SlideShare a Scribd company logo
1 of 431
Please carefullyreview yourDigital Proofdownloadforformatting,
grammar, anddesignissuesthatmayneedtobe corrected.
We recommendthatyoureviewyourbookthree times,witheachtime
focusingona differentaspect.
Once you are satisfiedwithyourreview,youcanapprove yourproof
and move forwardtothe nextstepinthe publishingprocess.
To printthisproof we recommendthatyouscale the PDF to fitthe size
of yourprinterpaper.
Checkthe format,includingheaders,footers,page
numbers,spacing,table of contents,andindex.
Reviewanyimagesorgraphicsandcaptionsif applicable.
Readthe bookforgrammatical errors andtypos.
1
2
3
Digital Proofer
IntroductiontoChem...
AuthoredbyTracy Poulsen
8.5" x 11.0" (21.59 x 27.94 cm)
Black & White onWhite paper
250 pages
ISBN-13: 9781478298601
ISBN-10: 147829860X
1
www.ck12.org
IntroductiontoChemistry
Author: Tracy Poulsen
SupportedbyCK-12 Foundation
CK-12 Foundationisa non-profitorganizationwithamissiontoreduce the costof textbook
materialsforthe K-12 marketboth inthe U.S. and worldwide.Usinganopen-content,web-based
collaborative model termedthe “FlexBook,”CK-12intendstopioneerthe generationand
distributionof high-qualityeducational contentthatwill serve bothascore textas well asprovide
an adaptive environmentforlearning.
Copyright© 2010, CK-12 Foundation,www.ck12.org
Exceptas otherwise noted,all CK-12Content(includingCK-12CurriculumMaterial) ismade
available toUsersinaccordance withthe Creative CommonsAttribution/Non-Commercial/Share
Alike 3.0Unported(CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-
sa/3.0/),as amendedand updatedbyCreative Commonsfromtime totime (the “CCLicense”),
whichisincorporatedhereinbythisreference.Specificdetailscanbe foundat
http://about.ck12.org/terms.
2
www.ck12.org
Table of Contents
Course ObjectivesbyChapter..................................................................................................5
Chapter1: IntroductiontoChemistry&the Nature of Science...............................................8
1.1: The Processof Science .................................................................................................8
1.2: Hypothesis,Law,&Theory.........................................................................................14
1.3: Graphing......................................................................................................................18
Chapter2: The Structure of the Atom....................................................................................24
2.1: EarlyIdeasof Atoms...................................................................................................24
2.2: FurtherUnderstandingof the Atom............................................................................28
2.3: Protons,Neutrons,andElectronsinAtoms.................................................................35
2.4: AtomicMass ................................................................................................................41
2.5: The Nature of Light.....................................................................................................43
2.6: ElectronArrangementinAtoms..................................................................................50
Chapter3: The Organizationof the Elements.........................................................................55
3.1: Mendeleev’sPeriodicTable ........................................................................................55
3.2: Metals,Nonmetals,andMetalloids.............................................................................59
3.3: Valence Electrons........................................................................................................61
3.4: FamiliesandPeriodsof the PeriodicTable .................................................................62
3.5: PeriodicTrends............................................................................................................65
Chapter4: DescribingCompounds.........................................................................................71
4.1: IntroductiontoCompounds.........................................................................................71
4.2: Typesof CompoundsandTheirProperties.................................................................74
4.3: NamesandChargesof Ions.........................................................................................78
4.4: WritingIonicFormulas................................................................................................84
4.5: NamingIonicCompounds...........................................................................................86
4.6: CovalentCompounds&LewisStructures...................................................................90
4.7: MolecularGeometry.................................................................................................... 94
4.8: Polarity&HydrogenBonding.....................................................................................97
Chapter5: ProblemSolving&the Mole ..............................................................................104
5.1: MeasurementSystems...............................................................................................104
5.2: ScientificNotation.....................................................................................................109
5.3: Math in Chemistry.....................................................................................................111
5.4: The Mole ....................................................................................................................114
Chapter6: Mixtures&TheirProperties...............................................................................118
6.1: Solutions,Colloids,andSuspensions........................................................................118
3
www.ck12.org
6.2: SolutionFormation....................................................................................................121
6.3: Concentration.............................................................................................................124
6.4: Colligative Properties................................................................................................ 128
Chapter7: DescribingChemical Reactions..........................................................................134
7.1: Chemical &Physical Change ....................................................................................134
7.2: ReactionRate .............................................................................................................137
7.3: Chemical ReactionsandEquations............................................................................145
7.4: BalancingChemical Equations.................................................................................148
7.5: Typesof Reactions.....................................................................................................153
7.6: Stoichiometry.............................................................................................................159
7.7: Reversible reaction&Equilibrium............................................................................165
7.8: EquilibriumConstant.................................................................................................168
7.9: The Effects of ApplyingStresstoReactionsatEquilibrium.....................................171
Chapter8: DescribingAcids&Bases..................................................................................177
8.1: ClassifyingAcidsandBases......................................................................................177
8.2: pH...............................................................................................................................180
8.3: Neutralization.............................................................................................................184
8.4: Titration.....................................................................................................................186
Chapter9: Energy of Chemical Changes..............................................................................190
9.1: Energy........................................................................................................................190
9.2: EndothermicandExothermicChanges......................................................................191
9.3: Oxidation –Reduction...............................................................................................194
Chapter10: NuclearChanges...............................................................................................201
10.1: Discoveryof Radioactivity......................................................................................201
10.2: Typesof Radiation...................................................................................................203
10.3: Half-life &Rate of Radioactive Decay....................................................................209
10.4: Applicationsof NuclearChanges............................................................................213
10.5: Big Bang Theory...................................................................................................... 219
Unit 3: Gases .........................................................................................................................222
11.1: Gases andKineticTheory........................................................................................222
11.2: Gas Laws..................................................................................................................226
11.3: Ideal Gas Law ..........................................................................................................231
AnswerstoSelectedProblems..............................................................................................234
Glossary................................................................................................................................246 4
www.ck12.org
5
www.ck12.org
Course ObjectivesbyChapter
Unit 1: IntroductiontoChemistryandthe Nature of Science
Nature of Science Goal—Scienceisbasedonobservations,data,analysisandconclusions.
1. I can distinguishbetweenobservable (qualitative) andnumeric(quantitative) data.
2. I can construct andanalyze data tablesandgraphs.
3. I can identifyindependent,dependant,andcontrolledvariablesinanexperiment
description,datatable orgraph.
4. I can write a laboratorysummaryina Claim-Evidence Format
Unit 2: The Structure of the Atom
Nature of Science Goal—Scientificunderstandingchangesasnew dataiscollected.
1. I can use atomicmodelstoexplainwhytheoriesmaychange overtime.
2. I can identifythe relativesize,charge andpositionof protons,neutrons,andelectrons
inthe atom.
3. I can findthe numberof protons,neutronsandelectronsinagivenisotope of an
elementif Iamgivena nuclearsymbol orname of elementandmassnumber.
4. I can describe the differencebetweenatomicmassandmass number.
5. I can describe the relationshipbetweenwavelength,frequency,energyandcolorof
light(photons).
6. I can describe the processthroughwhichthe electronsgiveoff photons(energy) and
describe the evidence thatelectronshave specificamountsof energy.
7. I can identifyanunknownelementusingaflame testor bycomparisonto an emission
spectra.
8. I can write electronconfigurationsforelementsinthe groundstate.
Unit 3: The Organizationof the Elements
Nature of Science Goal—Classificationsystemsleadtobetterscientificunderstanding.
1. I can describe the advantagesof Mendeleev’sPeriodicTable overother
organizations.
2. I can compare the propertiesof metals,nonmetals,andmetalloids.
3. I can determine the numberof valence electronsforelementsinthe mainblock.
4. I can explainthe similaritiesbetweenelementswithinagroupor family.
5. I can identifypatternsfoundonthe periodictable suchasreactivity,atomicradius,
ionizationenergyandelectronegativity.
Unit 4: DescribingCompounds
Nature of Science Goal—Vocabularyinscience hasspecificmeanings.
1. I can indicate the type of bondformedbetweentwoatomsandgive propertiesof
ionic,covalent,metallicbondsanddescribe the propertiesof materialsthatare
bondedineachof those ways.
2. I can compare the physical andchemical propertiesof acompoundtothe elements
that formit.
3. I can predictthe charge an atomwill acquire whenitformsanionby gainingor
losingelectronsusingthe octetrule.
4. I can write the namesandformulasof ioniccompounds.6
www.ck12.org
5. I can indicate the shape andpolarityof simple covalentcompoundsfromamodel or
drawing.
6. I can describe howhydrogenbondinginwateraffectsphysical,chemical,and
biological phenomena.
Unit 5: ProblemSolvingandthe Mole
Nature of Science Goal— Mathematicsisa tool to increase scientificunderstanding.
1. I can describe the commonmeasurementsof the SIsystemof measurements
2. I can convertbetweenstandardnotationandscientificnotation.
3. I can convertbetweenmass,moles,andatomor moleculesusingfactor-label
methods.
Unit 6: Mixturesand TheirProperties
Nature of Science Goal-- Science providespredictable results.
1. I can use the termssolute andsolventindescribingasolution.
2. I can sketcha solution,colloid,andsuspensionatthe particle level.
3. I can describe the relativeamountasolute particlesinconcentratedanddilute
solutions.
4. I can calculate concentrationintermsof molarityandmolality.
5. I can describe the colligative propertiesof solutions.(Boilingpointelevation,
Freezingpointdepression,Vaporpressure lowering) intermsof everyday
applications.
6. I can identifywhichsolutionof asetwouldhave the lowestfreezingpointorhighest
boilingpoint.
Unit 7: DescribingChemical Reactions
Nature of Science Goal—Conservationslawsare investigatedtoexplore science
relationships.
1. I can classifyachange as chemical orphysical andgive evidence of chemical
changesreactions.
2. I can describe the principlesof collisiontheoryandrelate frequency,energyof
collisions,andadditionof acatalystto reactionrate.
3. I can write a chemical equationtodescribe asimple chemical reaction.
4. I can balance chemical reactionsandrecognize thatthe numberof atomsina
chemical reactiondoesnotchange.
5. I can classifyreactionsassynthesis,decomposition,single replacement,double
replacementorcombustion.
6. I can use molarrelationshipsinabalancedchemical reactiontopredictthe massof
productproducedina simple chemicalreactionthatgoestocompletion.
7. I can explainthe conceptof dynamicequilibriumasitrelatestochemical reactions.
8. I can describe whetherreactantsorproductsare favoredinequilibriumwhengiven
the equilibriumconstant.
9. I can predictthe effectof addingorremovingeitheraproductor a reactantor the
effectof changingtemperature toshiftequilibrium.
Unit 8: DescribingAcidsandBases
7
www.ck12.org
Nature of Science Goal--Nature ismovingtowardequilibrium
1. I can describe propertiesof acidsandbasesandidentifyif asolutionisacidicor
basic.
2. I can calculate the pH of a solution.
3. I can write a neutralizationreactionbetweenanacidandbase.
4. I can calculate the concentrationof anacid or base from data collectedinatitration.
Unit 9: Energy of Chemical Changes
Nature of Science Goal—Scienceprovidestechnologytoimprovelives.
1. I can classifyevidence of energytransformation(temperature change) asendothermic
or exothermic.
2. I can describe howelectrical energycanbe producedina chemical reactionand
identifywhichelementgainedandwhichelementlostelectrons.
3. I can identifythe partsof a battery,includinganode,cathode,andsaltbridge.
Unit 10: NuclearChanges
Nature of Science Goal—Correctinterpretationof datareplacesfearandsuperstition.
1. I can compare the charge, mass,energy,andpenetratingpowerof alpha,beta,and
gamma radiationandrecognize thatof the productsof the decayof an unstable
nucleusinclude radioactiveparticlesandwavelike radiation.
2. I can interpretgraphical dataof decayprocessestodetermine half-life andthe age of
a radioactive substance.
3. I can compare and contrast the amountof energyreleasedinanuclearreactiontothe
amountof energyreleasedinachemical reaction.
4. I can describe the differencesbetweenfissionandfusion.
5. I can describe scientificevidence thatall matterinthe universe hasacommonorigin.
8
www.ck12.org
Chapter1: IntroductiontoChemistry&the Nature of Science
1.1: The Processof Science
Objectives
Explainthe necessityforexperimentation
Inan experiment,identifythe independent,dependent,andcontrolledvariables.
Introduction
Socrates(469 B.C. - 399 B.C.),Plato(427
B.C. - 347 B.C.),andAristotle (384 B.C. - 322 B.C.)
are amongthe most famousof the Greek
philosophers.Platowasastudentof Socrates,and
Aristotle wasastudentof Plato.These three were
probablythe greatestthinkersof theirtime.Aristotle's
viewsonphysical science profoundlyshaped
medieval scholarship,andhisinfluence extendedinto
the Renaissance (14thcentury - 16th century).
Aristotle'sopinionswere the authorityonnature until
well intothe 1300s. Unfortunately,manyof
Aristotle'sopinionswere wrong.Itisnotintended
here to denigrate Aristotle'sintelligence;he was
withoutdoubta brilliantman.Itwassimplythathe
was usinga methodfordeterminingthe nature of the
physical worldthatisinadequate forthattask.The
philosopher'smethodwaslogical thinking,not
makingobservationsonthe natural world.This ledto
manyerrors inAristotle'sthinkingonnature.Let's
considertwoof Aristotle'sopinionsasexamples.
In Aristotle'sopinion,menwere biggerand
strongerthan women;therefore,itwaslogical tohimthatmenwouldhave more teeththan
women.Thus,Aristotle concludeditwasa true fact that menhad more teeththanwomen.
Apparently,itneverenteredhismindtoactuallylookintothe mouthsof bothgendersand
count theirteeth.Hadhe done so,he wouldhave foundthatmenandwomenhave exactlythe
same numberof teeth.
In termsof physical science,Aristotle thoughtaboutdroppingtwoballsof exactlythe
same size andshape but of differentmassestosee whichone wouldstrike the groundfirst.In
hismind,itwas clearthat the heavierball wouldfall fasterthanthe lighterone andhe
concludedthatthiswasa lawof nature.Once again,he didnot considerdoinganexperiment
to see whichball fell faster.Itwaslogical tohim, andinfact, it still seemslogical.If
someone toldyouthatthe heavierball wouldfall faster,youwouldhave noreasonto
disbelieve it.Infact,itis nottrue and the bestwayto prove thisis totry it.
Eighteencenturieslater,Galileodecidedtoactuallygettwoballsof differentmasses,
but withthe same size andshape,anddrop themoff a building(Legendsaysthe Leaning
Towerof Pisa),andactuallysee whichone hitthe groundfirst.WhenGalileoactuallydidthe
experiment,he discovered,byobservation,thatthe twoballshitthe groundat exactlythe
same time . . . Aristotle'sopinionwas,once again,wrong.
Image obtainedfrom:
http://upload.wikimedia.org/wikipedia/c
ommons/a/ae/Aristotle_Altemps_Inv857
5.jpg
9
www.ck12.org
ScientificMethodsof ProblemSolving
In the 16th and 17th centuries,innovativethinkerswere developinganew wayto
discoverthe nature of the worldaroundthem.Theywere developingamethodthatreliedupon
makingobservationsof phenomenaandinsistingthattheirexplanationsof the nature of the
phenomenacorrespondedtothe observationstheymade.
The scientificmethodisamethodof investigationinvolvingexperimentationand
observationtoacquire newknowledge,solve problems,andanswerquestions.Scientists
frequentlylistthe scientificmethodasaseriesof steps.Otherscientistsoppose thislistingof
stepsbecause notall stepsoccur ineverycase,and sometimesthe stepsare outof order.The
scientificmethodislistedinaseriesof stepshere because itmakesiteasier tostudy.Youshould
rememberthatnotall stepsoccur in everycase,nordo theyalwaysoccur inorder.
The Stepsin the ScientificMethod
Step1: Identifythe problemor
phenomenonthatneedsexplaining.This
issometimesreferredtoas"definingthe
problem."
