệt tính toán n và được xác định theo công thức: Pi% = (m/n)x100% (3) Trong đó m là số lần mực nước triều xuất hiện cao hơn hoặc bằng lần thứ i. Hoàn kỳ (chu kỳ lặp) T = 100/P Suất đảm bảo mực nước triều cao tính toán thiết kế cỏ thể lấy theo bảng 5. Bảng 5: Suất đảm bảo mực nước triều tính toán cao nhất tương ứng với cấp công trình Cấp công trình Đặc biệt I và II III và IV Tần suất mực nước biển thiết kế (%) 1 2 5 2.1.2.Xác định theo phương pháp phân tích tần suất dạng cực trị. -Tính theo phương pháp phân tích tần suất dạng cực trị theo 14TCN130-2002: n=1,2,…,27 Sai số quân phương của mực nước Zi trong n năm: Trị số mực nước cao tương ứng với tần suất 2% là: Tính toán như trên ta có kết quả: -Các đặc trưng nước biển: Năm Max Trung bình Min cm cm cm
  4. 4. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 4 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c 1990 235 129 15 1991 226 125 6 1992 227 121 12 1993 219 120 6 1994 218 122 19 1995 231 125 17 1996 216 124 9 1997 216 120 20 1998 226 113 4 1999 234 130 15 2000 228 131 21 Tính toán theo tiêu chuẩn ta có các bảng giá trị sau: -Max: Ztb Z2 i Z2 tb S λp Zp cm cm2 cm2 cm cm 225 557804 50665.92 6.59827 3.516 248.2904 -Trung bình: Ztb Z2 i Z2 tb S λp Zp cm cm2 cm2 cm cm 124 168422 15285.95 5.01403 3.516 141.2657 -Min: Ztb Z2 i Z2 tb S λp Zp cm cm2 cm2 cm cm 13.1 2254 171.3719 5.79113 3.516 33.4525 2.2.Chiều cao nước dâng cực đại (hnd,max). Khu vực biển Khánh Hòa nằm trong vùng hoạt động mạnh của bão. Trị số nước dâng trong bão là tổng của 2 thành phần: nước dâng do gió và nước dâng do chênh lệch khí áp. Kết quả tính toán do Trung tâm khí tượng thủy văn biển thực hiện cho các giá trị nước dâng ứng với tần suất xuất hiện 20%, 10%, 4%, 2%, 1% (tức là 1 lần trong 5 năm, 10 năm, 25 năm, 50 năm và 200 năm). Tra theo hình C-2, trang 93 Tiêu chuẩn ngành 14TCN130-2002 ta có:  hnd,max = 0,8 m = 80 cm.
  5. 5. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 5                          NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c Khi đó mực nước tính toán ứng với cấp công trình: MNCTK = 248,29 + 80 = 328,29 cm = 3,3m(so với cốt “0” hải đồ). Chuyển về mực nước tính toán theo cốt “0” lục địa ta có: MNCTK = 3,3 – 1,3 = +2m. MNTTK = 0.33 – 1.3 = -0,97m. 3.Tính toán các thông số sóng thiết kế. Sóng tại chân công trình là kết quả của quá trình lan truyền sóng từ vùng nước sâu vào bờ do trọng lực - quán tính. Việc xác định các thông số sóng trong quá trình lan truyền sóng có thể được thực hiện theo nhiều cách như sử dụng các chương trình phần mềm tính toán lan truyền sóng 3D hoặc tính toán theo bài toán phẳng dựa theo các lý thuyết sóng. Trong tài liệu tính toán theo tiêu chuẩn 22-TCN 222-95. Sơ đồ phân vùng sóng lan truyền vào bờ. 3.1.Các thông số sóng (L,T,H) tại vùng nước sâu. Chiều cao sóng trung bình Htb (m), chu kỳ sóng trung bình Ttb (s): Chiều cao sóng trung bình và chu kỳ sóng trung bình có thể xác định theo cách tra đồ thị hoặc sử dụng công thức tính toán. Chiều cao sóng trung bình Htb và chu kỳ sóng trung bình Ttb phải tính theo hai yếu tố là đà gió và thời gian gió thổi sau đó chọn cặp số liệu có giá trị nhỏ hơn. 3.1.1.Tính theo đà gió. Căn cứ vào đại lượng gL/V2, tra đồ thị hình 1 theo 22TCN222-1995 xác định được gHtb/V2 và gTtb/V từ đó tính được chiều cao sóng trung bình Htb và chu kỳ sóng trung bình Ttb . Chiều cao sóng trung bình, chu kỳ sóng trung bình cũng có thể tính theo công thức: (4.2) 2 2 3 2 1 0.16 1 1 6 10 tb V H g gL V 