Step2: Gather and organize dataon the
problem.Thisstepisalsoknownas
"makingobservations."
Step3: Suggesta possible solutionor
explanation.A suggestedsolutionis
calleda hypothesis.
Step4: Test the hypothesisbymaking
newobservations.
Step5: If the newobservationssupport
the hypothesis,youacceptthe hypothesis
for furthertesting.If the new
observationsdonotagree withyour
hypothesis,addthe newobservationsto
your observationlistandreturntoStep3.
Experimentation
Experimentationisthe primarywaythroughwhichscience gathersevidence for
ideas. Itis more successful forusto cause somethingtohappenata time andplace of our
choosing.When we arrange for the phenomenontooccur at our convenience,we canhave all
our measuringinstrumentspresentandhandytohelpusmake observations,andwe can
control othervariables.Experimentationinvolvescausingaphenomenontooccurwhenand
where we wantitand underthe conditionswe want.Anexperimentisacontrolledmethod
of testinganideaor to findpatterns.Whenscientistsconductexperiments,theyare usually
seekingnewinformationortryingtoverifysomeone else'sdata.
Experimentationinvolveschangingandlookingatmanyvariables.The independent
variable isthe part of the experimentthatisbeingchangedormanipulated.There canonly
be one independentvariable inanyexperiment. Consider,forexample,thatyouwere trying
to determine the bestfertilizerforyourplants. Itwouldbe importantforyou to grow your
plantswitheverythingelse abouthowtheyare grownbeingthe same exceptforthe fertilizer
10
www.ck12.org
youwere using. You wouldbe changingthe type of fertilizeryougave the plantsandthis
wouldbe the independentvariable. If youalsochangedhow muchwater the plantsreceived,
the type of plantsyouwere growing,andsome of the plantswere grown inside andothers
outside,youcouldnotdeterminewhetherornotit wasactuallythe fertilizerthatcausedthe
plantsto growbetteror if it wassomethingelse youhadchanged. Thisiswhyitis important
that there isonlyone independentvariable.
The dependentvariable iswhatisobservedormeasuredasaresultof what
happenedwhenthe independentvariable waschanged. Inthe plantexperimentdescribed
above,youmightmeasure the heightof the plantandrecord theirappearance andcolor.
These wouldbe the dependentvariables. The dependentvariable isalsosometimescalled
the resultantvariable.
Controlledvariablesare conditionsof the experimentthatare keptthe same for
varioustrialsof the experiment. Once again,if we were testinghow fertilizeraffectedhow
well ourplantsgrew,we wouldwanteverythingelseabouthow the plantsare grownto be
keptthe same. We wouldneedtouse the same type of plant(maybe greenbeans),give them
the same amountof water,planttheminthe same location(all outsideinthe garden),give
themall the same pesticide treatment,etc. These wouldbe controlledvariables.
Suppose ascientist,while walkingalongthe beachona verycoldday followinga
rainstorm,observedtwopoolsof waterinbowl shapedrocksneareachother.One of the
poolswaspartiallycoveredwithice,while the otherpool hadnoice on it. The unfrozenpool
seemedtobe formedfromseawatersplashinguponthe rock fromthe surf,butthe otherpool
was toohighfor seawatertosplashin,so itwas more likelytohave beenformedfrom
rainwater.
The scientistwonderedwhyone pool waspartiallyfrozenandnotthe other,since
bothpoolswere at the same temperature.Bytastingthe water(nota goodidea),the scientist
determinedthatthe unfrozenpool tastedsaltierthanthe partiallyfrozenone.The scientist
thoughtperhapssaltwaterhad a lowerfreezingpointthanfreshwater,andshe decidedtogo
home and try an experimenttosee if thiswere true.Sofar, the scientisthasidentifieda
question,gatheredasmall amountof data, andsuggestedanexplanation.Inordertotestthis
hypothesis,the scientistwillconductanexperimentduringwhichshe canmake accurate
observations.
For the experiment,the scientistpreparedtwoidentical
containersof freshwaterandaddedsome saltto one of them.
A thermometerwasplacedineachliquidandthese wereputin
a freezer.The scientistthenobservedthe conditionsand
temperaturesof the twoliquidsatregularintervals.
The Temperature andConditionof Fresh
Water ina Freezer
Time (min) Temp(°C) Condition
0 25 Liquid
5 20 Liquid
10 15 Liquid
15 10 Liquid
20 5 Liquid
25 0 Frozen
30 -5 Frozen
The Temperature andConditionof Salt
Water ina Freezer
Time (min) Temp(°C) Condition
0 25 Liquid
5 20 Liquid
10 15 Liquid
15 10 Liquid
20 5 Liquid
25 0 Liquid
30 -5 Frozen
11
www.ck12.org
The scientistfoundsupportforthe hypothesisfromthisexperiment;freshwater
freezesata highertemperature thansaltwater.Muchmore supportwouldbe neededbefore
the scientistwouldbe confidentof thishypothesis.Perhapsshe wouldaskotherscientiststo
verifythe work.
In the scientist'sexperiment,itwasnecessarythatshe freeze the saltwaterandfresh
waterunderexactlythe same conditions.Why?The scientistwastestingwhetherornot the
presence of saltinwaterwouldalteritsfreezingpoint.Itisknownthatchangingairpressure
will alterthe freezingpointof water,sothisandothervariablesmustbe keptthe same,or
theymustbe controlledvariables.
Example: Inthe experimentdescribedabove, identifythe:
a) independentvariable(s)
b) dependentvariable(s)
c) controlledvariable(s)
Solution:
a) Remember,the independentvariable iswhatthe scientistchangedinhis/herexperiment.
In thiscase,the scientistaddedsalttoone containerandnot to anothercontainer. The
independentvariable iswhetherornot saltwas added.
b) Dependentvariablesare whatwe lookforas a resultof the change we made. The scientist
recordedthe temperature andphysical state (liquidorsolid) overtime. These are the
dependentvariables.
c) Controlledvariablesare keptthe same throughoutall of the trials. The scientistselected
identical containers,putthe same amountof waterinthe containers,andfroze theminthe
same conditionsinthe same freezer. These are all controlledvariables.
Suppose youwishtodetermine whichbrandof microwave popcorn(independent
variable) leavesthe fewestunpoppedkernels(dependentvariable).You will needasupplyof
variousbrandsof microwave popcorntotestand youwill needamicrowave oven.If you
useddifferentbrandsof microwave ovenswithdifferentbrandsof popcorn,the percentage of
unpoppedkernelscouldbe causedbythe different brandsof popcorn,butitcouldalsobe
causedby the differentbrandsof ovens.Undersuchcircumstances,the experimenterwould
not be able to conclude confidentlywhetherthe popcornorthe ovencausedthe difference.
To eliminate thisproblem,youmustuse the same microwave ovenforeverytest.Byusing
the same microwave oven,youcontrol manyof the variablesinthe experiment.Whatif you
allowedthe differentsamplesof popcorntobe cookedat differenttemperatures?Whatif you
allowedlongerheatingperiods?Inordertoreasonablyconclude thatthe change inone
variable wascausedbythe change inanotherspecificvariable,there mustbe noother
variablesinthe experiment.All othervariablesmustbe keptconstantorcontrolled.
Whenstatingthe purpose of anexperiment,itisimportanttoclarifythe independent
and dependentvariables. The purpose isfrequentlystatedinasentence suchas:
“To see howchanging_____________ affects____________.”
inwhichthe independentvariable islistedinthe firstblank,andthe dependentvariable is
listedinthe secondblank.
In the popcorn experiment,we wouldstate the purpose as: “Tosee how changingthe
brand of popcornaffectsthe percentage of unpoppedkernels”. The independentvariable is12
www.ck12.org
the brand of popcorn andthe dependentvariableiswhatpercentage of the popcorndidn’t
pop. In the salt waterexperimentdescribedearlier,we wouldstate the purposeas“To see
howaddingsaltto water affectsthe temperature the waterfreezes.”
LessonSummary
Scientistsuse experimentationtotesttheirideas.
Inan experiment,itisimportanttoinclude onlyone independentvariable (tochange
onlyone thinginthe experiment)
The dependentvariable iswhatismeasuredorobservedasaresultof how the
independentvariable changed.
Controlledvariablesare those whichare keptthe same throughoutvarioustrialsinthe
experiment.
Vocabulary
Experiment:A controlledmethodof testingahypothesis.
Controlledexperiment:Anexperimentthatcomparesthe resultsof anexperimental
sample toa control sample.
FurtherReading/Supplemental Links
http://learner.org/resources/series61.html: The learner.org website allowsusersto
viewstreamingvideosof the Annenbergseriesof chemistryvideos.Youare required
to registerbefore youcanwatchthe videosbutthere isnocharge.The website has
twovideosthatapplyto thislesson.One isavideocalled The Worldof Chemistry
that relateschemistrytoothersciencesanddailylife.AnothervideocalledThinking
Like Scientistsrelatestothe scientificmethod.The audience onthe videoisyoung
childrenbutthe ideasare full grown.
Website of the JamesRandi Foundation.JamesRandi isastaunchopponentof fake
science.http://www.randi.org/site/
Websitesdealingwiththe historyof the scientificmethod.
http://www.historyguide.org/earlymod/lecture10c.html
http://www.history.boisestate.edu/WESTCIV/science/
1.1: ReviewQuestions
Use the followingparagraphtoanswerquestions1-4:
Gary noticedthat twoplantswhichhismotherplantedonthe same daythat were the same
size whenplantedwere differentinsize afterthree weeks.Since the largerplantwasinthe
full sunall dayand the smallerplantwasinthe shade of a tree most of the day,Gary
believedthe sunshine wasresponsibleforthe differenceinthe plantsizes.Inordertotest
this,Gary boughttensmall plantsof the same size andtype.He made sure theyhad the same
size andtype of pot.He alsomade sure theyhave the same amountandtype of soil.Then
Gary builta frame to holda canvas roof overfive of the plantswhile the otherfive were
nearby butout in the sun.Gary was careful tomake sure that eachplantreceivedexactlythe
same amountof waterand plantfoodeveryday.
1) What scientificreasonmightGaryhave forinsistingthatthe containersize forthe all
plantsbe the same?
a) Gary wantedto determine if the size of the containerwouldaffectthe plantgrowth.
13
www.ck12.org
b) Gary wantedto make sure the size of the containerdidnot affectplantgrowthinhis
experiment.
c) Gary wantedtocontrol howmuch plantfoodhisplantsreceived.
d) Gary wantedhisgardento lookorganized.
e) There is nopossible scientificreasonforhavingthe same size containers.
2) What scientificreasonmightGaryhave forinsistingthatall plantsreceive the same
amountof watereveryday?
a) Gary wantedto testthe effectof shade onplantgrowth andtherefore,he wantedto
have no variablesotherthanthe amountof sunshine onthe plants.
b) Gary wantedto testthe effectof the amountof water onplantgrowth.
c) Gary's hypothesiswasthatwaterqualitywasaffectingplantgrowth.
d) Gary was conservingwater.
e) There is nopossible scientificreasonforhavingthe same amountof waterfor each
planteveryday.
3) What wasthe variable being testedinGary'sexperiment(whatisthe independent
variable)?
a) The amountof water
b) The amountof plantfood
c) The amountof soil
d) The amountof sunshine
e) The type of soil
4) Whichof the followingfactorsmaybe varyinginGary's experimental setupthathe did
not control?
a) Individual plantvariation
b) Soil temperature due todifferentcolorsof containers
c) Water lossdue to evaporationfromthe soil
d) The effectof insectswhichmayattack one setof plants butnot the other
5) A studentdecidestosetupan experimenttodeterminethe relationshipbetweenthe
growthrate of plantsand the presence of detergentinthe soil.He setsup10 seedpots.In
five of the seedpots,he mixesaprecise amountof detergentwiththe soil.The otherfive
seedpotshave no detergentinthe soil.The fiveseedpotswithdetergentare placedinthe
sunand the five seedpotswithnodetergentare placedinthe shade.All 10 seedpots
receive the same amountof waterandthe same numberandtype of seeds.He growsthe
plantsfortwo monthsand charts the growtheverytwodays.What iswrong withhis
experiment?
a) The studenthastoofewpots.
b) The studenthastwo independentvariables.
c) The studenthastwodependent(resultant) variables.
d) The studenthasno experimental control onthe soil.
A scientistplantstworowsof corn forexperimentation.She putsfertilizeronrow 1 but does
not putfertilizeronrow2. Bothrows receive the same amountof sunand water.She checks
the growthof the corn overthe course of five months.
6) What isthe independentvariable inthisexperiment?
7) What isthe dependentvariable inthisexperiment?
8) What variablesare controlled inthisexperiment?14
www.ck12.org
1.2: Hypothesis,Law,&Theory
Objectives
Describe the difference betweenhypothesisandtheoryasscientificterms.
Describe the difference betweenatheoryandscientificlaw.
Explainthe conceptof a model.
Explainwhyscientistsuse models.
Explainthe limitationsof modelsasscientificrepresentationsof reality.
Introduction
Althoughall of us have takenscience classesthroughoutthe course of ourstudy,
manypeople have incorrectormisleadingideasaboutsome of the mostimportantandbasic
principlesinscience. We have all heardof hypotheses,theories,andlaws,butwhatdothey
reallymean? Before youreadthissection,thinkaboutwhatyouhave learnedaboutthese
termsbefore. Whatdo these termsmeantoyou? What do youread contradictswhatyou
thought? What do youread supportswhatyouthought?
Hypotheses
One of the most commontermsusedinscience classesisa“hypothesis”. The word
can have many differentdefinitions,dependingonthe contextinwhichitisbeingused:
“Aneducatedguess”– because itprovidesasuggestedsolutionbasedonthe
evidence. Note thatitisn’tjusta random guess. Ithas to be basedon evidence tobe
a scientifichypothesis.
Prediction –if youhave evercarriedout a science experiment,youprobablymade
thistype of hypothesis,inwhichyoupredictedthe outcome of yourexperiment.
Tentative orProposedexplanation –hypothesescanbe suggestionsaboutwhy
somethingisobserved,butinorderforit to be scientific,we mustbe able totestthe
explanationtosee if itworks,if itisable to correctlypredictwhatwill happenina
situation,suchas: if myhypothesisiscorrect,we shouldsee ___ resultwhenwe
perform___ test. A hypothesisisverytentative;itcanbe easilychanged.
Theories
The UnitedStatesNational Academyof Sciencesdescribeswhatatheoryisas
follows:
“Some scientificexplanationsare sowell establishedthatnonew
evidence islikelytoalterthem.The explanationbecomesascientifictheory.
In everydaylanguage atheorymeansahunchor speculation.Notsoin
science.Inscience,the wordtheoryreferstoacomprehensiveexplanationof
an importantfeature of nature supportedbyfactsgatheredovertime.Theories
alsoallowscientiststomake predictionsaboutasyetunobserved
phenomena.”
“A scientifictheoryisawell-substantiatedexplanationof some aspect
of the natural world,basedon a bodyof facts that have beenrepeatedly
confirmedthroughobservationandexperimentation.Suchfact-supported
theoriesare not"guesses"butreliable accountsof the real world.The theory
of biological evolutionismore than"justa theory."Itis as factual an
explanationof the universe asthe atomictheoryof matter(statingthat
15
www.ck12.org
everythingismade of atoms) orthe germ theoryof disease (whichstatesthat
manydiseasesare causedbygerms).Ourunderstandingof gravityisstill a
workin progress.Butthe phenomenonof gravity,like evolution,isan
acceptedfact.“
Note some keyfeaturesof theoriesthatare importantto understandfromthis
description:
Theoriesare explanationsof natural phenomenon. Theyaren’tpredictions(although
we may use theoriestomake predictions). Theyare explanationswhywe observe
something.
Theoriesaren’tlikelytochange. Theyhave so muchsupportand are able toexplain
satisfactorilysomanyobservations,thattheyare notlikelytochange. Theoriescan,
indeed,be facts. Theoriescanchange,butitis a longand difficultprocess. Inorder
for a theoryto change,there mustbe manyobservationsor evidencethatthe theory
cannot explain.
Theoriesare notguesses. The phrase “justa theory”hasno room inscience. To be a
scientifictheorycarriesalot of weight;itisnot justone person’sideaabout
something.
Laws
Scientificlawsare similartoscientifictheoriesinthattheyare principlesthatcanbe
usedto predictthe behaviorof the natural world.Bothscientificlawsandscientifictheories
are typicallywell-supportedbyobservationsand/orexperimental evidence.Usuallyscientific
lawsreferto rulesforhownature will behave undercertainconditions,frequentlywrittenas
an equation.Scientifictheoriesare more overarchingexplanationsof how nature worksand
whyit exhibitscertaincharacteristics. Asa comparison, theoriesexplainwhywe observe
whatwe doand lawsdescribe whathappens.
For example,aroundthe year1800, JacquesCharlesandotherscientistswere
workingwithgasesto,amongotherreasons,improve the designof the hotairballoon.These
scientistsfound,aftermany,manytests,thatcertainpatternsexistedinthe observationson
gas behavior.If the temperature of the gasincreased,the volume of the gasincreased.Thisis
knownas a natural law.A lawis a relationshipthatexistsbetweenvariablesinagroupof
data. Lawsdescribe the patternswe see inlarge amountsof data,but do describe whythe
patternsexist.
A commonmisconceptionisthatscientifictheoriesare rudimentaryideasthatwill
eventuallygraduate intoscientificlawswhenenoughdataandevidence hasbeen
accumulated.A theorydoesnotchange intoa scientificlaw withthe accumulationof new or
betterevidence.Remember,theoriesare explanationsandlawsare patternswe see inlarge
amountsof data, frequentlywrittenasanequation.A theorywill alwaysremainatheory;a
lawwill alwaysremainalaw.
A model isa description,graphic,or3-D representationof theoryusedtohelp
enhance understanding.Scientistsoftenuse modelswhentheyneedawayto communicate
theirunderstandingof whatmightbe verysmall (suchas an atomor molecule) orverylarge
(suchas the universe). A model isanysimulation,substitute,orstand-inforwhatyouare
actuallystudying.A goodmodel containsthe essential variablesthatyouare concernedwith
inthe real system,explainsall the observationsonthe real system, andisas simple as16
www.ck12.org
possible.A model maybe asuncomplicatedasasphere representingthe earthorbilliard
ballsrepresenting gaseousmolecules,orascomplex asmathematical equationsrepresenting
light.
Chemistsrelyonbothcareful observationandwell-knownphysical laws.Byputting
observationsandlawstogether,chemistsdevelopmodels.Modelsare reallyjustwaysof
predictingwhatwill happengivenacertainsetof circumstances.Sometimesthese models
are mathematical,butothertimes,theyare purelydescriptive.
If you were askedtodetermine the contentsof abox that cannotbe opened,you
woulddoa varietyof experimentsinordertodevelopanidea(ora model) of whatthe box
contains.Youwouldprobablyshake the box,perhapsputmagnetsnearitand/ordetermine
itsmass. Whenyoucompletedyourexperiments,youwoulddevelopanideaof whatis
inside;thatis,youwouldmake a model of whatisinside abox that cannot be opened.
A goodexample of howamodel isuseful toscientistsishow modelswere usedto
explainthe developmentof the atomictheory.Asyouwill learninalater chapter,the ideaof
the conceptof an atom changedovermanyyears.In orderto understandeachof the different
theoriesof the atomaccordingto the variousscientists,modelswere drawn,andthe concepts
were more easilyunderstood.
Chemistsmake upmodelsaboutwhathappenswhendifferentchemicalsare mixed
together,orheatedup,or cooleddown,orcompressed.Chemistsinventthesemodelsusing
manyobservationsfromexperimentsinthe past,andtheyuse these modelstopredictwhat
mighthappenduringexperimentsinthe future.Once chemistshave modelsthatpredictthe
outcome of experimentsreasonablywell,those workingmodelscanhelptotell themwhat
theyneedtodo to achieve acertaindesiredresult.Thatresultmightbe the productionof an
especiallystrongplastic,oritmightbe the detectionof a toxinwhenit’spresentinyour
food.
LessonSummary
A hypothesisisatentative explanationthatcanbe testedbyfurtherinvestigation.
A theoryis a well-supportedexplanationof observations.
A scientificlawisastatementthatsummarizesthe relationshipbetweenvariables.
Anexperimentisacontrolledmethodof testingahypothesis.
A model isa description,graphic,or3-D representationof theoryused tohelp
enhance understanding.
Scientistsoftenuse modelswhentheyneedawayto communicate their