  6. 6. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 6 0.625 V gH   2 19.5 tb T tb    g V         2                             g gt  3 1 V 0.16 1 1 1.04 10 tb H V NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c (4.3) Tính toán như sau: L gL/V2 V2/g Htb V/g gHtb V2 gHtb/V2 Ttb 172413.8 2011.153 85.7288 5.199899 2.95616718 51.011 841 0.06066 10.00129 Ta có: Htb = 5,2 m. Ttb = 10,0 s. 3.1.2.Tính theo thời gian gió thổi. Căn cứ vào đại lượng gt/V, tra đồ thị hình 1 theo 22TCN222-1995 xác định được gHtb /V2 và gTtb/V từ đó tính được chiều cao sóng trung bình Htb và chu kỳ sóng trung bình Ttb Chiều cao sóng trung bình cũng có thể tính theo công thức: (4.4) 2 0.635 Thời gian gió thổi lấy theo các quy định tiêu chuẩn,thông thường: -Đối với biển t = 12h. -Đối với Đại dương t = 18h. -Đối với ven bờ t = 6h. => Lấy t = 6h = 6.3600 = 21600s để tính toán. Chu kì sóng trung bình tính như công thức (4.3), thay số ta có: gt/V Htb gHtb gHtb/V2 Ttb 7306.76 5.543286 54.3796 0.064661 10.4091146 Htb = 5,5m. Ttb = 10,5s. Vậy chọn cặp số liệu dùng để tính toán có giá trị bé hơn: Htb = 5,2m. Ttb = 10s. 3.1.3.Chiều dài sóng. Chiều dài sóng trung bình xác định theo công thức:
  7. 7. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 7 i t i l r tb Hk k k k h % NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c λdtb = g.T2 tb/2π = 156,2m. 3.2.Các thông số sóng lan truyền vào vùng nước nông. Địa hình đáy biển m = 0,04 > 0,002 áp dụng tính toán như sau: Chiều cao sóng với suất đảm bảo i% (hi%) xác định theo công thức: (4.7) Trong đó: kt- Hệ số biến hình xác định theo đường cong 1 trên hình 5 trang 536/22TCN222-95. ki- Hệ số xác định theo đồ thị trên hình 2 trang 533/22TCN222-95. kl- Hệ số tổng hợp các tổn thất xác định theo bảng 2.7. kr- Hệ số khúc xạ. Trong tính toán gần đúng công thức 4.7 có thể viết dưới dạng: hi% = kiklksHtb (4.8) Trong đó: Hệ số biến hình và khúc xạ ks (ks = kt kr ) có thể tra theo bảng 2.8. Bảng 2.7: Hệ số tổng hợp các tổn thất kl d/ λdtb 0.01 0.03 0.06 0.08 0.1 0.2 0.3 0.4 >=0.5 m >= 0.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 m = 0.025 0.82 0.87 0.90 0.92 0.93 0.96 0.98 0.99 1.00 m = 0.02- 0.002 0.66 0.76 0.81 0.84 0.86 0.92 0.95 0.98 1.00 Bảng 2.8: Hệ số biến hình và khúc xạ ks d/dtb Hệ số ks đối với góc giữa hướng sóng và pháp tuyến đường bờ  (độ) 0 10 20 30 40 50 60 70 80 0.02 1.26 1.24 1.21 1.17 1.10 1.02 0.94 0.75 0.53 0.04 1.06 1.05 1.04 1.00 0.96 0.88 0.79 0.64 0.47 0.06 1.00 0.99 0.98 0.95 0.91 0.85 0.76 0.63 0.46 0.08 0.96 0.96 0.94 0.92 0.88 0.84 0.75 0.63 0.46 0.10 0.93 0.93 0.92 0.90 0.87 0.82 0.74 0.64 0.46 0.15 0.91 0.91 0.91 0.89 0.87 0.84 0.78 0.69 0.50
  8. 8. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 8 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c 0.20 0.92 0.92 0.91 0.91 0.89 0.86 0.81 0.72 0.55 0.25 0.93 0.93 0.93 0.92 0.91 0.86 0.86 0.79 0.62 0.30 0.95 0.95 0.95 0.94 0.94 0.92 0.90 0.85 0.70 0.40 0.98 0.98 0.98 0.98 0.97 0.97 0.96 0.94 0.86 0.50 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.95 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 Hình 2.Đồ thị xác định hệ số ki Hình 4.Đồ thị xác định giá trị λ Chiều dài sóng trung bình tb (m) xác định theo đồ thị hình 4 trang 535/22TCN222-95.
  9. 9. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 9 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c Cao độ đỉnh sóng  (m) trên mực nước tính toán xác định theo đồ thị hình 3 trang 534/22TCN222-95. Hình 3.Đồ thị xác định cao độ đỉnh sóng η Tính toán theo gió bão vuông góc với đường bờ thì góc α = 0 (độ). Công trình cấp II có suất đảm bảo i = 5%. Kết quả tính toán thể hiện trong bảng sau: d d/λdtb gd/V2 kl ks k1% H1% m m 25 0.160 0.292 1 0.921 2.27 10.859 20 0.128 0.233 1 0.925 2.25 10.822 15 0.096 0.175 1 0.932 2.21 10.687 13 0.083 0.152 1 0.937 2.2 10.719 12 0.077 0.140 1 0.958 2.19 10.909 11 0.070 0.128 1 0.972 2.18 11.018 10 0.064 0.117 1 0.983 2.15 10.956 8 0.051 0.093 1 1.054 2.13 11.674 6 0.038 0.070 1 1.061 2.12 11.685 5 0.032 0.058 1 1.253 2.1 13.104 4 0.026 0.047 1 1.256 2.06 13.390 3.3.Các thông số sóng vỡ.