understandingof whatmightbe verysmall (suchasan atom or molecule)orvery
large (suchas the universe).
Vocabulary
Hypothesis:A tentative explanationthatcanbe testedbyfurtherinvestigation.
Theory:A well-establishedexplanation
Scientificlaw:A statementthatsummarizesthe relationshipbetweenvariables.
Model:A description,graphic,or3-D representationof theoryusedtohelpenhance
understanding.
FurtherReading/Supplemental Links
http://en.wikipedia.org/wiki/Scientific_theory
17
www.ck12.org
http://en.wikipedia.org/wiki/Hypothesis
VideoonDemand – Modelingthe Unseen
(http://www.learner.org/resources/series61.html?pop=yes&pid=793#)
1.2: ReviewQuestions
Multiple Choice
1) A numberof people became ill aftereatingoystersinarestaurant.Whichof the
followingstatementsisahypothesisaboutthisoccurrence?
a) Everyone whoate oystersgotsick.
b) People gotsickwhetherthe oysterstheyate were raw orcooked.
c) Symptomsincludednauseaanddizziness.
d) Bacteriainthe oystersmayhave causedthe illness.
2) If the hypothesisisrejected(proved wrong) bythe experiment,then:
a) The experimentmayhave beenasuccess.
b) The experimentwasafailure.
c) The experimentwaspoorlydesigned.
d) The experimentdidn'tfollowthe scientificmethod.
3) A hypothesisis:
a) A descriptionof aconsistentpatterninobservations.
b) Anobservationthatremainsconstant.
c) A theorythat has beenproven.
d) A tentative explanationforaphenomenon.
4) A scientificlawis:
a) A descriptionof aconsistentpatterninobservations.
b) Anobservationthatremainsconstant.
c) A theorythat has beenproven.
d) A tentative explanationforaphenomenon.
5) A well-substantiatedexplanationof anaspectof the natural worldisa:
a) Theory.
b) Law.
c) Hypothesis.
d) None of these.
6) Whichof the followingwordsisclosesttothe same meaningashypothesis?
a) Fact
b) Law
c) Formula
d) Suggestion
e) Conclusion
7) Whydo scientistssometimesdiscardtheories?
a) The stepsin the scientificmethodwere notfollowedinorder.
b) Publicopiniondisagreeswiththe theory.
c) The theoryisopposedbythe church.
d) Contradictoryobservationsare found.
8) True/False: Whenatheoryhasbeenknownfora longtime,itbecomesalaw.
18
www.ck12.org
1.3: Graphing
Objectives
Correctlygraphdata utilizingdependentvariable,independentvariable,scale and
unitsof a graph,and bestfitcurve.
Recognize patternsindatafroma graph.
Solve forthe slope of givenline graphs.
Introduction
Scientistssearchforregularitiesandtrendsin
data. Twocommon methodsof presentingdatathataid
inthe searchfor regularitiesandtrendsare tablesand
graphs.The table belowpresentsdataaboutthe pressure
and volume of asample of gas. You shouldnote thatall
tableshave a title andinclude the unitsof the
measurements.
You may note a regularitythatappearsinthis
table;as the volume of the gasdecreases(gets
smaller), itspressureincreases(getsbigger).This
regularityortrendbecomesevenmore apparentina
graph of thisdata. A graph isa pictorial
representationof patternsusingacoordinate system.
Whenthe data from the table isplottedasa graph, the
trendinthe relationshipbetweenthe pressureand
volume of a gas sample becomesmore apparent.The
graph givesthe scientistinformationtoaidinthe
searchfor the exactregularitythatexistsinthese data.
Whenscientistsrecordtheirresultsin adata table,the independentvariable isputin
the firstcolumn(s),the dependentvariable isrecordedinthe lastcolumn(s)andthe
controlledvariablesare typicallynotincludedatall. Note inthe data table that the first
columnislabeled“Volume (inliters)”andthatthe secondcolumnislabeled“Pressure(in
atm). That indicatesthatthe volume wasbeingchanged(the independentvariable) tosee
howit affectedthe pressure (dependentvariable).
In a graph, the independentvariableisrecordedalongthe x-axis(horizontal axis) or
as part of a keyfor the graph,the dependentvariable isrecordedalongthe y-axis(vertical
axis),andthe controlledvariablesare notincludedatall. Note inthe data table thatthe X-
axisislabeled“Volume (liters)”andthatthe Y-axisislabeled“Pressure (atm). That
indicatesthatthe volume wasbeingchanged(the independentvariable) tosee how itaffected
the pressure (dependentvariable).
DrawingLine Graphs
Readinginformationfromaline graphis easierandmore accurate as the size of the
graph increases.Inthe twographsshownbelow,the firstgraphusesonlyasmall fractionof
the space available onthe graphpaper.The secondgraphusesall the space available forthe
same graph. If you were attemptingtodetermine the pressure atatemperature of 260 K,
usingthe graph on the leftwouldgive alessaccurate resultthanusingthe graph onthe right.
Volume
(liters)
Pressure
(atm)
10.0 0.50
5.0 1.00
3.33 1.50
2.50 2.00
2.00 2.50
1.67 3.00
CC – Tracy Poulsen
19
www.ck12.org
Whenyoudraw a line graph,you
shouldarrange the numbersonthe axisto
use as much of the graphpaper as youcan.
If the lowesttemperature inyourdatais
100 K andthe highesttemperature inyour
data is160 K, youshouldarrange for 100
K to be on the extreme leftof yourgraph
and 160 K to be onthe extreme rightof
your graph.The creator of the graph on the
leftdidnottake thisadvice and didnot
produce a verygood graph.You should
alsomake sure that the axisonyour graph
are labeledandthatyourgraph has a title.
Whenconstructinga graph,there are some
general principlestokeepinmind:
Take up as much of the graph paper
as possible. The lowestx-value
shouldbe onthe far leftof the paper
and the highestx-valueshouldbe
on the far rightside of the paper.
Your lowesty-valueshouldbe near
the bottomof the graph and the
highesty-valuenearthe top.
Choose yourscale to allowyouto
do this. You do notneedto start
countingat zero.
Countyourx- andy-scalesbyconsistentamounts. If youstartcountingyourx-axis
where everybox countsas2-units,youmustcount that waythe course of the entire
axis. Your y-axismaycountby a differentscale (maybe everybox countsas5
instead),butyoumustcountthe entire y-axisbythatscale.
Bothof youraxisshouldbe labeled,includingunits. Whatwasmeasuredalongthat
axisand whatunitwas itmeasuredin?
For X-Yscatter plots,drawa best-fit-line orcurve thatfitsyourdata, insteadof
connectingthe dots. You wanta line thatshowsthe overall trendin the data, but
mightnot hitexactlyall of yourdata points. What isthe overall patterninthe data?
ReadingInformationfromaGraph
Whenwe draw a line graphfroma setof data points,we are creatingdatapoints
betweenknowndatapoints.This processiscalledinterpolation.Eventhoughwe mayhave
fouractual data pointsthatwere measured,we assume the relationshipthatexistsbetween
the quantitiesatthe actual data pointsalsoexistsatall the pointson the line graphbetween
the actual data points.Considerthe followingsetof datafor the solubilityof KClO3inwater.
The table showsthat there are exactlysix knowndatapoints.Whenthe datais
graphed,however,the graphmakerassumesthatthe relationshipbetweenthe temperature
CC – Tracy Poulsen20
www.ck12.org
and the solubilityremainsthe same.The line isdrawnbyinterpolatingthe datapoints
betweenthe actual datapoints.
We can nowreasonablycertainlyreaddatafromthe graph forpointsthat were not
actuallymeasured.If we wishtodeterminethe solubilityof KClO3at70°C, we follow the
vertical gridline for70°C up to where ittouchesthe graphedline andthenfollow the
horizontal gridline tothe axistoread the solubility.Inthiscase,we wouldreadthe solubility
to be 30. g/100 mL of H2O at 70°C.
There are alsooccasionswhenscientists
wishto determinedatapointsfroma graphthat are
not betweenactual datapointsbutare beyondthe
endsof the actual data points.Creatingdatapoints
beyondthe endof the graph line,usingthe basic
shape of the curve as a guide iscalled
extrapolation.
Suppose the graphfor the solubilityof
potassiumchlorate hasbeenmade fromjustthree
actual data points.If the actual data pointsforthe
curve were the solubilityat60°C, 80°C, and
100°C, the graph wouldbe the solidline shownon
the graph above.If the solubilityat30°C wasdesired,we couldextrapolate (thedottedline)
fromthe graphand suggestthe solubilitytobe 5.0 g/100 mL of H2O. If we check onthe
more complete graphabove,youcan see thatthe solubilityat30°C isclose to 10 g/100 mL
of H2O. The reasonthe secondgraphproducessuch a pooransweristhat the relationshipthat
appearsinthe lesscomplete graphdoesnotholdbeyondthe endsof the graph.Forthis
reason,extrapolationisonlyacceptable forgraphswhere there isevidence thatthe
relationshipshowninthe graphwill be true beyondthe endsof the graph.Extrapolationis
more dangerousthatinterpolationintermsof possiblyproducingincorrectdata.
In situationsinwhichboththe independentanddependentvariablesare measured or
countedquantities,anX-Yscatter plotisthe most useful andappropriate type of graph. A
line graphcannotbe usedforindependentvariablesthatare groupsof data, or nonmeasured
data. In these situationsinwhichgroupsof data,ratherthan exact measurements,were
recordedas the independentvariable,abar graphcan typicallybe used. Considerthe datain
the followingtable.
For thisdata, a bar graph ismore appropriate because independentvariable isagroup,
not a measurement(forexample,everythingthathappenedin1980). The concept of the
average yearlyrainfall halfwaybetweenthe years1980 and 1981 doesnot make sense,soa
Temperature (°C)
Solubility
(g/100 mL H2O)
0 3.3
20 7.3
40 13.9
60 23.8
80 37.5
100 56.3
CC – Tracy Poulsen
CC – Tracy Poulsen
21
www.ck12.org
Year
Rainfall
(inches)
1980 24.7
1981 21.2
1982 14.5
1983 13.2
1984 21.1
1985 16.8
1986 19.9
1987 29.2
1988 31.6
1989 21.0
line graphdoesn'twork.Additionally,eachyearrepresentsagroupthat we are lookingat,
and nota measuredquantity.A bargraph isbettersuitedforthistype of data. Fromthisbar
graph,you couldveryquicklyanswerquestionslike,“Whichyearwasmostlikelyadrought
yearfor Trout Creek?”,and“Whichyear wasTrout Creekmostlikelytohave sufferedfrom
a flood?”
Findingthe Slope of aGraph
As youmay recall fromalgebra,the
slope of the line maybe determinedfromthe
graph.The slope representsthe rate at which
one variable ischangingwithrespecttothe
othervariable.Fora straight-linegraph,the
slope isconstantfor the entire line butfora
non-lineargraph,the slope isdifferentat
differentpointsalongthe line. Fora straight-
line graph,the slope forall pointsalongthe
line canbe determinedfromanysectionof the
graph.For a non-lineargraph,the mustbe
determinedforeachpointfromdata at that
point.Considerthe givendatatable andthe
lineargraphthat follows.
The relationshipinthissetof datais
linear,thatis,itproducesa straight-line graph.
The slope of thisline isconstantat all points
on the line.The slope of aline isdefinedasthe
rise (change invertical position) dividedbythe
run (change inhorizontal position).
Frequentlyinscience,all of ourdata pointsdo
not fall exactlyonaline.Inthissituation,we
draw a bestfitline,ora line thatgoesas close to all of ourpointsas possible.Whenfinding
the slope,itisimportantto use twopointsthat are on the bestfitline itself,insteadof our
measureddatapointswhichmaynot be on our bestfitline.Fora pairof pointsonthe line,
the coordinatesof the pointsare identifiedas(x1,y1) and (x2,y2).In thiscase,the points
selectedare (260, 1.3) and (180, 0.9). The slope canthenbe calculatedinthe manner:
CC – Tracy Poulsen
Temperature vs.Volume foraGas
Temperature (°C)
Volume of Gas
(mL)
20 60
40 65
60 70
80 75
100 80
120 85
CC – Tracy Poulsen22
www.ck12.org
Therefore,the slope of the lineis0.005 atm/K.The fact that the slope ispositive indicates
that the line isrisingasit movesfromlefttorightand that the pressure increasesby0.005
atm for each1 Kelvinincreaseintemperature. A negativeslope wouldindicate thatthe line
was fallingasitmovesfromlefttoright.
LessonSummary
Twocommonmethodsof presentingdatathataid inthe search forregularitiesand
trendsare tablesandgraphs.
Whenwe drawa line graphfroma set of data points,we are creatingdata points
betweenknowndatapoints.Thisprocessiscalledinterpolation.
Creatingdatapointsbeyondthe endof the graph line,usingthe basicshape of the
curve as a guide iscalledextrapolation.
The slope of a graph representsthe rate atwhichone variable ischangingwith
respectto the othervariable.
Vocabulary
Graph: a pictorial representationof patternsusingacoordinate system
Interpolation:the processof estimatingvaluesbetweenmeasuredvalues
Extrapolation:the processof creatingdatapointsbeyondthe endof the graphline,
usingthe basicshape of the curve as a guide
Slope:the ratioof the change in one variable withrespecttothe othervariable.
FurtherReading/Supplemental Links
Use the followinglinktocreate bothx-yandbar graphs:
http://nces.ed.gov/nceskids/createagraph/default.aspx
These websitesoffermore tipsongraphingandinterpretingdata:
http://staff.tuhsd.k12.az.us/gfoster/standard/bgraph2.htmand
http://www.sciencebuddies.org/science-fair-projects/project_data_analysis.shtml
1.3: ReviewQuestions
1) Ona data table,where isthe independentvariabletypicallylisted? Whataboutthe
dependentvariable?
2) Ona graph,howdo youidentifythe
independentvariable anddependentvariable?
3) Andrewwascompletinghisdensitylabforhis
chemistrylabexam. He collectedthe given
data for volume andmass.
a) Identifythe independentanddependent
variablesinthisexperiment.
b) Draw a graph to representthe data,
includingabest-fit-line.
#3 data
Volume of
Solution(mL)
Mass of
Solution(g)
0.3 3.4
0.6 6.8
0.9 10.2
1.9 21.55
2.9 32.89
3.9 44.23
4.9 55.57
23
www.ck12.org
c) If the graph isa straightline,calculate the slope,includingunits.
d) What wouldyouexpectthe massof 2.5 mL of solutiontohave?
e) What volume wouldyouexpect60g of the solutiontooccupy?
4) Donnaiscompletinganexperimenttofindthe effect
of the concentrationof ammoniaonrate (or speed) of
the reaction.She has collectedthe givendatafromher
time trialsand is readyforthe analysis.
a) Identifythe independentanddependentvariablesin
thisexperiment.
b) Draw a graph to representthe data,includinga
best-fit-line
c) If the concentrationof ammoniawas0.30 mol/L,
howmuch time haspassed?
d) After8 seconds,whatwill be the approximate
concentrationof ammonia?
5) Considerthe datatable foran experimentonthe
behaviorof gases.
a) Identifythe independentanddependentvariables
inthisexperiment.
b) Draw a graph to representthe data.
c) Calculate the slope,includingunits.
d) What wouldbe the pressure at55°C?
e) What wouldbe the pressure at 120°C?
#5 data
Temperature
(°C)
Pressure
(mmHg)
10 726
20 750
40 800
70 880
100 960
#4 data
Time (s)
Concentration of
ammonia(mol/L)
0.71 2.40
1.07 2.21
1.95 2.00
5.86 1.53
10.84 1.30
14.39 1.08
20.43 0.81
29.67 0.60
39.80 0.40
49.92 0.20 24
www.ck12.org
Chapter2: The Structure of the Atom
2.1: EarlyIdeasof Atoms
Objectives
Give a shorthistoryof the conceptof the atom.
Describe the contributionsof DemocritusandDaltontoatomictheory.
Summarize Dalton'satomictheoryandexplainitshistorical development.
Introduction
You learnedearlierhowall matterinthe universe ismade outof tinybuildingblocks
calledatoms.All modernscientistsacceptthe conceptof the atom, but whenthe conceptof
the atom was firstproposedabout2,500 yearsago,ancientphilosophers laughedatthe idea.
It has alwaysbeendifficulttoconvince peopleof the existenceof thingsthatare too small to
see.We will spendsome time consideringthe evidence (observations) thatconvince
scientistsof the existence of atoms.
Democritus andthe GreekPhilosophers
Before we discussthe experimentsandevidence
that have,overthe years,convincedscientiststhatmatteris
made up of atoms,it’sonlyfair to give credittothe man
whoproposed“atoms”inthe firstplace.About2,500 years
ago, earlyGreekphilosophersbelievedthe entire universe
was a single,huge,entity.Inotherwords,“everythingwas
one.”Theybelievedthatall objects,all matter,andall
substanceswere connectedasasingle,big,unchangeable
“thing.”
One of the firstpeople topropose “atoms”wasa
man knownasDemocritus.Asan alternative tothe beliefs
of the Greekphilosophers,he suggestedthatatomos,or
atomon– tiny,indivisible,solidobjects - make upall
matterin the universe.
Democritusthenreasonedthatchangesoccurwhen
the many atomosinan objectwere reconnectedor
recombinedindifferentways.Democritusevenextended
histheory,suggestingthatthere were differentvarietiesof
atomoswithdifferentshapes,sizes, andmasses.He
thought,however,thatshape,size andmasswere the onlypropertiesdifferentiatingthe
differenttypesof atomos.AccordingtoDemocritus,othercharacteristics,likecolorand
taste,didnot reflectpropertiesof the atomosthemselves, butrather,resultedfromthe
differentwaysinwhichthe atomoswere combinedandconnectedtoone another.
Greekphilosopherstrulybelievedthat,above all else,ourunderstandingof the world
shouldrelyon“logic.”Infact, theyarguedthat the worldcouldn’tbe understoodusingour
sensesatall,because oursensescoulddeceive us.Therefore,insteadof relyingon
observation,Greekphilosopherstriedtounderstandthe worldusingtheirmindsand,more
specifically,the powerof reason.
Democrituswasknownas “The
LaughingPhilosopher.”It’sagood
thinghe likedtolaugh,because most
otherphilosopherswere laughingat
histheories.
25
www.ck12.org
So howcouldthe Greekphilosophershave knownthat
Democritushada good ideawithhistheoryof “atomos?" It
wouldhave takensome careful observationandafew simple
experiments.Now youmightwonderwhyGreekphilosophers
didn’tperformanyexperimentstoactuallytestDemocritus’
theory.The problem,of course,wasthatGreek philosophers
didn’tbelieve inexperimentsatall.Remember,Greek
philosophersdidn’ttrusttheirsenses,theyonlytrustedthe
reasoningpowerof the mind.
The earlyGreekphilosopherstriedtounderstandthe
nature of the worldthroughreasonandlogic,but notthrough
experimentandobservation.Asaresult,theyhadsome very
interestingideas,buttheyfeltnoneedtojustifytheirideas
basedon life experiences.Inalotof ways,youcan thinkof the
Greekphilosophersasbeing“all thoughtandnoaction.”It’s
trulyamazinghowmuch theyachievedusingtheirminds,but
because theyneverperformedanyexperiments,theymissedor
rejectedalotof discoveriesthattheycouldhave made otherwise. Greekphilosophers
dismissedDemocritus’theoryentirely.Sadly,ittookovertwomillenniabeforethe theoryof
atomos(or “atoms,”as they’re knowntoday) wasfullyappreciated.
Dalton'sAtomicTheory
Althoughthe conceptof atomsis nowwidelyaccepted,thiswasn’talwaysthe case.
Scientistsdidn’talwaysbelieve thateverythingwascomposedof small particlescalled
atoms. The workof several scientistsandtheirexperimental datagave evidence forwhatis
nowcalledthe atomictheory.
In the late 1700’s, Antoine Lavoisier,aFrenchscientist,experimentedwiththe
reactionsof manymetals. He carefullymeasuredthe massof a substance before reactingand
againmeasuredthe massaftera reactionhadoccurredin a closedsystem(meaningthat
nothingcouldenterorleave the container). He foundthatnomatter whatreactionhe looked
at, the mass of the starting materialswasalwaysequal tothe massof the endingmaterials.
Thisis nowcalledthe lawof conservationof mass. Thiswent contrary to whatmany
scientistsatthe time thought. Forexample,whenapiece of ironrusts,itappearsto gain
mass. Whena logis burned,itappearsto lose mass. Inthese examples,though,the reaction
doesnottake place ina closedcontainerandsubstances,suchasthe gasesinthe air, are able
to enteror leave. Whenironrusts,itiscombiningwithoxygeninthe air,whichiswhyit
seemstogainmass. What Lavoisierfoundwasthatno masswas actuallybeinggainedor
lost. It was comingfromthe air. Thiswas a veryimportantfirststepingivingevidence for
the ideathat everythingismade of atoms. The atoms(andmass) are not beingcreatedor
destroyed. The atomsare simplyreactingwithotheratomsthatare alreadypresent.
In the late 1700s andearly1800s, scientistsbegannoticingthatwhencertain
substances,like hydrogenandoxygen,were combinedtoproduce anew substance,like
water,the reactants(hydrogenandoxygen) alwaysreactedinthe same proportionsbymass.
In otherwords,if 1 gram of hydrogenreactedwith8 grams of oxygen,then2grams of
hydrogenwouldreactwith16 grams of oxygen,and3 grams of hydrogenwouldreactwith
24 grams of oxygen.Strangely,the observationthathydrogen andoxygenalwaysreactedin
Greekphilosopherstriedto
understandthe nature of the
worldthroughreasonand
logicbut notthrough
experimentandobservation.26
www.ck12.org
the “same proportionsbymass” wasn’tspecial.Infact,itturnedout that the reactantsin
everychemical reactionreactedinthe same proportionsbymass. Thisobservationis
summarizedinthe lawof definiteproportions. Take,forexample,nitrogenandhydrogen,
whichreact to produce ammonia.Inchemical reactions, 1gram of hydrogenwill reactwith
4.7 grams of nitrogen,and2 gramsof hydrogenwill reactwith9.4 gramsof nitrogen.Can
youguesshowmuch nitrogenwouldreactwith3 grams of hydrogen? Scientistsstudied
reactionafterreaction,buteverytime the resultwasthe same.The reactantsalwaysreacted
inthe same proportions.
At the same time that scientistswerefindingthispattern
out,a mannamedJohnDalton wasexperimentingwithseveral
reactionsinwhichthe reactantelementsformedmore thanone
type of product,dependingonthe experimental conditionshe
used.One commonreactionthathe studiedwasthe reaction
betweencarbonandoxygen.Whencarbonandoxygenreact,
theyproduce twodifferentsubstances –we’ll call these
substances“A”and “B.” It turnedout that,giventhe same
amountof carbon,formingB alwaysrequiredexactlytwice as
much oxygenasformingA.Inotherwords,if you can make A
with3 gramsof carbon and 4 grams of oxygen,Bcan be made
withthe same 3 grams of carbon, butwith8 grams oxygen.
Daltonaskedhimself –whydoesB require 2timesas much
oxygenasA? Whynot 1.21 timesas much oxygen,or0.95
timesasmuch oxygen?Whya whole numberlike2?
The situationbecame evenstrangerwhenDaltontried
similarexperimentswithdifferentsubstances.Forexample,
whenhe reactednitrogenandoxygen,Daltondiscoveredthathe couldmake three different
substances – we’ll call them“C,”“D,” and “E.” As itturnedout,for the same amount of
nitrogen,Dalwaysrequiredtwice asmuchoxygenasC. Similarly,Ealwaysrequiredexactly
fourtimesas muchoxygenas C.Once again,Daltonnoticedthatsmall whole numbers(2
and 4) seemedtobe the rule.Thisobservationcame tobe knownas the law of multiple
proportions.
Daltonthoughtabouthis resultsandtriedtofindsome theorythatwouldexplainit,as
well asa theorythat wouldexplainthe Law of Conservationof Mass(massis neithercreated
nor destroyed,orthe massyouhave at the beginningisequal tothe massat the endof a
change).One wayto explainthe relationshipsthatDaltonandothershad observedwasto
suggestthatmaterialslike nitrogen,carbonandoxygenwere composedof small,indivisible
quantitieswhichDaltoncalled“atoms”(inreference toDemocritus’original idea).Dalton
usedthisideato generate whatisnowknownasDalton’sAtomicTheorywhichstatedthe
following:
1. Matter ismade of tinyparticlescalledatoms.
2. Atomsare indivisible(can’tbe brokenintosmallerparticles).Duringachemical
reaction,atomsare rearranged,buttheydonot breakapart, nor are theycreatedor
destroyed.
3. All atomsof a givenelementare identical inmassandotherproperties.
4. The atoms of differentelementsdifferinmassandotherproperties.
Unlike the Greek
philosophers,JohnDalton
believedinbothlogical
thinkingand
experimentation.
27
www.ck12.org
5. Atomsof one elementcancombine withatomsof anotherelementtoform
“compounds”– new,complex particles.Inagivencompound,however,the
differenttypesof atomsare alwayspresentinthe same relative numbers.
LessonSummary
2,500 years ago,Democritussuggestedthatall matterinthe universe wasmade upof
tiny,indivisible,solidobjectshe called“atomos.”
OtherGreekphilosophersdislikedDemocritus’“atomos”theorybecause theyfeltit
was illogical.
Daltonusedobservationsaboutthe ratiosinwhichelementswillreact tocombine and
The Law of Conservationof Massto propose hisAtomicTheory.
Dalton’sAtomicTheorystates:
1. Matter ismade of tinyparticlescalledatoms.
2. Atomsare indivisible.Duringachemical reaction,atomsare rearranged,butthey
do notbreak apart,nor are theycreatedor destroyed.
3. All atomsof a givenelementare identical inmassandotherproperties.
4. The atomsof differentelementsdifferinmassandotherproperties.
5. Atomsof one elementcancombine withatomsof anotherelementtoform
“compounds”– newcomplex particles.Ina givencompound,however,the different
typesof atoms are alwayspresentinthe same relative numbers.
Vocabulary
Atom:Democritus’ wordforthe tiny,indivisible,solidobjectsthathe believedmade
up all matterin the universe
Dalton’sAtomicTheory:the firstscientifictheorytorelate chemical changestothe
structure,properties,andbehaviorof the atom
FurtherReading/Supplemental Links
To see a videodocumentingthe earlyhistoryof the conceptof the atom, go to
http://www.uen.org/dms/. Goto the k-12 library. Searchfor“historyof the atom”.
Watch part 01. (youcan getthe username andpasswordfromyour teacher)
VisionLearning:FromDemocritustoDalton:
http://visionlearning.com/library/module_viewer.php?c3=&mid=49&l=
2.1: ReviewQuestions
1) (Multiple choice) Whichof the followingisnotpart of Dalton’sAtomicTheory?
a) matteris made of tinyparticlescalledatoms.
b) duringa chemical reaction,atomsare rearranged.
c) duringa nuclearreaction,atomsare splitapart.
d) all atomsof a specificelementare the same.
2) DemocritusandDaltonbothsuggestedthatall matterwascomposedof small particles,
calledatoms. What isthe greatestadvantage Dalton’sAtomicTheoryhadover
Democritus’?
28
www.ck12.org
3) Itturns out that a fewof the ideasinDalton’sAtomicTheoryaren’tentirelycorrect.Are
inaccurate theoriesanindicationthatscience isawaste of time?
2.2: FurtherUnderstandingof the Atom
Objectives
Explainthe observationsthatledtoThomson'sdiscoveryof the electron.
Describe Thomson's"plumpudding"mode of the atom andthe evidenceforit
Draw a diagramof Thomson's"plumpudding"modelof the atomand explainwhyit
has thisname.
Describe Rutherford'sgoldfoil experimentandexplainhow thisexperimentaltered
the "plumpudding"model.
Draw a diagramof the Rutherfordmodel of the atomandlabel the nucleusandthe
electroncloud.
Introduction
Dalton'sAtomicTheoryheldupwell toa lotof the
differentchemical experimentsthatscientistsperformedtotest
it.In fact, foralmost100 years,itseemedasif Dalton's
AtomicTheorywasthe whole truth.However,in1897, a
scientistnamedJ.J.Thomsonconductedsome researchthat
suggestedthatDalton’sAtomicTheorywasn’tthe entire story.
As itturns out,Daltonhad a lot right.He was rightin saying
matteris made up of atoms;he wasright insayingthere are
differentkindsof atomswithdifferentmassandother
properties;he was“almost”rightinsayingatomsof a given
elementare identical;he wasrightinsayingduringachemical
reaction,atomsare merelyrearranged;he wasrightinsayinga
givencompoundalwayshasatomspresentinthe same relative
numbers.Buthe was WRONG insayingatomswere
indivisible orindestructible.Asitturnsout,atomsare
divisible.Infact,atomsare composedof evensmaller,more fundamental particles.These
particles,calledsubatomicparticles,are particlesthatare smallerthanthe atom.We’ll talk
aboutthe discoveriesof these subatomicparticlesnext.
Thomson’sPlumPuddingModel
In the mid-1800s, scientistswere beginningtorealize thatthe studyof chemistryand
the studyof electricitywereactuallyrelated.First,amannamedMichael Faradayshowed
howpassingelectricitythroughmixturesof different chemicalscouldcause chemical
reactions.Shortlyafterthat,scientistsfoundthatbyforcingelectricitythroughatube filled
withgas,the electricitymade the gasglow!Scientistsdidn’t,however,understandthe
relationshipbetweenchemicalsand electricityuntil aBritishphysicistnamedJ.J.Thomson
beganexperimentingwithwhatisknownasa cathode ray tube.
The figure showsa basicdiagramof a cathode ray tube like the one J.J. Thomson
wouldhave used.A cathode ray tube isa small glasstube witha cathode (a negatively
chargedmetal plate) andan anode (apositivelychargedmetalplate) atoppositeends.By
J.J.Thomsonconducted
experimentsthatsuggested
that Dalton’satomictheory
wasn’ttellingthe entire
story.
29
www.ck12.org
separatingthe cathode andanode by a shortdistance,the cathode ray tube can generate what
are knownascathode rays – rays of electricitythatflow fromthe cathode tothe anode.J. J.
Thomsonwantedtoknowwhat cathode rayswere,where cathode rayscame from, and
whethercathode rayshadany mass or charge.The techniquesthatJ.J.Thomsonusedto
answerthese questionswere verycleverandearnedhimaNobel Prize inphysics.First,by
cuttinga small hole inthe anode,J.J. Thomsonfoundthathe couldgetsome of the cathode
rays to flowthroughthe hole inthe anode andintothe otherendof the glass cathode ray
tube.Next,J.J.Thomsonfiguredoutthatif he paintedasubstance knownas“phosphor”
ontothe far endof the cathode ray tube,he couldsee exactlywhere the cathode rayshit
because the cathode raysmade the phosphorglow.
J. J.
Thomsonmusthave
suspectedthat
cathode rays were
charged,because
hisnextstepwasto
place a positively
chargedmetal plate
on one side of the
cathode ray tube
and a negatively
chargedmetal plate
on the otherside of
the cathode ray
tube,as shownin
Figure 3. The metal
platesdidn’tactuallytouchthe cathode raytube,buttheywere close enoughthata
remarkable thinghappened!The flow of the cathode rayspassingthroughthe hole inthe
anode wasbentupwardstowardsthe positive metal plate andawayfromthe negative metal
plate.Usingthe “opposite chargesattract, like chargesrepel”rule,J.J.Thomsonarguedthat
if the cathode rays were attractedto the positivelychargedmetal plate andrepelledfromthe
negativelychargedmetal plate,theythemselvesmusthave anegative charge!
J. J.Thomsonthendidsome rather complex experimentswithmagnets,andusedhis
resultstoprove that cathode rays were notonlynegativelycharged,butalsohadmass.
Rememberthatanythingwithmassispart of whatwe call matter.In otherwords,these
cathode rays mustbe the resultof negativelycharged“matter”flowingfromthe cathode to
the anode.But there wasa problem.AccordingtoJ.J. Thomson’smeasurements,eitherthese
cathode rays had a ridiculouslyhighcharge,orelse hadvery,verylittle mass–much less
mass thanthe smallestknownatom.How wasthispossible?How couldthe mattermaking
up cathode rays be smallerthanan atomif atoms were indivisible?J.J.Thomsonmade a
radical proposal:maybe atomsare divisible.J.J.Thomson suggestedthatthe small,
negativelychargedparticlesmakingupthe cathode ray were actuallypiecesof atoms.He
calledthese pieces“corpuscles,”althoughtodaywe know themaselectrons.Thankstohis
cleverexperimentsandcareful reasoning,J.J. Thomsoniscreditedwiththe discoveryof the
electron.
Thomson’sexperimentwithcathode raysfoundthatthe ray movedaway
fromnegativelychargedplatesandtowardpositivelychargesplates. What
doesthissay aboutthe charge of the ray?
CC – Tracy Poulsen30
www.ck12.org
Nowimagine whatwouldhappenif atomswere made entirelyof electrons.Firstof
all,electronsare very,verysmall;infact,electronsare about2,000 timessmallerthanthe
smallestknownatom,soeveryatomwouldhave tocontaina whole lotof electrons.But
there’sanother,evenbiggerproblem:electronsare negativelycharged.Therefore,if atoms
were made entirelyoutof electrons,atomswouldbe negativelychargedthemselves…and
that wouldmeanall matterwasnegativelychargedaswell.Of course,matterisn’tnegatively
charged.In fact,most matteriswhat we call neutral – it has no charge at all.If matteris
composedof atoms,and atomsare composedof negative electrons,how canmatterbe
neutral?The onlypossible explanationisthatatomsconsistof more than justelectrons.
Atomsmustalso containsome type of positivelychargedmaterialthatbalancesthe negative
charge onthe electrons.Negativeandpositive chargesof equal size cancel eachother out,
justlike negative andpositive numbersof equal size.Whatdoyouget if youadd +1 and -1?
You get0, or nothing.That’strue of numbers,andthat’salso true of charges.If an atom
containsan electronwitha -1 charge,but alsosome formof material witha+1 charge,
overall the atommusthave a (+1) + (-1) = 0 charge – inotherwords,the atom must be
neutral,orhave no charge at all.
Basedon the fact that atomsare neutral, andbasedon J.J. Thomson’sdiscoverythat
atomscontainnegative subatomicparticlescalled“electrons,”scientistsassumedthatatoms
mustalso containa positive substance.Itturnedoutthatthispositive substance wasanother
kindof subatomicparticle,knownasthe proton.Althoughscientistsknewthatatomshadto
containpositive material,protonsweren’tactuallydiscovered,orunderstood,until quiteabit
later.
WhenThomsondiscoveredthe negative electron,he realizedthatatomshadto
containpositive materialaswell –otherwise theywouldn’tbe neutral overall.Asaresult,
Thomsonformulatedwhat’sknownasthe “plumpudding”modelforthe atom.Accordingto
the “plumpudding”model,the negative electronswere
like piecesof fruitandthe positivematerial waslikethe
batteror the pudding.Thismade alot of sense given
Thomson’sexperimentsandobservations.Thomsonhad
beenable toisolate electronsusingacathode ray tube;
howeverhe hadnevermanagedtoisolate positive
particles.Asa result,Thomsontheorizedthatthe positive
material inthe atom mustformsomethinglike the “batter”
ina plumpudding,while the negative electronsmustbe
scatteredthroughthis“batter.”(If you’ve neverseenor
tasteda plumpudding,youcan thinkof a chocolate chip
cookie instead.Inthatcase,the positive materialinthe
atom wouldbe the “batter”in the chocolate chipcookie,
while the negativeelectronswouldbe scatteredthrough
the batter like chocolate chips.)
Notice how easyit wouldbe topickthe piecesof fruitoutof a plumpudding.Onthe
otherhand,it wouldbe a lotharderto pick the batterout of the plumpudding,because the
batteris everywhere.If anatomwere similartoa plumpuddinginwhichthe electronsare
scatteredthroughoutthe “batter”of positive material,thenyou’dexpectitwouldbe easyto
pickout the electrons,buta lotharderto pickout the positive material.
Thomson’splumpuddingmodel
was muchlike a chocolate chip
cookie. Notice howthe chocolate
chipsare the negativelycharged
electrons,while the positivecharge
isspreadthroughoutthe entire
31
www.ck12.org
J.J.Thomsonhad measuredthe charge tomass ratioof the electron,buthadbeen
unable toaccuratelymeasure the charge on the electron.Withhisoil dropexperiment,Robert
Millikanwasable toaccuratelymeasure the charge of the electron.Whencombinedwiththe
charge to massratio,he wasable to calculate the massof the electron.WhatMillikan didwas
to put a charge ontinydropletsof oil andmeasuredtheirrate of descent.Byvaryingthe
charge ondifferentdrops,he noticedthatthe electricchargesonthe drops were all multiples
of 1.6x10-19
C, the charge ona single electron.
Rutherford’sNuclearModel
EverythingaboutThomson’sexperimentssuggested
the “plumpudding”model wascorrect – butaccording to the
scientificmethod,anynewtheoryormodel shouldbe tested
by furtherexperimentationandobservation.Inthe case of the
“plumpudding”model,itwouldtake amannamedErnest
Rutherfordtoprove itinaccurate.Rutherfordandhis
experimentswill be the topicof the nextsection.
DisprovingThomson’s“plumpudding”modelbegan
withthe discoverythatan elementknownasuraniumemits
positivelychargedparticlescalledalphaparticlesasit
undergoesradioactivedecay.Radioactive decayoccurswhen
one elementdecomposesintoanotherelement.Itonlyhappens
witha fewvery unstable elements.Alphaparticlesthemselves
didn’tprove anythingaboutthe structure of the atom, they
were,however,usedtoconductsome veryinterestingexperiments.
ErnestRutherfordwasfascinatedbyall aspectsof alphaparticles.Forthe most part,
though,he seemedtoviewalphaparticlesastinybulletsthathe coulduse tofire at all kinds
of differentmaterials.One experimentinparticular,however,surprisedRutherford,and
everyone else.
Rutherfordfoundthat
whenhe firedalphaparticles
at a verythinpiece of gold
foil,aninterestingthing
happened.Almostall of the
alphaparticleswentstraight
throughthe foil as if they’d
hitnothingat all.Thiswas
whathe expectedtohappen.
If Thomson’smodel was
accurate,there was nothing
hard enoughforthese small
particlestohitthat would
cause any change in their
motion.
Everyso often,
though,one of the alpha
particleswouldbe deflected
ErnestRutherford
ErnestRutherford'sGoldFoil Experimentinwhichalphaparticleswere
shotat a piece of goldfoil. Mostof the particleswentstraightthrough,but
some bouncedstraightback,indicatingtheywere hittingaverysmall,very
dense particle inthe atom.
CC – Tracy Poulsen32
www.ck12.org
slightlyasif ithad bouncedoff of somethinghard.Evenlessoften,Rutherfordobserved
alphaparticlesbouncingstraightbackat the “gun” fromwhichtheyhad beenfired!Itwasas
if these alphaparticleshadhita wall “head-on”andhadricochetedrightback inthe direction
that theyhad come from.
Rutherfordthoughtthatthese experimental resultswereratherodd.Rutherford
describedfiringalphaparticlesatgoldfoil like shootingahigh-poweredrifle attissue paper.
Wouldyoueverexpectthe bulletstohitthe tissue paperandbounce backat you?Of course
not!The bulletswouldbreakthroughthe tissuepaperandkeepongoing,almostasif they’d
hitnothingat all.That’swhat Rutherfordhadexpectedwouldhappenwhenhe firedalpha
particlesatthe goldfoil.Therefore,the factthatmostalphaparticlespassedthroughdidn’t
shockhim.On the otherhand,how couldhe explainthe alphaparticlesthatgotdeflected?
Furthermore,howcouldhe explainthe alphaparticlesthatbouncedrightbackasif they’dhit
a wall?
Rutherforddecidedthatthe onlywaytoexplainhisresultswastoassume that the
positive matterformingthe goldatomswasnot,infact,distributedlikethe batterinplum
pudding,butrather,wasconcentratedinone spot,forminga small positivelychargedparticle
somewhere inthe centerof the goldatom.We now call thisclumpof positivelycharged
mass the nucleus.AccordingtoRutherford,the presence of anucleusexplainedhis
experiments,because itimpliedthatmostalphaparticlespassedthroughthe goldfoil without
hittinganythingatall.Once ina while,though,the alphaparticleswould actuallycollide
witha goldnucleus,causingthe alphaparticlestobe deflected,oreventobounce rightback
inthe directiontheycame from.
While Rutherford’sdiscoveryof the positively
chargedatomic nucleusofferedinsightintothe structure of
the atom, italsoledto some questions.Accordingtothe
“plumpudding”model,electronswerelikeplumsembedded
inthe positive “batter”of the atom.Rutherford’smodel,
though,suggestedthatthe positivecharge wasn’tdistributed
like batter,butrather,wasconcentratedintoa tinyparticle at
the centerof the atom,while mostof the restof the atom was
emptyspace.What didthat meanforthe electrons?If they
weren’tembeddedinthe positivematerial,exactlywhatwere
theydoing?Andhowwere theyheldinthe atom?Rutherford
suggestedthatthe electronsmightbe circlingor“orbiting”
the positivelychargednucleusassome type of negatively
chargedcloud,but at the time,there wasn’tmuchevidenceto
suggestexactlyhowthe electronswereheldinthe atom.
Despite the problemsandquestionsassociatedwith
Rutherford’sexperiments,hisworkwithalphaparticlesdefinitelyseemedtopointtothe
existence of anatomic“nucleus.”BetweenJ.J.Thomson,whodiscoveredthe electron,and
Rutherford,whosuggestedthatthe positive chargesinanatomwere concentratedatthe
atom’scenter,the 1890s andearly1900s saw huge stepsinunderstandingthe atomat the
“subatomic”(orsmallerthanthe size of an atom) level.Althoughthere wasstill some
uncertaintywithrespecttoexactlyhowsubatomicparticleswere organizedinthe atom, it
was becomingmore andmore obviousthatatomswere indeeddivisible.Moreover,itwas
clearthat an atom containsnegativelychargedelectronsandanucleuscontainingpositive
Rutherfordsuggestedthat
electronssurrounda
central nucleus.
(Obtainedfrom:
http://upload.wikimedia.org/wiki
pedia/commons/7/7d/Rutherford
sches_Atommodell.png)
33
www.ck12.org
charges.In the nextsection,we’ll lookmore carefullyatthe structure of the nucleus,and
we’ll learnthatwhile the atomismade upof positive andnegative particles,italsocontains
neutral particlesthatneitherThomson,norRutherford,were able todetectwiththeir
experiments.
LessonSummary
Dalton’sAtomicTheorywasn’tentirelycorrect.Itturnsout thatatoms can be divided
intosmallersubatomicparticles.
AccordingtoThomson’s“plumpudding”model,the negativelychargedelectronsin
an atom are like the piecesof fruitinaplumpudding,while the positivelycharged