  10. 10. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 10 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c Khi sóng lan truyền vào gần bờ, đến một độ sâu nước nào đó sóng sẽ bị vỡ. Sóng có thể bị vỡ một hoặc nhiều lần, vùng nước giới hạn bởi vị trí sóng vỡ lần đầu đến vị trí sóng vỡ lần cuối gọi là vùng sóng vỡ. 3.3.1.Độ sâu sóng vỡ lần đầu. Độ sâu sóng vỡ lần đầu xác định theo các bước sau: Bước 1: Chọn một dãy các giá trị của độ sâu nước di (m) cho truớc, tính toán chiều cao sóng tại các độ sâu nước đó với suất đảm bảo 1% theo các công thức tính sóng trong vùng nước nông. Bước 2: Từ các giá trị h1% tính được ở bước 1, xác định được các giá trị h1%/gT2 tương ứng. Rồi theo các đường cong 2,3 và 4 trên hình 5 tính được các trị số dcr/dtb từ đó tính được các giá trị dcr tương ứng. Bước 3: Độ sâu sóng vỡ lần đầu dcr (m) là độ sâu dcr tính được mà có giá trị gần đúng nhất với một giá trị độ sâu nước di chọn trước đó. Hình 5.Đồ thị xác định hệ số kt (đường cong 1) Kết quả tính toán thể hiện trong bảng sau: d(m) d/λdtb gd/V2 H1%(m) H1%/gT2 m dcr/λdtb dcr(m) 25 0.160 0.292 10.8595 0.0111 0.04 0.07 10.932
  11. 11. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 11 cr n cru u d k d 1  2 0.43            1  0.43 n n ku ku NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c 20 0.128 0.233 10.8106 0.0110 0.04 0.071 11.088 15 0.096 0.175 10.7563 0.0110 0.04 0.073 11.401 13 0.083 0.152 10.925 0.0111 0.04 0.0735 11.479 12 0.077 0.140 10.9095 0.0111 0.04 0.07 10.932 11 0.070 0.128 11.0184 0.0112 0.04 0.071 11.088 10 0.064 0.117 11.0903 0.0113 0.04 0.0725 11.322 8 0.051 0.093 11.6739 0.0119 0.04 0.08 12.494 6 0.038 0.070 11.6852 0.0119 0.04 0.082 12.806 5 0.032 0.058 13.1037 0.0134 0.04 0.083 12.962 4 0.026 0.047 13.3897 0.0136 0.04 0.084 13.118 Vậy độ sâu lâm giới tại vị trí sóng đổ lần đầu: dcr = 11m. 3.3.2.Độ sâu sóng vỡ lần cuối. Độ sâu sóng vỡ lần cuối dcru (m) khi độ dốc đáy biển không đổi xác định theo: (4.10) Trong đó: ku- Hệ số phụ thuộc vào độ dốc đáy m và được lấy theo bảng 6. n- số lần sóng đổ (n>=2) và thoả mãn điều kiện: (4.11) Bảng 6: Hệ số ku m 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 ku 0.75 0.63 0.56 0.50 0.45 0.42 0.40 0.37 Khi độ dốc đáy biển 0.2 > m > 0.05 thì n =1; dcru = dcr Khi độ dốc đáy biển 0.01 > m > 0.001 thì dcru = 0.43 dcr Kết quả tính toán thể hiện trong bảng sau: n m ku ku n-2 ku n-1 dcru 2 0.04 0.4 1 0.4 4.44 3 0.04 0.4 0.4 0.16 FALSE 4 0.04 0.4 0.16 0.064 FALSE Vậy độ sâu sóng vỡ lần cuối: dcru = 4m. 3.3.3.Chiều cao sóng, chiều dài sóng, độ cao đỉnh sóng trên mực nước tính toán ở vùng sóng vỡ. Chiều cao sóng vỡ hsur1% (m) xác định theo hình 5 ứng với các độ sâu đáy khác nhau và các đại lượng không thứ nguyên d/dtb tìm được hsur 1%.
  12. 12. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 12    2  0.18    d gT  NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c Chiều cao sóng vỡ hsur 1% cũng có thể tính theo công thức: (4.12) Trong đó: ai = 4.3 khi 0.001 < m  0.033 ai = 5.4 khi 0.033 < m  0.049 ai = 6.3 khi 0.05  m  0.2  Với m = 0,04 lấy ai = 5,4. Chiều cao sóng vỡ với suất đảm bảo i% được xác định theo công thức: hsuri% = ki hsur 1% (4.13) Trong đó hệ số ki xác định theo bảng 7: Bảng 7: Hệ số ki Suất đảm bảo chiều cao sóng i% 0.1 1 5 13 Hệ số ki 1.15 1.0 0.9 0.65 -Chiều dài sóng vỡ sur (m): Chiều dài sóng vỡ được xác định theo đường cong trên cùng của hình 4, phụ thuộc vào tỷ số d/dtb. -Cao độ đỉnh sóng η(m) trên mực nước tính toán xác định theo đồ thị hình 3, dựa vào tỷ số d/dtb và tỷ số hsur1%/gT2 tb. Kết quả tính toán theo bảng sau: dcru dcru/λdtb gT2 tb Hsur1% Hsur1%/gT2 tb λtbsur/λdtb λtbsur 4.44 0.028 981.253 4.278 0.0044 0.51 79.647 => Với suất đảm bảo 13% lấy ki = 0,65. dcru dcru/λdtb gT2 tb Hsur13% Hsur13%/gT2 tb λtbsur/λdtb λtbsur 4.44 0.028 981.253 2.883 0.0029 0.48 74.962 3.4.Các thông số sóng thiết kế tại chân công trình. Trường hợp công trình nằm trong vùng sóng vỡ thì các thông số sóng thiết kế là các thông số sóng tại chân công trình. Trường hợp công trình nằm ngoài vùng sóng vỡ thì các thông số sóng thiết kế là các thông số sóng vỡ lần cuối. Khi xác định độ ổn định và độ bền của công trình thuỷ và các cấu kiện, suất bảo đảm tính toán của chiều cao sóng trong hệ sóng được lấy the o bảng dưới đây. -Công trình là kè bờ nằm ngoài vùng sóng vỡ nên các thông số sóng trung bình có kết quả như sau: 2 1% 2 2 tb sur i tb h th a gT    
  13. 13. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 13 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c d(m) Hsur1%(m) Htb(m) Ttb(s) λtb(m) 2 4.278 1.86 10 43.6 Trong vùng nước nông: H1% = 2,3Htb Chiều dài sóng tính theo bảng B-6 trang 77/14TCN130-2002. CHƯƠNG 3: THIẾT KẾ MẶT CẮT NGANG KÈ BẢO VỆ BỜ. 1.Hình dạng và kích thước mặt cắt. 1.1.Hình dạng chung. -Chọn kết cấu kè mái nghiêng nên mặt cắt của kè có dạng hình thang. -Kết cấu kè đất mái nghiêng thường có dạng thân kè đắp bằng đất á sét. Mái kè được phủ bằng các khối tetrapod. 1.2.Chiều rộng kè và kết cấu đỉnh. 1.2.1.Chiều rộng đỉnh kè. Dựa vào cấp công trình trong bảng tiêu chuẩn dưới đây. Bảng 11: Chiều rộng đỉnh kè theo cấp công trình. Cấp công trình kè I II III IV III Chiều rộng đỉnh kè Bk(m) 6 - 8 6 5 4 3 Vậy chọn chiều rộng đỉnh là Bk = 6m ứng với công trình cấp II. 1.2.2.Kết cấu đỉnh. Kết cấu đỉnh kè cần căn cứ theo yêu cầu sau: + Căn cứ vào mức độ cho phép sóng tràn, yêu cầu về giao thông, quản lý, chất đắp kè, mưa gió xói mòn. v.v… để xác định theo các tiêu chuẩn mặt đường tương ứng. + Mặt đỉnh kè cần dốc về một phía (độ dốc khoảng 2% ÷ 3%) tập trung thoát nước về các rãnh thoát nước mặt. + Trường hợp đất đắp kè, mặt bằng đắp kè bị hạn chế, có thể xây tường đỉnh để đạt cao trình đỉnh kè thiết kế. => Đắp đỉnh kè thêm độ dày 140mm để đạt được cao trình đỉnh kè thiết kế. Đổ lớp bê tông dày 100mm trên mặt kè để đạt cao trình kè đã chọn. 1.2.3.Tường đỉnh. Tường chống tràn đỉnh kè bố trí ở phía ngoài mép kè phía biển. Tường chỉ được đặt sát thân kè đã ổn định, móng độc lập với công trình gia cố mái. -Do khối tetrapod khi tính toán đã thỏa mãn điều kiện tiêu tán song leo nên không cần thiết kế tường đỉnh cho kè. . 1.3.Mái kè.
  14. 14. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 14 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c Độ dốc mái kè m = cotg , với  là góc giữa mái kè và đường nằm ngang. Độ dốc mái kè được xác định thông qua tính toán ổn định, có xét đến biện pháp thi công, yêu cầu sử dụng khai thác và kết cấu công trình gia cố mái. Thông thường lấy m = 3÷5 cho mái phía biển. Sơ bộ độ dốc mái kè phía biển có thể xác định theo bảng 12. Bảng 12: Độ dốc mái kè Loại hình gia cố mái Hệ số mái dốc m (ctg) Đá hộc lát khan 3.0 ÷ 5.0 Đá hộc xây 2.5 ÷ 5.0 Đá hộc đổ rối 3.0 ÷ 5.0 Bản bê tông, tấm bê tông đúc sẵn 2.5 ÷ 3.5 Khối phức hình Chọn độ dốc mái kè là m = 2,5 với loại hình gia cố mái bằng khối phức hình. 1.4.Nền kè và vật liệu đắp kè. 1.4.1.Nền kè. Kè mới thường được đắp trực tiếp trên đất tự nhiên, sau khi đã sử lý lớp phủ bề mặt. 1.4.2.Vật liệu đắp kè. Chủ yếu là các loại đất khai thác tại vùng lân cận công trình. Đất được đầm chặt, hệ số đầm chặt (k) của đất đắp thân kè có thể tham khảo trong bảng 13. Bảng 13: hệ số đầm chặt k của đất đắp thân kè Cấp công trình của kè biển Đặc biệt và I II và III III và IV k (đất dính)  0,94  0,92  0,90 k (đất rời)  0,65  0,62  0,60 Đối với kè đất đồng chất, nên chọn đất á sét có hàm lượng hạt sét từ 15% đến 30%. Chỉ số dẻo đạt 10 đến 20, không chứa tạp chất. Nếu nguồn đất đắp kè chỉ có hạt cát rời, thành phần hạt mịn nhỏ hơn 25%, thì bọc ngoài một lớp đất thịt với chiều dày không nhỏ hơn 0,5m. 2.Các bài toán thiết kế. 2.1.Thiết kế cao trình đỉnh kè. Cao trình đỉnh kè xác định theo công thức: Zđ = MNCTK + Hsl + a (4.15) Trong đó: Zđ - Cao trình đỉnh kè thiết kế, m; MNCTK - Mực nước cao thiết kế, m; Hsl - Chiều cao sóng leo, m;