material islike the batter.
WhenErnestRutherfordfiredalphaparticlesatathingoldfoil,mostalphaparticles
wentstraightthrough;however,afewwere scatteredatdifferentangles,andsome
evenbouncedstraightback.
Inorder to explainthe resultsof hisGoldFoil experiment,Rutherfordsuggestedthat
the positive matterinthe goldatomswasconcentratedat the centerof the goldatom
inwhat we nowcall the nucleusof the atom.
Vocabulary
Subatomicparticles:particlesthatare smallerthanthe atom
Electron:a negativelychargedsubatomicparticle
Proton:a positivelychargedsubatomicparticle
Nucleus:the small,dense centerof the atom
FurtherReading/Supplemental Material
A short historyof the changesin ourmodel of the atom, an image of the plum
puddingmodel,andananimationof Rutherford'sexperimentcanbe viewedatPlum
PuddingandRutherfordPage (http://www.newcastle-
schools.org.uk/nsn/chemistry/Radioactivity/Plub%20Pudding%20and%20Rutherford
%20Page.htm).
To see a videodocumentingthe earlyhistoryof the conceptof the atom, go to
http://www.uen.org/dms/. Goto the k-12 library. Searchfor“historyof the atom”.
Watch part 02. (youcan getthe username andpasswordfromyour teacher)
VisionLearning:The EarlyDays(Thomson,etc)
http://visionlearning.com/library/module_viewer.php?mid=50&l=&c3=
Discoveryof Electron(YouTube):
http://www.youtube.com/watch%3Fv%3DIdTxGJjA4Jw
Thomson’sExperiment:http://www.aip.org/history/electron/jjthomson.htm
Discoveryof AtomicNucleus(YouTube):
http://www.youtube.com/watch%3Fv%3DwzALbzTdnc8
Rutherford’sExperiment:
http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/ruther14.swf
2.2: ReviewQuestions
Decide whethereachof the followingstatementsistrue orfalse.
1) Electrons(cathode rays) are positivelycharged. 34
www.ck12.org
2) Electrons(cathode rays) canbe repelledbyanegativelychargedmetal plate.
3) J.J.Thomsoniscreditedwiththe discoveryof the electron.
4) The plumpuddingmodel isthe currentlyacceptedmodel of the atom
#5-11: Match each conclusionregardingsubatomicparticlesandatomswiththe
observation/datathatsupportsit.
Conclusion Observations
5) All atomshave electrons
a. Most alphaparticlesshotat goldfoil gostraight
through,withoutanychange intheirdirection.
6) Atomsare mostlyempty
space.
b. A fewalphaparticlesshotatgoldfoil bounce inthe
opposite direction.
7) Electronshave anegative
charge
c. Some alphaparticles(withpositive charges)when
shotthrough goldfoil bendawayfromthe gold.
8) The nucleusispositively
charged
d. Nomatter whichelementThomsonputina cathode
ray tube,the same negative particleswiththe same
properties(suchascharge & mass) were ejected.
9) Atomshave a small,dense
nucleus
e.The particlesejectedinThomson’sexperimentbent
away fromnegativelychargedplates,buttoward
positivelychargedplates.
10) What isthe name givento the tinyclumpof positive material atthe centerof an atom?
11) Electronsare ______ negativelychargedmetalsplatesand______ positivelycharged
metal plates.
Considerthe followingtwoparagraphsfor#12-14
Scientist1:Althoughatomswere once regardedasthe smallestpartof nature,theyare
composedof evensmallerparticles. All atomscontainnegativelychargedparticles,
calledelectrons. However,the total charge of anyatom iszero. Therefore,thismeans
that there mustalsobe positive charge inthe atom. The electronssitina bedof
positivelychargedmass.
Scientist2:It is true that atomscontainsmallerparticles. However,the electronsare not
floatingina bedof positive charge. The positivecharge islocatedinthe central part of
the atom, ina verysmall,dense mass,called anucleus. The electronsare foundoutside
of the nucleus.
12) What isthe maindispute betweenthe twoscientists’theories?
13) Anotherscientistwasable tocalculate the exactcharge of an electrontobe -1.6x10-19
C.
What effectdoesthishave onthe claimsof Scientist1? (Pickone answer)
a) Goesagainsthis claim
b) Supportshisclaim
c) Has noeffectonhisclaim.
14) If a positivelychargedparticle wasshotata thinsheetof goldfoil,whatwouldthe
secondscientistpredictto happen?
35
www.ck12.org
2.3: Protons,Neutrons,andElectronsinAtoms
Objectives
Describe the locations,charges,andmassesandthe three mainsubatomicparticles.
Define atomicnumber.
Describe the size of the nucleusinrelationtothe size of the atom.
Define massnumber.
Explainwhatisotopesare andhowisotopesaffectanelement’satomicmass.
Determine the numberof protons,neutrons,andelectronsinanatom.
Introduction
Dalton’sAtomicTheoryexplainedalotabout matter,chemicals,andchemical
reactions.Nevertheless,itwasn’tentirelyaccurate,becausecontrarytowhat Daltonbelieved,
atomscan, in fact,be brokenapartintosmallersubunitsorsubatomic particles.We have
beentalkingaboutthe electroningreatdetail,butthere are twootherparticlesof interestto
use:protonsand neutrons. Inthissection,we’lllookatthe atoma little more closely.
Protons,Electrons,andNeutrons
We alreadylearnedthatJ.J.Thomsondiscoveredanegativelychargedparticle,called
the electron. Rutherfordproposedthatthese electronsorbitapositive nucleus. In
subsequentexperiments,he foundthatthere isa smallerpositivelychargedparticlein the
nucleuswhichiscalledaproton. There is a thirdsubatomicparticle,knownasaneutron.
ErnestRutherfordproposedthe existence of aneutral particle,withthe approximate massof
a proton.Years later,JamesChadwickprovedthatthe nucleusof the atomcontainsthis
neutral particle thathadbeenproposedbyErnestRutherford. Chadwickobservedthatwhen
berylliumisbombardedwithalphaparticles,it
emitsanunknownradiationthathasapproximately
the same mass as a proton,but no electrical charge.
Chadwickwasable to prove thatthe beryllium
emissionscontainedaneutral particle - Rutherford’s
neutron.
As youmighthave alreadyguessedfromits
name,the neutronisneutral.Inotherwords,ithas
no charge whatsoever,andistherefore neither
attractedto nor repelledfromotherobjects.
Neutronsare ineveryatom(withone exception),
and they’re boundtogetherwithotherneutronsand
protonsinthe atomicnucleus.
Before we move on,we must discusshow the differenttypesof subatomicparticles
interactwitheachother.Whenit comesto neutrons,the answerisobvious.Since neutrons
are neitherattractedto,norrepelledfromobjects,theydon’treallyinteractwithprotonsor
electrons (beyondbeingboundintothe nucleuswiththe protons).
Eventhoughelectrons,protons,andneutronsare all typesof subatomicparticles,they
are notall the same size.Whenyoucompare the massesof electrons,protonsandneutrons,
whatyou findis that electronshave anextremelysmallmass,comparedtoeitherprotonsor
neutrons.Onthe otherhand,the massesof protonsandneutronsare fairlysimilar,although
technically,the massof aneutronisslightlylargerthanthe massof a proton.Because
Electronsare much smallerthan
protonsor neutrons. If an electronwas
the mass of a penny,aprotonor a
neutronwouldhave the massof a large
bowlingball! 36
www.ck12.org
protonsand neutronsare so much
more massive thanelectrons,almost
all of the massof any atomcomes
fromthe nucleus,whichcontainsall
of the neutronsandprotons.
The table showngivesthe
propertiesandlocationsof electrons,
protons,andneutrons.The third
columnshowsthe massesof the three
subatomicparticlesingrams.The
secondcolumn,however,showsthe massesof the three subatomicparticlesin“atomicmass
units”.Anatomicmass unit(amu) isdefinedasone-twelfththe massof acarbon-12 atom.
Atomicmassunits(amu) are useful,because,asyoucan see,the massof a proton and the
mass of a neutronare almostexactly1.0 inthisunitsystem.
In additiontomass,anotherimportantpropertyof subatomicparticlesistheircharge.
You alreadyknowthatneutronsare neutral,andthus have nocharge at all.Therefore,we say
that neutronshave acharge of zero.What aboutelectronsandprotons?Youknow that
electronsare negativelychargedandprotonsare positivelycharged,butwhat’samazingis
that the positive charge ona protonis exactlyequal inmagnitude(magnitudemeans
“absolute value”or“size whenyouignore positive andnegative signs”) tothe negative
charge onan electron. The thirdcolumninthe table showsthe chargesof the three
subatomicparticles.Notice thatthe charge onthe proton andthe charge on the electronhave
the same magnitude.
Negative andpositive chargesof equal magnitude cancel eachotherout.Thismeans
that the negative charge onan electronperfectlybalancesthe positive charge onthe proton.
In otherwords,a neutral atommust have exactlyone electronforeveryproton.If aneutral
atom has 1 proton,it musthave 1 electron.If aneutral atom has2 protons,itmust have 2
electrons.If aneutral atomhas 10 protons,it musthave 10 electrons.Yougetthe idea.In
orderto be neutral,anatommust have the same numberof electronsandprotons.
AtomicNumberandMass Number
Scientistscandistinguish
betweendifferentelementsbycounting
the numberof protons.If an atomhas
onlyone proton,we knowit’sa
hydrogenatom.Anatom withtwo
protonsisalwaysa heliumatom. If
scientistscountfourprotonsinan atom,
theyknowit’sa berylliumatom. An
atom withthree protonsisa lithium
atom,an atom withfive protonsisa
boronatom, an atomwithsix protonsis
a carbon atom… the listgoeson.
Since an atomof one element
can be distinguishedfromanatomof
anotherelementbythe numberof
It isdifficulttofindqualitiesthat are differentfromeach
elementanddistinguishonelementfromanother. Each
element,however,doeshave aunique numberof protons.
Sulfurhas16 protons,siliconhas14 protons,andgoldhas
79 protons.
Sub-AtomicParticles,PropertiesandLocation
Particle
Relative
Mass
(amu)
Electric
Charge
Location
electron -1
outside the
nucleus
proton 1 +1 nucleus
neutron 1 0 nucleus
37
www.ck12.org
protonsinits nucleus,scientistsare alwaysinterestedinthisnumber,andhow thisnumber
differsbetweendifferentelements.Therefore,scientistsgive thisnumberaspecial name.An
element’satomicnumberisequal tothe numberof protonsinthe nuclei of anyof itsatoms.
The periodictable givesthe atomicnumberof eachelement.The atomicnumberisawhole
numberusuallywrittenabovethe chemical symbol of eachelement.The atomicnumberfor
hydrogenis1, because everyhydrogenatomhas1 proton.The atomic numberforheliumis2
because everyheliumatomhas2 protons.What is the atomicnumberof carbon?
Of course,since neutral atomshave tohave one electronforeveryproton,an
element’satomicnumberalsotellsyouhow manyelectronsare ina neutral atomof that
element.Forexample,hydrogenhasanatomic numberof 1. Thismeansthat an atom of
hydrogenhasone proton,and,if it’sneutral,one electronaswell.Gold,onthe otherhand,
has an atomicnumberof 79, whichmeansthat an atomof goldhas 79 protons,and,if it’s
neutral,and79 electronsaswell.
The mass numberof an atom isthe total numberof protonsand neutronsinits
nucleus.Whydoyou thinkthatthe “mass number”includesprotonsandneutrons,butnot
electrons?Youknowthatmost of the mass of an atomis concentratedinitsnucleus.The
mass of an atom dependsonthe numberof protonsandneutrons.Youhave alreadylearned
that the mass of an electronisvery,verysmall comparedtothe massof eitheraproton or a
neutron(like the massof a pennycomparedtothe mass of a bowlingball).Countingthe
numberof protonsand neutronstellsscientistsaboutthe total massof an atom.
mass numberA = (numberof protons) +(numberof neutrons)
An atom’smassnumberisa veryeasyto calculate providedyouknow the numberof protons
and neutronsinanatom.
Example:
What isthe massnumberof an atom of heliumthatcontains2 neutrons?
Solution:
(numberof protons) = 2 (Rememberthatanatom of heliumalwayshas2 protons.)
(numberof neutrons) =2
mass number= (numberof protons) +(numberof neutrons)
mass number= 2 + 2 = 4
There are twomainwaysin whichscientistsfrequentlyshow the massnumberof an
atom theyare interestedin. Itisimportanttonote that the mass numberisnot givenonthe
periodictable. These twowaysincludewritinganuclearsymbol orby givingthe name of
the elementwiththe massnumberwritten.
To write a nuclearsymbol,the massnumberisplacedatthe upperleft(superscript)
of the chemical symbol andthe atomicnumberisplacedatthe lowerleft(subscript) of the
symbol.The complete nuclearsymbol forhelium-4isdrawnbelow.
The followingnuclearsymbolsare foranickel nucleuswith31neutronsanda uranium
nucleuswith146 neutrons. 38
www.ck12.org
In the nickel nucleusrepresentedabove,the atomicnumber28indicatesthe nucleuscontains
28 protons,and therefore,itmustcontain31neutronsinordertohave a massnumberof 59.
The uraniumnucleushas92 protonsas do all uraniumnuclei andthisparticularuranium
nucleushas146 neutrons.
The other wayof representingthesenucleiwouldbe Nickel-59andUranium-238,
where 59 and 238 are the massnumbersof the two atoms,respectively. Note thatthe mass
numbers(notthe numberof neutrons) isgiventothe side of the name.
Isotopes
Unlike the numberof protons,whichisalwaysthe same inatomsof the same
element,the numberof neutronscanbe different,eveninatomsof the same element.Atoms
of the same element,containingthe same numberof protons,butdifferentnumbersof
neutronsare knownas isotopes. Since the isotopesof anygivenelementall containthe same
numberof protons,theyhave the same atomicnumber(forexample,the atomicnumberof
heliumisalways2).However,since the isotopesof agivenelementcontaindifferent
numbersof neutrons,differentisotopeshave differentmassnumbers.The followingtwo
examplesshouldhelptoclarifythispoint.
Example:
a) What isthe atomic numberandthe mass numberof an isotope of lithiumcontaining3
neutrons.A lithiumatomcontains3protonsin itsnucleus.
b) What isthe atomicnumberand the mass numberof an isotope of lithiumcontaining4
neutrons.A lithiumatomcontains3protonsin itsnucleus.
Solution:
a) atomicnumber= (numberof protons) = 3
(numberof neutrons) =3
mass number= (numberof protons) +(numberof neutrons)
mass number= 3 + 3 = 6
b) atomic number= (numberof protons) = 3
(numberof neutrons) =4
mass number= (numberof protons) +(numberof neutrons)
mass number= 3 + 4 = 7
Notice thatbecause the lithiumatomalwayshas3 protons,the atomicnumberfor
lithiumisalways3.The mass number,however,is6 inthe isotope with3 neutrons,and7 in
the isotope with4 neutrons.Innature,onlycertainisotopesexist.Forinstance,lithiumexists
as an isotope with3 neutrons,andasan isotope with4 neutrons,butitdoesn’texistsasan
isotope with2neutrons,oras an isotope with5neutrons.
Thiswhole discussionof isotopesbringsusbackto Dalton’sAtomicTheory.
Accordingto Dalton,atomsof a givenelementare identical.Butif atomsof a givenelement
can have differentnumbersof neutrons,thentheycanhave differentmassesaswell!How
didDaltonmissthis?It turnsout that elementsfoundinnature existasconstantuniform
mixturesof theirnaturallyoccurringisotopes.Inotherwords,apiece of lithiumalways
containsbothtypesof naturallyoccurringlithium(the type with3neutronsandthe type with
39
www.ck12.org
4 neutrons).Moreover,italwayscontainsthe twointhe same relativeamounts(or“relative
abundances”).Ina chunkof lithium,93%will alwaysbe lithiumwith4neutrons,while the
remaining7%will alwaysbe lithiumwith3neutrons.
Daltonalwaysexperimentedwithlarge chunksof anelement –chunksthat contained
all of the naturallyoccurringisotopesof thatelement.Asaresult,whenhe performedhis
measurements,he wasactuallyobservingthe averagedpropertiesof all the differentisotopes
inthe sample.Formostof our purposesinchemistry, we willdothe same thinganddeal
withthe average massof the atoms. Luckily,aside fromhavingdifferentmasses,mostother
propertiesof differentisotopesare similar.
We can use whatwe knowaboutatomic numberandmassnumberto findthe
numberof protons,neutrons,andelectronsinanygivenatomorisotope. Considerthe
followingexamples:
Example:Howmanyprotons,electrons,andneutronsare inanatom of ?
Solution:
Findingthe numberof protonsissimple. The atomicnumber,#of protons,islistedinthe
bottomrightcorner. # protons= 19.
For all atomswithno charge,the numberof electronsisequal tothe numberof protons. #
electrons=19.
The mass number,40, is the sumof the protonsand the neutrons. To findthe # of neutron,
subtract the numberof protonsfromthe massnumber. # neutrons= 40 – 19 = 21.
Example:Howmanyprotons,electrons,andneutronsinanatomof zinc-65?
Solution:
Findingthe numberof protonsissimple. The atomicnumber,#of protons,isfoundon the
periodictable. All zincatomshave # protons= 30.
For all atomswithno charge,the numberof electronsisequal tothe numberof protons. #
electrons =30.
The mass number,65, is the sumof the protonsand the neutrons. To findthe # of neutron,
subtract the numberof protonsfromthe massnumber. # neutrons= 65 – 30 = 35.
LessonSummary
Electronsare a type of subatomicparticle withanegative charge.
Protonsare a type of subatomicparticle withapositive charge.Protonsare bound
togetherinan atom’snucleusasa resultof the strongnuclearforce.
Neutronsare a type of subatomicparticle withnocharge (they’re neutral).Like
protons,neutronsare boundintothe atom’snucleusasa resultof the strongnuclear
force.
Protonsandneutronshave approximatelythe same mass,buttheyare bothmuch
more massive thanelectrons(approximately2,000 timesasmassive asan electron).
The positive charge ona protonis equal inmagnitude tothe negative charge onan
electron.Asa result,aneutral atommust have an equal numberof protonsand
electrons.
Each elementhasaunique numberof protons.Anelement’satomicnumberisequal
to the numberof protonsin the nuclei of anyof itsatoms.
The mass numberof an atom isthe sum of the protonsand neutronsinthe atom 40
www.ck12.org
Isotopesare atomsof the same element(same numberof protons) thathave different
numbersof neutronsintheiratomicnuclei.
Vocabulary
Neutron:asubatomicparticle withnocharge
Atomicmassunit(amu):a unitof mass equal toone-twelfththe massof a carbon-
twelve atom
Atomicnumber:the numberof protonsinthe nucleusof an atom
Mass number:the total numberof protonsand neutronsinthe nucleusof anatom
Isotopes:atomsof the same elementthathave the same numberof protonsbut
differentnumbersof neutrons
FurtherReading/Supplemental Material
JeopardyGame: http://www.quia.com/cb/36842.html
For a Bill Nye videoonatoms,goto http://www.uen.org/dms/. Goto the k-12
library. Searchfor “Bill Nye atoms”. (youcan getthe username andpasswordfrom
your teacher)
2.3: ReviewQuestions
Label eachof the followingstatementsastrue or false.
1) The nucleusof an atomcontainsall of the protonsinthe atom.
2) The nucleusof an atomcontainsall of the electronsinthe atom.
3) Neutral atomsmustcontainthe same numberof neutronsasprotons.
4) Neutral atomsmustcontainthe same numberof electronsasprotons.
Match the subatomicpropertywithitsdescription.
Sub-AtomicParticle Characteristics
5) electron a. has a charge of +1
6) neutron b.has a massof approximately1/1840 amu
7) proton c. isneitherattractedto,nor repelledfromchargedobjects
Indicate whethereachstatementistrue orfalse.
8) Anelement’satomicnumberisequal tothe numberof protonsinthe nuclei of anyof its
atoms.
9) A neutral atom with4 protonsmusthave 4 electrons.
10) Anatom with7 protonsand 7 neutronswill have amassnumberof 14.
11) Anatom with7 protonsand 7 neutronswill have anatomicnumberof 14.
12) A neutral atom with7 electronsand7 neutronswill have anatomicnumberof 14.
Use the periodictable tofindthe symbol forthe elementwith:
13) 44 electronsinaneutral atom
14) 30 protons
15) Anatomicnumberof 36
41
www.ck12.org
In the table below,Column1containsdatafor 5 differentelements.Column2containsdata
for the same 5 elements,howeverdifferentisotopesof those elements.Matchthe atomin the
firstcolumnto itsisotope inthe secondcolumn.
Original element Isotopeof the same element
16) an atomwith2 protonsand 1 neutron
a. a C (carbon) atomwith6 neutrons
17) a Be (beryllium) atomwith5neutrons
b. an atom with2 protonsand 2
neutrons
18) an atomwithan atomic numberof 6 and mass
numberof 13
c. an atomwithan atomicnumberof 7
and a mass numberof 15
19) an atomwith1 protonand a mass numberof 1
d. an atom withan atomicnumberof 1
and 1 neutron
20) an atomwithan atomic numberof 7 and 7
neutrons
e. an atomwithan atomic numberof 4
and 6 neutrons
Write the nuclearsymbol foreach elementdescribed:
21) 32 neutronsinan atomwithmass numberof 58
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem
Chem