  15. 15. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 15 K K K . . w   R H L p s s 1 m  NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c a - Độ cao dự trữ lấy theo bảng 18. Bảng 18: Độ cao dự trữ Cấp công trình Đặc biệt I II III IV a (m) 0.5 0.4 0.4 0.3 0.3 Công trình cấp II lấy a = 0,4m. -Từ mặt cắt địa hình, do công trình nằm ngoài vùng sóng vỡ nên ta chọn độ sâu tính toán d = 4(m). Khi đó: Hs = Htb = 1,86m. Ls = λtb = 43,6m. -Chiều cao sóng leo trên mái dốc khi 1.5 ≤ m = 2.5 ≤ 5.0 có thể xác định theo công thức trong phụ lục D - 14TCN 130 -2002. Trong đó: 2 . . p KΔ Hệ số nhám và tính thấm của mái nghiêng, tra bảng D - 1 Kw Hệ số kinh nghiệm, tra bảng D - 2 Kp Hệ số tính đổi tần suất tích lũy của chiều cao sóng leo, tra bảng D - 3 m Hệ số mái dốc Hs Chiều cao trung bình của sóng trước kè (m) Ls Chiều dài sóng trước kè (m) Rp Chiều cao sóng leo (m) Bảng D1: Hệ số nhám và tính thấm của mái nghiêng Loại hình gia cố mái kΔ Trơn phẳng không thấm nước(Bê tông nhựa đường) 1.0 Bê tông và tấm lát bê tông 0.9 Lát cỏ 0.85÷0.9 Đá xây 0.75÷0.8 Đá hộc đổ 2 lớp(nền không thấm nước) 0.6÷0.65 Đá hộc đổ 2 lớp(nền thấm nước) 0.5÷0.55 Khối vuông 4 chân(lắp đặt 1 lớp) 0.55 Tetrapod(2 lớp) 0.4 Dolos(2 lớp) 0.38  kΔ = 0,4 ứng với đá hộc đổ 2 lớp(nền thấm nước). Bảng D2: Hệ số kinh nghiệm
  16. 16. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 16  h 3 b s / 1 cot 3    k g  W  b d  NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c V/√푔푑 ≤ 1 1.5 2 2.5 3 3.5 4 ≥ 5 kw 1 1.02 1.08 1.16 1.22 1.25 1.28 1.3 Có: V = 29m/s; V/(gd)1/2 = 4,6 => kw = 1,29. Bảng D3: Hệ số tính đổi tần suất tích lũy của chiều cao sóng leo Hs /d p% 0.1 1 2 3 4 5 10 13 20 50 <0.1 2.66 2.23 2.07 1.97 1.9 1.84 1.64 1.54 1.39 0.96 0.1÷0.3 2.44 2.08 1.94 1.86 1.8 1.75 1.57 1.48 1.36 0.97 >0.3 2.13 1.86 1.76 1.7 1.65 1.61 1.48 1.40 1.31 0.99 Hs = 1,86m; d = 4m; p% = 2%. Hs/d = 0,46 > 0,3 => kp = 1,76. Thay các giá trị tương ứng vào công thức trên ta có: kΔ kw kp Hs(m) Ls(m) m Rp(m) 0.4 1.29 1.76 1.86 43.6 2.5 3.0 Rp = hrun2% = 3,0(m). Cao trình đỉnh kè tính toán: MNCTK(m) a(m) Rp(m) Zk(m) 2 0.4 3.0 5.4 Chọn cao trình đỉnh kè tính toán là: Zk = +5,5m. 2.2.Kết cấu gia cố mái kè. -Gia cố mái bằng các khối rời rạc: Trọng lượng khối gia cố có thể tính theo công thức Hudson: (4.16) Trong đó: hs – Chiều cao sóng đáng kể (có thể lấy gần đúng bằng chiều sao sóng với suất đảm bảo 13% - h13%) kd – Hệ số ổn định phụ thuộc loại hình gia cố, số lớp gia cố, hệ số cho phép mất ổn định n% và được lấy theo bảng 19. Bảng 19: Hệ số ổn định kd Khối bảo vệ Cấu tạo n% kd Ghi chú Đá xẻ Xếp đứng 1 lớp 0  1 5.5
  17. 17. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 17 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c Đá hộc Đổ 2 lớp (xếp khan) 1  2 4.0 Tấm bê đúc sẵn ghép 1  2 3.5-4 Khối hộp Đổ 2 lớp 1  2 5.0 Tetrapod Xếp 2 lớp 0  1 6÷8 Kết quả thể hiện ở bảng tính sau: γ(T/m3) γb(T/m3) kd Hsur13% m W(T) V(m3) 1.03 2.4 6 2.883 2.5 1.6 0.68 Chọn trọng lượng tetrapod W = 1,8T theo khuôn coppha có sẵn. Khi đó: W(T) V(m3) 1.8 0.75 -Trường hợp gia cố mái kè bằng tetrapod xếp 2 lớp nên các thông số kích thước của 1 khối như sau: V = 0,28H3 => H = 1,39m. X/H 0.302 0.151 0.477 0.47 0.235 0.644 0.215 0.61 0.303 1.091 1.2 X A B C D E F G I J K L 0.419 0.210 0.662 0.653 0.326 0.894 0.299 0.842 0.421 1.515 1.667 2.3.Cấu tạo lớp đệm, tầng lọc ngược. -Lớp phủ mái là các khối tetrapod xếp 2 lớp, chiều dày lớp phủ tính toán theo 14TCN130- 2002: n Cf W(T) γb(T/m3) δf(m) 2 1 1.8 2.4 1.5 -Lớp đá lót ngay dưới lớp phủ mái bảo đảm kích thước để không bị sóng moi qua khe giữa các khối phủ và gây sụt lún cho lớp phủ và trong thời gian thi công không bị sóng cuốn đi khi chưa có khối phủ che chở. Thường trọng lượng viên đá lớp đệm lấy bằng 1/10 ÷ 1/20 trọng lượng khối phủ lớp ngoài. Chiều dày lớp lót thường lấy bằng 2 lần đường kính viên đá lót. Chọn k = 1/18 tính toán như sau: k W(T) Wđá(T) γđá(T/m3) Vđá(m3) r(m) d(m) 18 1.8 0.1 2.2 0.045 0.22 0.44 Chiều dày lớp lót là 2d = 0.88m = 880mm => Chọn 900mm. -Trường hợp dùng vải địa kỹ thuật làm tầng lọc ngược: Geotextile đặt trực tiếp trên mái kè, cố định ở đỉnh kè và chạy xuống tận chân khay, cần có biện pháp chống chọc thủng của các rễ cây, sinh vật và nắng mặt trời v.v…Cần bố trí lớp đá dăm dày 10  15cm giữa vải địa kỹ thuật và lớp bảo vệ.
  18. 18. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 18  max (4.21)  NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c -Vậy chọn dạng lớp đệm và gia cố mái như sau: +Khối tetrapod xếp 2 lớp dày 1,5m = 1500mm. +Lớp đệm dày 900mm. +Đá dăm 1x2 dày 150mm. +Vải địa kĩ thuật. +Đất đầm chặt. 2.4.Thiết kế chân khay. Chân khay phải đảm bảo giữ cho khối gia cố mái không bị trượt theo mái dốc và không bị xói do sóng và dòng chảy. Kết cấu không bị phá hoại khi có biến dạng đường bờ. Loại hình và kích thước chân khay được xác định tuỳ theo mức độ xâm thực của bãi biển, chiều cao sóng tại chân công trình, độ dốc bãi... -Chọn chân khay nông theo trang 25 tiêu chuẩn 14TCN130-2002. -Kích thước đá chân khay: Đá chân khay phải ổn định dưới tác dụng của dòng chỉ do sóng tạo ra ở chân kè. Vận tốc cực đại của dòng chảy do sóng tạo ra ở chân kè được xác định theo CT: g d Sinh h V s     4 Trong đó: Vmax – Vận tốc cực đại của dòng chảy do sóng (m/s) hs,  - Chiều cao sóng và chiều dài sóng tính toán (m) d – Độ sâu nước trước kè (m) Trọng lượng ổn định của viên đá ở chân khay kè mái kè biển Gd có thể xác định theo bảng 20. Bảng 20: Trọng lượng ổn định viên đá theo Vmax Vmax (m/s) 2.0 3.0 4.0 5.0 Gd (kG) 40 80 140 200 Ta có bảng tính toán như sau: π Htb λtb d g Vmax m m m m/s2 m/s 3.14 1.86 43.6 0.6 9.81 3.8 Tra bảng 20 được Gd = 128(kG) => Thiên về an toàn lấy Gd = 130(kG) . -Từ trọng lượng viên đá ở chân khay tính toán được khối bê tông gia cố mặt chân khay như sau:
  19. 19. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 19 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c W(T) γđá(T/m3) V(m3) h(m) l(m) b(m) 0.13 2.2 0.059 0.3 0.5 0.39394 Chọn khối bê tông lxbxh = 0,5x0,4x0,3m. CHƯƠNG 4: ỔN ĐỊNH VÀ BIẾN DẠNG CỦA KÈ BIỂN. Chọn mặt cắt tính toán ổn định, biến dạng của kè biển phải có tính chất đại diện, được lựa chọn trên cơ sở nhiệm vụ đoạn kè, cấp công trình, điều kiện địa hình địa chất, kết cấu kè, chiều cao thân kè, vật liệu đắp kè… -Các chỉ tiêu cơ lí các lớp đất tự nhiên dưới chân công trình như sau: +Lớp đât 1 có các chỉ tiêu cơ lý như sau: Thành phần hạt (mm) chiếm % W %  g/cm 3 k độ ư độ emax độ emin độ R0 kG/c m2 E0 kG/c m2 N > 1 0 10 - 5 5. 0 - 2. 0 2. 0 - 1. 0 1. 0 - 0. 5 0.5 - 0.2 5 0.2 5 - 0.1 0.1 - 0.0 5 0. 6 1. 7 1. 5 5. 1 29. 8 51. 6 9.7 15. 8 2.65 30°1 8' 20°5 2' 1.07 6 0.61 9 1.20 80 1 0 Lượng cỡ hạt có cỡ >0.1mm chiếm 51.6+29.8+5.1+1.5+1.7+0.6=90.3%>75% => đất cát nhỏ. Mô dun tổng biến dạng E0 = α.qc , với cát hạt nhỏ α = 1,5 – 3. Chọn α = 2 => qc = 80/2 = 40 kG/cm2 => cát nhỏ ở trạng thái chặt vừa ( qc = 40 kG/cm2) => c = 0. γ = 1,8 g/cm3 Từ qc = 40 kG/cm2 => góc ma sát trong của đất φ = 300 Vậy lớp đất 1 là lớp đất cát nhỏ, ở trạng thái chặt vừa. Bề dày lớp biến đổi từ 1.7m (K28) đến 2.4m (K38), trung bình 2.06m. Giá trị xuyên tiêu chuẩn N30 nhỏ nhất là 5, giá trị xuyên tiêu chuẩn N30 lớn nhất là 15, trung bình là 10. Trong lớp này thỉnh thoảng có gặp đá tảng lăn granit. Lớp đất này có khả năng chịu tải trung bình, biến dạng trung bình. +Lớp đất 2 có các chỉ tiêu cơ lý như sau: Thành phần hạt (mm) chiếm % W %  g/cm 3 k độ ư độ emax độ emin độ R0 kG/c m2 E0 kG/c m2 N > 10 10 - 5 5. 0 - 2. 0 2. 0 - 1. 0 1. 0 - 0. 5 0.5 - 0.2 5 0.2 5 - 0.1 0.1 - 0.0 5 0. 2 0. 2 1. 5 2. 4 6. 3 30. 1 47. 0 12. 3 16. 2 2.65 30°1 1' 20°4 6' 1.11 6 0.61 6 2.00 150 1 7