More Related Content

Viewers also liked

การวิเคราะห์วิจารณ์วรรณคดี
การวิเคราะห์วิจารณ์วรรณคดีการวิเคราะห์วิจารณ์วรรณคดี
การวิเคราะห์วิจารณ์วรรณคดีSantichon Islamic School
 
การสังเคราะห์ด้วยแสง1
การสังเคราะห์ด้วยแสง1การสังเคราะห์ด้วยแสง1
การสังเคราะห์ด้วยแสง1Anana Anana
 
สารละลายกรด-เบส
สารละลายกรด-เบสสารละลายกรด-เบส
สารละลายกรด-เบสWuttipong Tubkrathok
 
แบบทดสอบมัทนะพาธา
แบบทดสอบมัทนะพาธาแบบทดสอบมัทนะพาธา
แบบทดสอบมัทนะพาธาkrudow14
 
แสงเชิงฟิสิกส์
แสงเชิงฟิสิกส์แสงเชิงฟิสิกส์
แสงเชิงฟิสิกส์Chakkrawut Mueangkhon
 
Gene and chromosome update
Gene and chromosome updateGene and chromosome update
Gene and chromosome updateThanyamon Chat.
 
เอกสารประกอบกิจกรรมการเรียนรู้ การศึกษาการสังเคราะห์ด้วยแสง
เอกสารประกอบกิจกรรมการเรียนรู้ การศึกษาการสังเคราะห์ด้วยแสงเอกสารประกอบกิจกรรมการเรียนรู้ การศึกษาการสังเคราะห์ด้วยแสง
เอกสารประกอบกิจกรรมการเรียนรู้ การศึกษาการสังเคราะห์ด้วยแสงOui Nuchanart
 
บทที่ 8 กรด เบส
บทที่ 8 กรด เบสบทที่ 8 กรด เบส
บทที่ 8 กรด เบสoraneehussem
 
ตัวอย่างบทคัดย่อ
ตัวอย่างบทคัดย่อตัวอย่างบทคัดย่อ
ตัวอย่างบทคัดย่อsukanya5729
 

Viewers also liked (13)

เสียง
เสียงเสียง
เสียง
 
การวิเคราะห์วิจารณ์วรรณคดี
การวิเคราะห์วิจารณ์วรรณคดีการวิเคราะห์วิจารณ์วรรณคดี
การวิเคราะห์วิจารณ์วรรณคดี
 
การสังเคราะห์ด้วยแสง1
การสังเคราะห์ด้วยแสง1การสังเคราะห์ด้วยแสง1
การสังเคราะห์ด้วยแสง1
 
สารละลายกรด-เบส
สารละลายกรด-เบสสารละลายกรด-เบส
สารละลายกรด-เบส
 
แบบทดสอบมัทนะพาธา
แบบทดสอบมัทนะพาธาแบบทดสอบมัทนะพาธา
แบบทดสอบมัทนะพาธา
 
แสงเชิงฟิสิกส์
แสงเชิงฟิสิกส์แสงเชิงฟิสิกส์
แสงเชิงฟิสิกส์
 
Gene and chromosome update
Gene and chromosome updateGene and chromosome update
Gene and chromosome update
 
เอกสารประกอบกิจกรรมการเรียนรู้ การศึกษาการสังเคราะห์ด้วยแสง
เอกสารประกอบกิจกรรมการเรียนรู้ การศึกษาการสังเคราะห์ด้วยแสงเอกสารประกอบกิจกรรมการเรียนรู้ การศึกษาการสังเคราะห์ด้วยแสง
เอกสารประกอบกิจกรรมการเรียนรู้ การศึกษาการสังเคราะห์ด้วยแสง
 
เฉลยแบบทดสอบปลายภาค ม.5
เฉลยแบบทดสอบปลายภาค ม.5เฉลยแบบทดสอบปลายภาค ม.5
เฉลยแบบทดสอบปลายภาค ม.5
 
7.ชุดที่ 4 การสังเคราะห์แสง
7.ชุดที่ 4 การสังเคราะห์แสง7.ชุดที่ 4 การสังเคราะห์แสง
7.ชุดที่ 4 การสังเคราะห์แสง
 
บทที่ 8 กรด เบส
บทที่ 8 กรด เบสบทที่ 8 กรด เบส
บทที่ 8 กรด เบส
 
ตัวอย่างบทคัดย่อ
ตัวอย่างบทคัดย่อตัวอย่างบทคัดย่อ
ตัวอย่างบทคัดย่อ
 
คลื่นกล
คลื่นกลคลื่นกล
คลื่นกล
 

Similar to Chem

impact of artillery fire on tanks in 33 Cavalry as observed by DQ Changez Force
impact of artillery fire on tanks in 33 Cavalry as observed by DQ Changez Forceimpact of artillery fire on tanks in 33 Cavalry as observed by DQ Changez Force
impact of artillery fire on tanks in 33 Cavalry as observed by DQ Changez ForceAgha A
 
American fixation with FATA
American fixation with FATAAmerican fixation with FATA
American fixation with FATAAgha A
 
Deception Plan to fool Americans
Deception Plan to fool AmericansDeception Plan to fool Americans
Deception Plan to fool AmericansAgha A
 
Major Shamshad Ali Khan visits India
Major Shamshad Ali Khan visits IndiaMajor Shamshad Ali Khan visits India
Major Shamshad Ali Khan visits IndiaAgha A
 
Impact of Indian Army artillery fire on Pakistan Army Tanks as observed first...
Impact of Indian Army artillery fire on Pakistan Army Tanks as observed first...Impact of Indian Army artillery fire on Pakistan Army Tanks as observed first...
Impact of Indian Army artillery fire on Pakistan Army Tanks as observed first...Agha A
 
Be your own publisher seminar calif april 2010-session1_c_darkbkgd
Be your own publisher seminar  calif april 2010-session1_c_darkbkgdBe your own publisher seminar  calif april 2010-session1_c_darkbkgd
Be your own publisher seminar calif april 2010-session1_c_darkbkgdJ T "Tom" Johnson
 
Be your own publisher seminar 2010-session A
Be your own publisher seminar 2010-session ABe your own publisher seminar 2010-session A
Be your own publisher seminar 2010-session AJ T "Tom" Johnson
 
How To Use Powerpoint -- A Briefing
How To Use Powerpoint -- A BriefingHow To Use Powerpoint -- A Briefing
How To Use Powerpoint -- A BriefingRohn Jay Miller
 

Similar to Chem (8)

impact of artillery fire on tanks in 33 Cavalry as observed by DQ Changez Force
impact of artillery fire on tanks in 33 Cavalry as observed by DQ Changez Forceimpact of artillery fire on tanks in 33 Cavalry as observed by DQ Changez Force
impact of artillery fire on tanks in 33 Cavalry as observed by DQ Changez Force
 
American fixation with FATA
American fixation with FATAAmerican fixation with FATA
American fixation with FATA
 
Deception Plan to fool Americans
Deception Plan to fool AmericansDeception Plan to fool Americans
Deception Plan to fool Americans
 
Major Shamshad Ali Khan visits India
Major Shamshad Ali Khan visits IndiaMajor Shamshad Ali Khan visits India
Major Shamshad Ali Khan visits India
 
Impact of Indian Army artillery fire on Pakistan Army Tanks as observed first...
Impact of Indian Army artillery fire on Pakistan Army Tanks as observed first...Impact of Indian Army artillery fire on Pakistan Army Tanks as observed first...
Impact of Indian Army artillery fire on Pakistan Army Tanks as observed first...
 