  20. 20. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 20 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c Lượng cỡ hạt có cỡ >0.1mm chiếm : 0.2+0.2+1.5+2.4+6.3+30.1+47.0 =87.7 > 75 % => lớp đất hạt nhỏ => c = 0. γ = 1,95 g/cm3 ; Mô dun tổng biến dạng E0 = α.qc , với cát hạt nhỏ α = 1,5 – 3. Chọn α = 2 => qc = 150/2 = 75 kG/cm2 => cát nhỏ ở trạng thái chặt vừa ( 40< qc =75 < 120) Từ qc = 75 kG/cm2 => góc ma sát trong của đất φ = 340 Vậy lớp đất 2 là lớp đất cát nhỏ, ở trạng thái chặt vừa có tính chất chịu lực tốt. Bề dày lớp đã khoan được biến đổi từ 9m (K21) đến 15.0m (K31, K32, K33), trung bình 12.5m. Giá trị xuyên tiêu chuẩn N30 nhỏ nhất là 13, giá trị xuyên tiêu chuẩn N30 lớn nhất là 20, trung bình là 17. Lớp đất này có khả năng chịu tải tốt, biến dạng nhỏ. 1.Ổn định trượt phẳng của lớp gia cố và chân khay. 2.Trượt cung tròn kè mái nghiêng. Sử dụng phương pháp phân tích trượt cung tròn để tính ổn định đất nền của mái kè. Việc tính toán ổn định tổng thể công trình được dựa trên giả thiết công trình gia cố được xem như một hay nhiều lớp đất nền không đồng nhất. Khi tính toán cần xét đến các mực nước tính toán khác nhau, ảnh hưởng của dòng thấm…Tính mô men gây trượt , phần kè dưới đường bão hòa thì tính theo dung trọng bão hòa, khi mô men chống trượt thì tính theo dung trọng đẩy nổi. Trong trường hợp đơn giản có thể tính theo phương pháp tổng ứng lực. Giả thiết khối đất trượt là vật rắn biến dạng và không xét đến lực tác dụng tương hỗ giữa 2 bên của dải đất. Mô men chống trượt Mg và mô men gây trượt Mtr (kNm/m) xác định theo công thức: Mg = (ΣCili + ΣWi cosαi tanφi)R Mt = (ΣWi sinαi)R Trong đó: li – chiều dài cung tròn của dải đất thứ I (m). Wi – trọng lượng của dải đất thứ I (kN/m). αi – góc giữa tiếp tuyến tại trung điểm cung trượt i với đường nằm ngang. R – bán kính cung trượt (m). ci, φi – chỉ tiêu cường độ chống cắt trên mặt trượt dải đất thứ I (kPa; độ). Hệ số an toàn chống trượt là:
  21. 21. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 21 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c k = Mg/Mtr Sơ đồ tính thể hiện trên hình dưới đây: Bảng 4.11:Hệ số an toàn ổn định chống trượt Cấp công trình Đặc biệt I II III IV Hệ số k 1.3 1.25 1.2 1.15 1.1 Công trình cấp II có k = 1,2. Nếu k không thuộc [1.1 ÷1.3] phải bố trí thêm lớp vải địa kĩ thuật. Áp dụng phương pháp Fandev để xác định vùng có tâm trượt nguy hiểm nhất. Theo Fandev vùng có tâm trượt nguy hiểm nhất là vùng giới hạn bởi các điểm A,B,C,D như hình. Trong đó I là trung điểm của đoạn mái dốc, các bán kính R1, R2 phụ thuộc hệ số mái dốc m và chiều cao mặt kè (d) lấy theo bảng 4.12: Bảng 4.12 Hệ số mái dốc m 1 2 3 4 5 R1/d 0.75 0.75 1.0 1.5 2.2 R2/d 1.5 1.75 2.3 3.45 4.8 Với d = 7,61m là chiều cao mặt kè; hệ số mái dốc m = 2,5. Khi đó: d R1/d R2/d R1 R2 7.61 0.875 2.025 6.66 15.41 Tính toán theo bảng sau: Ci.li = 0 R1 = 17.99 tangφ = 0.6248694 PT Fi wi ri αi sinαi cosαi wi*sinαi wi*cosαi*tangφ 1 5.2 11.66 11.7 0.708 0.650 0.760 7.584 5.534 2 15.6 34.47 7.7 0.442 0.428 0.904 14.755 19.466 3 25.4 53.54 3.7 0.207 0.206 0.979 11.012 32.737 4 31.6 65.63 0.26 0.014 0.014 1.000 0.949 41.003 5 33.1 66.84 4.26 0.239 0.237 0.972 15.829 40.578 6 23.3 44.76 8.26 0.477 0.459 0.888 20.554 24.846 7 7.8 14.66 12 0.730 0.667 0.745 9.780 6.824 80.462 170.988 Khi đó:
  22. 22. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 22 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c ƩMg ƩMtr k 3075.74 1447.36 2.13 Nhận xét: Hệ số k = 2,13 > 1.2 nên thỏa mãn điều kiện ổn định trượt. Chia mái dốc thành các phân tố như hình vẽ: CHƯƠNG 5: BIỆN PHÁP THI CÔNG CÔNG TRÌNH KÈ BIỂN Ở CAM RANH – KHÁNH HÒA Biện pháp thi công trên cạn BƯỚC 1: Dùng cần cẩu xà lan đắp đê quây tạm thời, tháo hết nước khỏi công trình BƯỚC 2: Thi công đào đất chân khay Trình tự thi công 1. Xác định vị trí cao trình đất 2. Tập kết thiết bị nhân lực 3. Đào đất bằng máy đào Biện pháp thi công: thi công bằng máy kết hợp với thủ công C 27° 85° 17988 31963 1 2 4 3 5 6 7 7605 x y I B A D O
  23. 23. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 23 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c - Đào đất bằng máy gầu sấp và máy gầu ngửa - Công nhân hoàn thiện hố đào bằng cuốc, xẻng…. BƯỚC 3: Thi công đất đắp, đầm chặt đất Trình tự thi công - Tập kết nhân lực,thiết bị,vật liệu - Xác định vị trí đắp - Rải đất thành từng lớp quy định, đầm đạt độ chặt 0,9 - San lấp những hố, lỗ rỗng - Hoàn thiên mái kè chuyển sang phân đoạn tiếp theo Biện pháp thi công - Dùng máy ủi san lấp nền - Công nhân tưới nước ướt và dùng máy đầm cóc đâm chặt đất BƯỚC 4: Thi công trải vải địa kĩ thuật Biện pháp thi công thủ công: công nhân trải vải địa trên kè, dùng ghim ghim chặt vải địa vào nền, những chỗ có 2 tấm vải chồng lên nhau chiều dày chồng lên là 40cm BƯỚC 5: Thi công rải đá dăm lót Trình tự thi công: - Tập kết nhân công, vật liệu( đá dăm 1x2) - Kiểm tra lại cao trình, hệ số mái… - Xúc đá, vận chuyển đến vị trí thi công - San gạt đạt chiều dày thiết kế Biên pháp thi công: - Kiểm tra cấp phối hạt - Công nhân xúc đá trải đều trên bề mặt kè - San gạt đến chiều dày 150mm BƯỚC 6: Thi công xếp đá chân khay và đá lớp đệm - Dùng ô tô chở đá đến nơi tập kết, nơi tập kết cách chân công trình >20m - Di chuyển cần cẩu đến vị trí thi công - Dùng cẩu bốc đá xếp vào vi trí kết hợp căn chỉnh thủ công , xếp từng viên một, giữa khoảng hở các viên đá to có những đá nhỏ xen kẽ BƯỚC 7: Thi công tấm tetrapod và bê tông lót chân khay - Chuẩn bị mặt bằng, di chuyển cần cẩu, máy trôn bê tông, ván khuôn tới nơi thi công - Lắp đặt dàn giáo và ván khuôn tâm tetrapod loại 1,8T và ván khuôn tấm bê tông
  24. 24. VIỆN XÂY DỰNG CÔNG TRÌNH BIỂN- ĐỒ ÁN CÔNG TRÌNH BẢO VỆ BỜ BIỂN 24 NHÓM 19: LÊ PHÙNG VĂN – MSSV:10013.53 LÊ ĐÌNH KIÊN – MSSV:8980.53 x ©y dù n g ®¹ i h ä c - Tiến hành trộn bê tông bằng máy trôn chuyên dùng - Đầm bê tông bằng máy kết hợp đầm bằng tay - Công nhân tháo dỡ ván khuôn và phun nước dưỡng hộ bê tông - Tập kết những tấm bê tông tới công trình để lắp ráp BƯỚC 8: Thi công lắp ráp tấm tetrapod và tấm bê tông lót mái - Di chuyển cần cẩu tới địa điểm thi công - Dùng cần cẩu móc từng tâm tetrapod, định vị tới địa điểm lắp đặt kiểm tra cao độ và hạ tấm tetrapod xuống - Lắp đặt hết lớp tetrapod thứ nhất rồi tiến hành lắp lớptetrapod thứ 2 - Tiến hành lắp tấm bê tông lót chân khay BƯỚC 9: Công tác hoàn thiện - Lợi bỏ các vật liệu thừa, phế thải khỏi công trình đưa vào bãi thải quy định - Làm sach công trình bằng chổi rễ thổi khí… - Sữa chữa các khuyết điểm, nứt nẻ,bong tróc của các kết cấu BT, các khối xây trên tuyến - Vệ sinh sạch sẽ các cọc mốc, biển báo, rào ngăn… - Khắc phục những ảnh hưởng lớn về môi trường do quá trình thi công gây ra - Tháo dỡ, phá bỏ tất cả các công trình tạm phục vụ trong quá trình thi công trả lại hiện trạng ban đầu - Hoàn thiện công trình, chuẩn bị đầy đủ các thủ tục quy định để tiến hành bàn giao công trình

×