Be your own publisher seminar calif april 2010-session1_c_darkbkgd
Be your own publisher seminar  calif april 2010-session1_c_darkbkgdBe your own publisher seminar  calif april 2010-session1_c_darkbkgd
Be your own publisher seminar calif april 2010-session1_c_darkbkgd
 
Be your own publisher seminar 2010-session A
Be your own publisher seminar 2010-session ABe your own publisher seminar 2010-session A
Be your own publisher seminar 2010-session A
 
How To Use Powerpoint -- A Briefing
How To Use Powerpoint -- A BriefingHow To Use Powerpoint -- A Briefing
How To Use Powerpoint -- A Briefing
 

Recently uploaded

How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 

Recently uploaded (20)

YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 

Chem

  • 1. Please carefullyreview yourDigital Proofdownloadforformatting, grammar, anddesignissuesthatmayneedtobe corrected. We recommendthatyoureviewyourbookthree times,witheachtime focusingona differentaspect. Once you are satisfiedwithyourreview,youcanapprove yourproof and move forwardtothe nextstepinthe publishingprocess. To printthisproof we recommendthatyouscale the PDF to fitthe size of yourprinterpaper. Checkthe format,includingheaders,footers,page numbers,spacing,table of contents,andindex. Reviewanyimagesorgraphicsandcaptionsif applicable. Readthe bookforgrammatical errors andtypos. 1 2 3 Digital Proofer IntroductiontoChem... AuthoredbyTracy Poulsen 8.5" x 11.0" (21.59 x 27.94 cm) Black & White onWhite paper 250 pages ISBN-13: 9781478298601 ISBN-10: 147829860X 1 www.ck12.org IntroductiontoChemistry Author: Tracy Poulsen
  • 2. SupportedbyCK-12 Foundation CK-12 Foundationisa non-profitorganizationwithamissiontoreduce the costof textbook materialsforthe K-12 marketboth inthe U.S. and worldwide.Usinganopen-content,web-based collaborative model termedthe “FlexBook,”CK-12intendstopioneerthe generationand distributionof high-qualityeducational contentthatwill serve bothascore textas well asprovide an adaptive environmentforlearning. Copyright© 2010, CK-12 Foundation,www.ck12.org Exceptas otherwise noted,all CK-12Content(includingCK-12CurriculumMaterial) ismade available toUsersinaccordance withthe Creative CommonsAttribution/Non-Commercial/Share Alike 3.0Unported(CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/),as amendedand updatedbyCreative Commonsfromtime totime (the “CCLicense”), whichisincorporatedhereinbythisreference.Specificdetailscanbe foundat http://about.ck12.org/terms. 2 www.ck12.org Table of Contents Course ObjectivesbyChapter..................................................................................................5 Chapter1: IntroductiontoChemistry&the Nature of Science...............................................8 1.1: The Processof Science .................................................................................................8 1.2: Hypothesis,Law,&Theory.........................................................................................14 1.3: Graphing......................................................................................................................18 Chapter2: The Structure of the Atom....................................................................................24 2.1: EarlyIdeasof Atoms...................................................................................................24 2.2: FurtherUnderstandingof the Atom............................................................................28 2.3: Protons,Neutrons,andElectronsinAtoms.................................................................35 2.4: AtomicMass ................................................................................................................41 2.5: The Nature of Light.....................................................................................................43 2.6: ElectronArrangementinAtoms..................................................................................50
  • 3. Chapter3: The Organizationof the Elements.........................................................................55 3.1: Mendeleev’sPeriodicTable ........................................................................................55 3.2: Metals,Nonmetals,andMetalloids.............................................................................59 3.3: Valence Electrons........................................................................................................61 3.4: FamiliesandPeriodsof the PeriodicTable .................................................................62 3.5: PeriodicTrends............................................................................................................65 Chapter4: DescribingCompounds.........................................................................................71 4.1: IntroductiontoCompounds.........................................................................................71 4.2: Typesof CompoundsandTheirProperties.................................................................74 4.3: NamesandChargesof Ions.........................................................................................78 4.4: WritingIonicFormulas................................................................................................84 4.5: NamingIonicCompounds...........................................................................................86 4.6: CovalentCompounds&LewisStructures...................................................................90 4.7: MolecularGeometry.................................................................................................... 94 4.8: Polarity&HydrogenBonding.....................................................................................97 Chapter5: ProblemSolving&the Mole ..............................................................................104 5.1: MeasurementSystems...............................................................................................104 5.2: ScientificNotation.....................................................................................................109 5.3: Math in Chemistry.....................................................................................................111 5.4: The Mole ....................................................................................................................114 Chapter6: Mixtures&TheirProperties...............................................................................118 6.1: Solutions,Colloids,andSuspensions........................................................................118 3 www.ck12.org 6.2: SolutionFormation....................................................................................................121 6.3: Concentration.............................................................................................................124 6.4: Colligative Properties................................................................................................ 128 Chapter7: DescribingChemical Reactions..........................................................................134 7.1: Chemical &Physical Change ....................................................................................134 7.2: ReactionRate .............................................................................................................137 7.3: Chemical ReactionsandEquations............................................................................145
  • 4. 7.4: BalancingChemical Equations.................................................................................148 7.5: Typesof Reactions.....................................................................................................153 7.6: Stoichiometry.............................................................................................................159 7.7: Reversible reaction&Equilibrium............................................................................165 7.8: EquilibriumConstant.................................................................................................168 7.9: The Effects of ApplyingStresstoReactionsatEquilibrium.....................................171 Chapter8: DescribingAcids&Bases..................................................................................177 8.1: ClassifyingAcidsandBases......................................................................................177 8.2: pH...............................................................................................................................180 8.3: Neutralization.............................................................................................................184 8.4: Titration.....................................................................................................................186 Chapter9: Energy of Chemical Changes..............................................................................190 9.1: Energy........................................................................................................................190 9.2: EndothermicandExothermicChanges......................................................................191 9.3: Oxidation –Reduction...............................................................................................194 Chapter10: NuclearChanges...............................................................................................201 10.1: Discoveryof Radioactivity......................................................................................201 10.2: Typesof Radiation...................................................................................................203 10.3: Half-life &Rate of Radioactive Decay....................................................................209 10.4: Applicationsof NuclearChanges............................................................................213 10.5: Big Bang Theory...................................................................................................... 219 Unit 3: Gases .........................................................................................................................222 11.1: Gases andKineticTheory........................................................................................222 11.2: Gas Laws..................................................................................................................226 11.3: Ideal Gas Law ..........................................................................................................231 AnswerstoSelectedProblems..............................................................................................234 Glossary................................................................................................................................246 4 www.ck12.org 5
  • 5. www.ck12.org Course ObjectivesbyChapter Unit 1: IntroductiontoChemistryandthe Nature of Science Nature of Science Goal—Scienceisbasedonobservations,data,analysisandconclusions. 1. I can distinguishbetweenobservable (qualitative) andnumeric(quantitative) data. 2. I can construct andanalyze data tablesandgraphs. 3. I can identifyindependent,dependant,andcontrolledvariablesinanexperiment description,datatable orgraph. 4. I can write a laboratorysummaryina Claim-Evidence Format Unit 2: The Structure of the Atom Nature of Science Goal—Scientificunderstandingchangesasnew dataiscollected. 1. I can use atomicmodelstoexplainwhytheoriesmaychange overtime. 2. I can identifythe relativesize,charge andpositionof protons,neutrons,andelectrons inthe atom. 3. I can findthe numberof protons,neutronsandelectronsinagivenisotope of an elementif Iamgivena nuclearsymbol orname of elementandmassnumber. 4. I can describe the differencebetweenatomicmassandmass number. 5. I can describe the relationshipbetweenwavelength,frequency,energyandcolorof light(photons). 6. I can describe the processthroughwhichthe electronsgiveoff photons(energy) and describe the evidence thatelectronshave specificamountsof energy. 7. I can identifyanunknownelementusingaflame testor bycomparisonto an emission spectra. 8. I can write electronconfigurationsforelementsinthe groundstate. Unit 3: The Organizationof the Elements Nature of Science Goal—Classificationsystemsleadtobetterscientificunderstanding. 1. I can describe the advantagesof Mendeleev’sPeriodicTable overother organizations.
  • 6. 2. I can compare the propertiesof metals,nonmetals,andmetalloids. 3. I can determine the numberof valence electronsforelementsinthe mainblock. 4. I can explainthe similaritiesbetweenelementswithinagroupor family. 5. I can identifypatternsfoundonthe periodictable suchasreactivity,atomicradius, ionizationenergyandelectronegativity. Unit 4: DescribingCompounds Nature of Science Goal—Vocabularyinscience hasspecificmeanings. 1. I can indicate the type of bondformedbetweentwoatomsandgive propertiesof ionic,covalent,metallicbondsanddescribe the propertiesof materialsthatare bondedineachof those ways. 2. I can compare the physical andchemical propertiesof acompoundtothe elements that formit. 3. I can predictthe charge an atomwill acquire whenitformsanionby gainingor losingelectronsusingthe octetrule. 4. I can write the namesandformulasof ioniccompounds.6 www.ck12.org 5. I can indicate the shape andpolarityof simple covalentcompoundsfromamodel or drawing. 6. I can describe howhydrogenbondinginwateraffectsphysical,chemical,and biological phenomena. Unit 5: ProblemSolvingandthe Mole Nature of Science Goal— Mathematicsisa tool to increase scientificunderstanding. 1. I can describe the commonmeasurementsof the SIsystemof measurements 2. I can convertbetweenstandardnotationandscientificnotation. 3. I can convertbetweenmass,moles,andatomor moleculesusingfactor-label methods. Unit 6: Mixturesand TheirProperties Nature of Science Goal-- Science providespredictable results.
  • 7. 1. I can use the termssolute andsolventindescribingasolution. 2. I can sketcha solution,colloid,andsuspensionatthe particle level. 3. I can describe the relativeamountasolute particlesinconcentratedanddilute solutions. 4. I can calculate concentrationintermsof molarityandmolality. 5. I can describe the colligative propertiesof solutions.(Boilingpointelevation, Freezingpointdepression,Vaporpressure lowering) intermsof everyday applications. 6. I can identifywhichsolutionof asetwouldhave the lowestfreezingpointorhighest boilingpoint. Unit 7: DescribingChemical Reactions Nature of Science Goal—Conservationslawsare investigatedtoexplore science relationships. 1. I can classifyachange as chemical orphysical andgive evidence of chemical changesreactions. 2. I can describe the principlesof collisiontheoryandrelate frequency,energyof collisions,andadditionof acatalystto reactionrate. 3. I can write a chemical equationtodescribe asimple chemical reaction. 4. I can balance chemical reactionsandrecognize thatthe numberof atomsina chemical reactiondoesnotchange. 5. I can classifyreactionsassynthesis,decomposition,single replacement,double replacementorcombustion. 6. I can use molarrelationshipsinabalancedchemical reactiontopredictthe massof productproducedina simple chemicalreactionthatgoestocompletion. 7. I can explainthe conceptof dynamicequilibriumasitrelatestochemical reactions. 8. I can describe whetherreactantsorproductsare favoredinequilibriumwhengiven the equilibriumconstant. 9. I can predictthe effectof addingorremovingeitheraproductor a reactantor the effectof changingtemperature toshiftequilibrium.
  • 8. Unit 8: DescribingAcidsandBases 7 www.ck12.org Nature of Science Goal--Nature ismovingtowardequilibrium 1. I can describe propertiesof acidsandbasesandidentifyif asolutionisacidicor basic. 2. I can calculate the pH of a solution. 3. I can write a neutralizationreactionbetweenanacidandbase. 4. I can calculate the concentrationof anacid or base from data collectedinatitration. Unit 9: Energy of Chemical Changes Nature of Science Goal—Scienceprovidestechnologytoimprovelives. 1. I can classifyevidence of energytransformation(temperature change) asendothermic or exothermic. 2. I can describe howelectrical energycanbe producedina chemical reactionand identifywhichelementgainedandwhichelementlostelectrons. 3. I can identifythe partsof a battery,includinganode,cathode,andsaltbridge. Unit 10: NuclearChanges Nature of Science Goal—Correctinterpretationof datareplacesfearandsuperstition. 1. I can compare the charge, mass,energy,andpenetratingpowerof alpha,beta,and gamma radiationandrecognize thatof the productsof the decayof an unstable nucleusinclude radioactiveparticlesandwavelike radiation. 2. I can interpretgraphical dataof decayprocessestodetermine half-life andthe age of a radioactive substance. 3. I can compare and contrast the amountof energyreleasedinanuclearreactiontothe amountof energyreleasedinachemical reaction. 4. I can describe the differencesbetweenfissionandfusion. 5. I can describe scientificevidence thatall matterinthe universe hasacommonorigin. 8
  • 9. www.ck12.org Chapter1: IntroductiontoChemistry&the Nature of Science 1.1: The Processof Science Objectives Explainthe necessityforexperimentation Inan experiment,identifythe independent,dependent,andcontrolledvariables. Introduction Socrates(469 B.C. - 399 B.C.),Plato(427 B.C. - 347 B.C.),andAristotle (384 B.C. - 322 B.C.) are amongthe most famousof the Greek philosophers.Platowasastudentof Socrates,and Aristotle wasastudentof Plato.These three were probablythe greatestthinkersof theirtime.Aristotle's viewsonphysical science profoundlyshaped medieval scholarship,andhisinfluence extendedinto the Renaissance (14thcentury - 16th century). Aristotle'sopinionswere the authorityonnature until well intothe 1300s. Unfortunately,manyof Aristotle'sopinionswere wrong.Itisnotintended here to denigrate Aristotle'sintelligence;he was withoutdoubta brilliantman.Itwassimplythathe was usinga methodfordeterminingthe nature of the physical worldthatisinadequate forthattask.The philosopher'smethodwaslogical thinking,not makingobservationsonthe natural world.This ledto manyerrors inAristotle'sthinkingonnature.Let's considertwoof Aristotle'sopinionsasexamples. In Aristotle'sopinion,menwere biggerand strongerthan women;therefore,itwaslogical tohimthatmenwouldhave more teeththan
  • 10. women.Thus,Aristotle concludeditwasa true fact that menhad more teeththanwomen. Apparently,itneverenteredhismindtoactuallylookintothe mouthsof bothgendersand count theirteeth.Hadhe done so,he wouldhave foundthatmenandwomenhave exactlythe same numberof teeth. In termsof physical science,Aristotle thoughtaboutdroppingtwoballsof exactlythe same size andshape but of differentmassestosee whichone wouldstrike the groundfirst.In hismind,itwas clearthat the heavierball wouldfall fasterthanthe lighterone andhe concludedthatthiswasa lawof nature.Once again,he didnot considerdoinganexperiment to see whichball fell faster.Itwaslogical tohim, andinfact, it still seemslogical.If someone toldyouthatthe heavierball wouldfall faster,youwouldhave noreasonto disbelieve it.Infact,itis nottrue and the bestwayto prove thisis totry it. Eighteencenturieslater,Galileodecidedtoactuallygettwoballsof differentmasses, but withthe same size andshape,anddrop themoff a building(Legendsaysthe Leaning Towerof Pisa),andactuallysee whichone hitthe groundfirst.WhenGalileoactuallydidthe experiment,he discovered,byobservation,thatthe twoballshitthe groundat exactlythe same time . . . Aristotle'sopinionwas,once again,wrong. Image obtainedfrom: http://upload.wikimedia.org/wikipedia/c ommons/a/ae/Aristotle_Altemps_Inv857 5.jpg 9 www.ck12.org ScientificMethodsof ProblemSolving In the 16th and 17th centuries,innovativethinkerswere developinganew wayto discoverthe nature of the worldaroundthem.Theywere developingamethodthatreliedupon makingobservationsof phenomenaandinsistingthattheirexplanationsof the nature of the phenomenacorrespondedtothe observationstheymade. The scientificmethodisamethodof investigationinvolvingexperimentationand observationtoacquire newknowledge,solve problems,andanswerquestions.Scientists
  • 11. frequentlylistthe scientificmethodasaseriesof steps.Otherscientistsoppose thislistingof stepsbecause notall stepsoccur ineverycase,and sometimesthe stepsare outof order.The scientificmethodislistedinaseriesof stepshere because itmakesiteasier tostudy.Youshould rememberthatnotall stepsoccur in everycase,nordo theyalwaysoccur inorder. The Stepsin the ScientificMethod Step1: Identifythe problemor phenomenonthatneedsexplaining.This issometimesreferredtoas"definingthe problem." Step2: Gather and organize dataon the problem.Thisstepisalsoknownas "makingobservations." Step3: Suggesta possible solutionor explanation.A suggestedsolutionis calleda hypothesis. Step4: Test the hypothesisbymaking newobservations. Step5: If the newobservationssupport the hypothesis,youacceptthe hypothesis for furthertesting.If the new observationsdonotagree withyour hypothesis,addthe newobservationsto your observationlistandreturntoStep3. Experimentation Experimentationisthe primarywaythroughwhichscience gathersevidence for ideas. Itis more successful forusto cause somethingtohappenata time andplace of our choosing.When we arrange for the phenomenontooccur at our convenience,we canhave all our measuringinstrumentspresentandhandytohelpusmake observations,andwe can control othervariables.Experimentationinvolvescausingaphenomenontooccurwhenand
  • 12. where we wantitand underthe conditionswe want.Anexperimentisacontrolledmethod of testinganideaor to findpatterns.Whenscientistsconductexperiments,theyare usually seekingnewinformationortryingtoverifysomeone else'sdata. Experimentationinvolveschangingandlookingatmanyvariables.The independent variable isthe part of the experimentthatisbeingchangedormanipulated.There canonly be one independentvariable inanyexperiment. Consider,forexample,thatyouwere trying to determine the bestfertilizerforyourplants. Itwouldbe importantforyou to grow your plantswitheverythingelse abouthowtheyare grownbeingthe same exceptforthe fertilizer 10 www.ck12.org youwere using. You wouldbe changingthe type of fertilizeryougave the plantsandthis wouldbe the independentvariable. If youalsochangedhow muchwater the plantsreceived, the type of plantsyouwere growing,andsome of the plantswere grown inside andothers outside,youcouldnotdeterminewhetherornotit wasactuallythe fertilizerthatcausedthe plantsto growbetteror if it wassomethingelse youhadchanged. Thisiswhyitis important that there isonlyone independentvariable. The dependentvariable iswhatisobservedormeasuredasaresultof what happenedwhenthe independentvariable waschanged. Inthe plantexperimentdescribed above,youmightmeasure the heightof the plantandrecord theirappearance andcolor. These wouldbe the dependentvariables. The dependentvariable isalsosometimescalled the resultantvariable. Controlledvariablesare conditionsof the experimentthatare keptthe same for varioustrialsof the experiment. Once again,if we were testinghow fertilizeraffectedhow well ourplantsgrew,we wouldwanteverythingelseabouthow the plantsare grownto be keptthe same. We wouldneedtouse the same type of plant(maybe greenbeans),give them the same amountof water,planttheminthe same location(all outsideinthe garden),give themall the same pesticide treatment,etc. These wouldbe controlledvariables. Suppose ascientist,while walkingalongthe beachona verycoldday followinga rainstorm,observedtwopoolsof waterinbowl shapedrocksneareachother.One of the poolswaspartiallycoveredwithice,while the otherpool hadnoice on it. The unfrozenpool seemedtobe formedfromseawatersplashinguponthe rock fromthe surf,butthe otherpool
  • 13. was toohighfor seawatertosplashin,so itwas more likelytohave beenformedfrom rainwater. The scientistwonderedwhyone pool waspartiallyfrozenandnotthe other,since bothpoolswere at the same temperature.Bytastingthe water(nota goodidea),the scientist determinedthatthe unfrozenpool tastedsaltierthanthe partiallyfrozenone.The scientist thoughtperhapssaltwaterhad a lowerfreezingpointthanfreshwater,andshe decidedtogo home and try an experimenttosee if thiswere true.Sofar, the scientisthasidentifieda question,gatheredasmall amountof data, andsuggestedanexplanation.Inordertotestthis hypothesis,the scientistwillconductanexperimentduringwhichshe canmake accurate observations. For the experiment,the scientistpreparedtwoidentical containersof freshwaterandaddedsome saltto one of them. A thermometerwasplacedineachliquidandthese wereputin a freezer.The scientistthenobservedthe conditionsand temperaturesof the twoliquidsatregularintervals. The Temperature andConditionof Fresh Water ina Freezer Time (min) Temp(°C) Condition 0 25 Liquid 5 20 Liquid
  • 14. 10 15 Liquid 15 10 Liquid 20 5 Liquid 25 0 Frozen 30 -5 Frozen The Temperature andConditionof Salt Water ina Freezer Time (min) Temp(°C) Condition 0 25 Liquid 5 20 Liquid 10 15 Liquid 15 10 Liquid 20 5 Liquid 25 0 Liquid 30 -5 Frozen 11 www.ck12.org The scientistfoundsupportforthe hypothesisfromthisexperiment;freshwater freezesata highertemperature thansaltwater.Muchmore supportwouldbe neededbefore the scientistwouldbe confidentof thishypothesis.Perhapsshe wouldaskotherscientiststo verifythe work. In the scientist'sexperiment,itwasnecessarythatshe freeze the saltwaterandfresh waterunderexactlythe same conditions.Why?The scientistwastestingwhetherornot the presence of saltinwaterwouldalteritsfreezingpoint.Itisknownthatchangingairpressure will alterthe freezingpointof water,sothisandothervariablesmustbe keptthe same,or theymustbe controlledvariables. Example: Inthe experimentdescribedabove, identifythe:
  • 15. a) independentvariable(s) b) dependentvariable(s) c) controlledvariable(s) Solution: a) Remember,the independentvariable iswhatthe scientistchangedinhis/herexperiment. In thiscase,the scientistaddedsalttoone containerandnot to anothercontainer. The independentvariable iswhetherornot saltwas added. b) Dependentvariablesare whatwe lookforas a resultof the change we made. The scientist recordedthe temperature andphysical state (liquidorsolid) overtime. These are the dependentvariables. c) Controlledvariablesare keptthe same throughoutall of the trials. The scientistselected identical containers,putthe same amountof waterinthe containers,andfroze theminthe same conditionsinthe same freezer. These are all controlledvariables. Suppose youwishtodetermine whichbrandof microwave popcorn(independent variable) leavesthe fewestunpoppedkernels(dependentvariable).You will needasupplyof variousbrandsof microwave popcorntotestand youwill needamicrowave oven.If you useddifferentbrandsof microwave ovenswithdifferentbrandsof popcorn,the percentage of unpoppedkernelscouldbe causedbythe different brandsof popcorn,butitcouldalsobe causedby the differentbrandsof ovens.Undersuchcircumstances,the experimenterwould not be able to conclude confidentlywhetherthe popcornorthe ovencausedthe difference. To eliminate thisproblem,youmustuse the same microwave ovenforeverytest.Byusing the same microwave oven,youcontrol manyof the variablesinthe experiment.Whatif you allowedthe differentsamplesof popcorntobe cookedat differenttemperatures?Whatif you allowedlongerheatingperiods?Inordertoreasonablyconclude thatthe change inone variable wascausedbythe change inanotherspecificvariable,there mustbe noother variablesinthe experiment.All othervariablesmustbe keptconstantorcontrolled. Whenstatingthe purpose of anexperiment,itisimportanttoclarifythe independent and dependentvariables. The purpose isfrequentlystatedinasentence suchas: “To see howchanging_____________ affects____________.” inwhichthe independentvariable islistedinthe firstblank,andthe dependentvariable is
  • 16. listedinthe secondblank. In the popcorn experiment,we wouldstate the purpose as: “Tosee how changingthe brand of popcornaffectsthe percentage of unpoppedkernels”. The independentvariable is12 www.ck12.org the brand of popcorn andthe dependentvariableiswhatpercentage of the popcorndidn’t pop. In the salt waterexperimentdescribedearlier,we wouldstate the purposeas“To see howaddingsaltto water affectsthe temperature the waterfreezes.” LessonSummary Scientistsuse experimentationtotesttheirideas. Inan experiment,itisimportanttoinclude onlyone independentvariable (tochange onlyone thinginthe experiment) The dependentvariable iswhatismeasuredorobservedasaresultof how the independentvariable changed. Controlledvariablesare those whichare keptthe same throughoutvarioustrialsinthe experiment. Vocabulary Experiment:A controlledmethodof testingahypothesis. Controlledexperiment:Anexperimentthatcomparesthe resultsof anexperimental sample toa control sample. FurtherReading/Supplemental Links http://learner.org/resources/series61.html: The learner.org website allowsusersto viewstreamingvideosof the Annenbergseriesof chemistryvideos.Youare required to registerbefore youcanwatchthe videosbutthere isnocharge.The website has twovideosthatapplyto thislesson.One isavideocalled The Worldof Chemistry that relateschemistrytoothersciencesanddailylife.AnothervideocalledThinking Like Scientistsrelatestothe scientificmethod.The audience onthe videoisyoung childrenbutthe ideasare full grown. Website of the JamesRandi Foundation.JamesRandi isastaunchopponentof fake
  • 17. science.http://www.randi.org/site/ Websitesdealingwiththe historyof the scientificmethod. http://www.historyguide.org/earlymod/lecture10c.html http://www.history.boisestate.edu/WESTCIV/science/ 1.1: ReviewQuestions Use the followingparagraphtoanswerquestions1-4: Gary noticedthat twoplantswhichhismotherplantedonthe same daythat were the same size whenplantedwere differentinsize afterthree weeks.Since the largerplantwasinthe full sunall dayand the smallerplantwasinthe shade of a tree most of the day,Gary believedthe sunshine wasresponsibleforthe differenceinthe plantsizes.Inordertotest this,Gary boughttensmall plantsof the same size andtype.He made sure theyhad the same size andtype of pot.He alsomade sure theyhave the same amountandtype of soil.Then Gary builta frame to holda canvas roof overfive of the plantswhile the otherfive were nearby butout in the sun.Gary was careful tomake sure that eachplantreceivedexactlythe same amountof waterand plantfoodeveryday. 1) What scientificreasonmightGaryhave forinsistingthatthe containersize forthe all plantsbe the same? a) Gary wantedto determine if the size of the containerwouldaffectthe plantgrowth. 13 www.ck12.org b) Gary wantedto make sure the size of the containerdidnot affectplantgrowthinhis experiment. c) Gary wantedtocontrol howmuch plantfoodhisplantsreceived. d) Gary wantedhisgardento lookorganized. e) There is nopossible scientificreasonforhavingthe same size containers. 2) What scientificreasonmightGaryhave forinsistingthatall plantsreceive the same amountof watereveryday? a) Gary wantedto testthe effectof shade onplantgrowth andtherefore,he wantedto have no variablesotherthanthe amountof sunshine onthe plants. b) Gary wantedto testthe effectof the amountof water onplantgrowth.
  • 18. c) Gary's hypothesiswasthatwaterqualitywasaffectingplantgrowth. d) Gary was conservingwater. e) There is nopossible scientificreasonforhavingthe same amountof waterfor each planteveryday. 3) What wasthe variable being testedinGary'sexperiment(whatisthe independent variable)? a) The amountof water b) The amountof plantfood c) The amountof soil d) The amountof sunshine e) The type of soil 4) Whichof the followingfactorsmaybe varyinginGary's experimental setupthathe did not control? a) Individual plantvariation b) Soil temperature due todifferentcolorsof containers c) Water lossdue to evaporationfromthe soil d) The effectof insectswhichmayattack one setof plants butnot the other 5) A studentdecidestosetupan experimenttodeterminethe relationshipbetweenthe growthrate of plantsand the presence of detergentinthe soil.He setsup10 seedpots.In five of the seedpots,he mixesaprecise amountof detergentwiththe soil.The otherfive seedpotshave no detergentinthe soil.The fiveseedpotswithdetergentare placedinthe sunand the five seedpotswithnodetergentare placedinthe shade.All 10 seedpots receive the same amountof waterandthe same numberandtype of seeds.He growsthe plantsfortwo monthsand charts the growtheverytwodays.What iswrong withhis experiment? a) The studenthastoofewpots. b) The studenthastwo independentvariables. c) The studenthastwodependent(resultant) variables. d) The studenthasno experimental control onthe soil. A scientistplantstworowsof corn forexperimentation.She putsfertilizeronrow 1 but does
  • 19. not putfertilizeronrow2. Bothrows receive the same amountof sunand water.She checks the growthof the corn overthe course of five months. 6) What isthe independentvariable inthisexperiment? 7) What isthe dependentvariable inthisexperiment? 8) What variablesare controlled inthisexperiment?14 www.ck12.org 1.2: Hypothesis,Law,&Theory Objectives Describe the difference betweenhypothesisandtheoryasscientificterms. Describe the difference betweenatheoryandscientificlaw. Explainthe conceptof a model. Explainwhyscientistsuse models. Explainthe limitationsof modelsasscientificrepresentationsof reality. Introduction Althoughall of us have takenscience classesthroughoutthe course of ourstudy, manypeople have incorrectormisleadingideasaboutsome of the mostimportantandbasic principlesinscience. We have all heardof hypotheses,theories,andlaws,butwhatdothey reallymean? Before youreadthissection,thinkaboutwhatyouhave learnedaboutthese termsbefore. Whatdo these termsmeantoyou? What do youread contradictswhatyou thought? What do youread supportswhatyouthought? Hypotheses One of the most commontermsusedinscience classesisa“hypothesis”. The word can have many differentdefinitions,dependingonthe contextinwhichitisbeingused: “Aneducatedguess”– because itprovidesasuggestedsolutionbasedonthe evidence. Note thatitisn’tjusta random guess. Ithas to be basedon evidence tobe a scientifichypothesis. Prediction –if youhave evercarriedout a science experiment,youprobablymade thistype of hypothesis,inwhichyoupredictedthe outcome of yourexperiment. Tentative orProposedexplanation –hypothesescanbe suggestionsaboutwhy
  • 20. somethingisobserved,butinorderforit to be scientific,we mustbe able totestthe explanationtosee if itworks,if itisable to correctlypredictwhatwill happenina situation,suchas: if myhypothesisiscorrect,we shouldsee ___ resultwhenwe perform___ test. A hypothesisisverytentative;itcanbe easilychanged. Theories The UnitedStatesNational Academyof Sciencesdescribeswhatatheoryisas follows: “Some scientificexplanationsare sowell establishedthatnonew evidence islikelytoalterthem.The explanationbecomesascientifictheory. In everydaylanguage atheorymeansahunchor speculation.Notsoin science.Inscience,the wordtheoryreferstoacomprehensiveexplanationof an importantfeature of nature supportedbyfactsgatheredovertime.Theories alsoallowscientiststomake predictionsaboutasyetunobserved phenomena.” “A scientifictheoryisawell-substantiatedexplanationof some aspect of the natural world,basedon a bodyof facts that have beenrepeatedly confirmedthroughobservationandexperimentation.Suchfact-supported theoriesare not"guesses"butreliable accountsof the real world.The theory of biological evolutionismore than"justa theory."Itis as factual an explanationof the universe asthe atomictheoryof matter(statingthat 15 www.ck12.org everythingismade of atoms) orthe germ theoryof disease (whichstatesthat manydiseasesare causedbygerms).Ourunderstandingof gravityisstill a workin progress.Butthe phenomenonof gravity,like evolution,isan acceptedfact.“ Note some keyfeaturesof theoriesthatare importantto understandfromthis description: Theoriesare explanationsof natural phenomenon. Theyaren’tpredictions(although
  • 21. we may use theoriestomake predictions). Theyare explanationswhywe observe something. Theoriesaren’tlikelytochange. Theyhave so muchsupportand are able toexplain satisfactorilysomanyobservations,thattheyare notlikelytochange. Theoriescan, indeed,be facts. Theoriescanchange,butitis a longand difficultprocess. Inorder for a theoryto change,there mustbe manyobservationsor evidencethatthe theory cannot explain. Theoriesare notguesses. The phrase “justa theory”hasno room inscience. To be a scientifictheorycarriesalot of weight;itisnot justone person’sideaabout something. Laws Scientificlawsare similartoscientifictheoriesinthattheyare principlesthatcanbe usedto predictthe behaviorof the natural world.Bothscientificlawsandscientifictheories are typicallywell-supportedbyobservationsand/orexperimental evidence.Usuallyscientific lawsreferto rulesforhownature will behave undercertainconditions,frequentlywrittenas an equation.Scientifictheoriesare more overarchingexplanationsof how nature worksand whyit exhibitscertaincharacteristics. Asa comparison, theoriesexplainwhywe observe whatwe doand lawsdescribe whathappens. For example,aroundthe year1800, JacquesCharlesandotherscientistswere workingwithgasesto,amongotherreasons,improve the designof the hotairballoon.These scientistsfound,aftermany,manytests,thatcertainpatternsexistedinthe observationson gas behavior.If the temperature of the gasincreased,the volume of the gasincreased.Thisis knownas a natural law.A lawis a relationshipthatexistsbetweenvariablesinagroupof data. Lawsdescribe the patternswe see inlarge amountsof data,but do describe whythe patternsexist. A commonmisconceptionisthatscientifictheoriesare rudimentaryideasthatwill eventuallygraduate intoscientificlawswhenenoughdataandevidence hasbeen accumulated.A theorydoesnotchange intoa scientificlaw withthe accumulationof new or betterevidence.Remember,theoriesare explanationsandlawsare patternswe see inlarge amountsof data, frequentlywrittenasanequation.A theorywill alwaysremainatheory;a
  • 22. lawwill alwaysremainalaw. A model isa description,graphic,or3-D representationof theoryusedtohelp enhance understanding.Scientistsoftenuse modelswhentheyneedawayto communicate theirunderstandingof whatmightbe verysmall (suchas an atomor molecule) orverylarge (suchas the universe). A model isanysimulation,substitute,orstand-inforwhatyouare actuallystudying.A goodmodel containsthe essential variablesthatyouare concernedwith inthe real system,explainsall the observationsonthe real system, andisas simple as16 www.ck12.org possible.A model maybe asuncomplicatedasasphere representingthe earthorbilliard ballsrepresenting gaseousmolecules,orascomplex asmathematical equationsrepresenting light. Chemistsrelyonbothcareful observationandwell-knownphysical laws.Byputting observationsandlawstogether,chemistsdevelopmodels.Modelsare reallyjustwaysof predictingwhatwill happengivenacertainsetof circumstances.Sometimesthese models are mathematical,butothertimes,theyare purelydescriptive. If you were askedtodetermine the contentsof abox that cannotbe opened,you woulddoa varietyof experimentsinordertodevelopanidea(ora model) of whatthe box contains.Youwouldprobablyshake the box,perhapsputmagnetsnearitand/ordetermine itsmass. Whenyoucompletedyourexperiments,youwoulddevelopanideaof whatis inside;thatis,youwouldmake a model of whatisinside abox that cannot be opened. A goodexample of howamodel isuseful toscientistsishow modelswere usedto explainthe developmentof the atomictheory.Asyouwill learninalater chapter,the ideaof the conceptof an atom changedovermanyyears.In orderto understandeachof the different theoriesof the atomaccordingto the variousscientists,modelswere drawn,andthe concepts were more easilyunderstood. Chemistsmake upmodelsaboutwhathappenswhendifferentchemicalsare mixed together,orheatedup,or cooleddown,orcompressed.Chemistsinventthesemodelsusing manyobservationsfromexperimentsinthe past,andtheyuse these modelstopredictwhat mighthappenduringexperimentsinthe future.Once chemistshave modelsthatpredictthe outcome of experimentsreasonablywell,those workingmodelscanhelptotell themwhat theyneedtodo to achieve acertaindesiredresult.Thatresultmightbe the productionof an
  • 23. especiallystrongplastic,oritmightbe the detectionof a toxinwhenit’spresentinyour food. LessonSummary A hypothesisisatentative explanationthatcanbe testedbyfurtherinvestigation. A theoryis a well-supportedexplanationof observations. A scientificlawisastatementthatsummarizesthe relationshipbetweenvariables. Anexperimentisacontrolledmethodof testingahypothesis. A model isa description,graphic,or3-D representationof theoryused tohelp enhance understanding. Scientistsoftenuse modelswhentheyneedawayto communicate their understandingof whatmightbe verysmall (suchasan atom or molecule)orvery large (suchas the universe). Vocabulary Hypothesis:A tentative explanationthatcanbe testedbyfurtherinvestigation. Theory:A well-establishedexplanation Scientificlaw:A statementthatsummarizesthe relationshipbetweenvariables. Model:A description,graphic,or3-D representationof theoryusedtohelpenhance understanding. FurtherReading/Supplemental Links http://en.wikipedia.org/wiki/Scientific_theory 17 www.ck12.org http://en.wikipedia.org/wiki/Hypothesis VideoonDemand – Modelingthe Unseen (http://www.learner.org/resources/series61.html?pop=yes&pid=793#) 1.2: ReviewQuestions Multiple Choice
  • 24. 1) A numberof people became ill aftereatingoystersinarestaurant.Whichof the followingstatementsisahypothesisaboutthisoccurrence? a) Everyone whoate oystersgotsick. b) People gotsickwhetherthe oysterstheyate were raw orcooked. c) Symptomsincludednauseaanddizziness. d) Bacteriainthe oystersmayhave causedthe illness. 2) If the hypothesisisrejected(proved wrong) bythe experiment,then: a) The experimentmayhave beenasuccess. b) The experimentwasafailure. c) The experimentwaspoorlydesigned. d) The experimentdidn'tfollowthe scientificmethod. 3) A hypothesisis: a) A descriptionof aconsistentpatterninobservations. b) Anobservationthatremainsconstant. c) A theorythat has beenproven. d) A tentative explanationforaphenomenon. 4) A scientificlawis: a) A descriptionof aconsistentpatterninobservations. b) Anobservationthatremainsconstant. c) A theorythat has beenproven. d) A tentative explanationforaphenomenon. 5) A well-substantiatedexplanationof anaspectof the natural worldisa: a) Theory. b) Law. c) Hypothesis. d) None of these. 6) Whichof the followingwordsisclosesttothe same meaningashypothesis? a) Fact b) Law c) Formula d) Suggestion
  • 25. e) Conclusion 7) Whydo scientistssometimesdiscardtheories? a) The stepsin the scientificmethodwere notfollowedinorder. b) Publicopiniondisagreeswiththe theory. c) The theoryisopposedbythe church. d) Contradictoryobservationsare found. 8) True/False: Whenatheoryhasbeenknownfora longtime,itbecomesalaw. 18 www.ck12.org 1.3: Graphing Objectives Correctlygraphdata utilizingdependentvariable,independentvariable,scale and unitsof a graph,and bestfitcurve. Recognize patternsindatafroma graph. Solve forthe slope of givenline graphs. Introduction Scientistssearchforregularitiesandtrendsin data. Twocommon methodsof presentingdatathataid inthe searchfor regularitiesandtrendsare tablesand graphs.The table belowpresentsdataaboutthe pressure and volume of asample of gas. You shouldnote thatall tableshave a title andinclude the unitsof the measurements. You may note a regularitythatappearsinthis table;as the volume of the gasdecreases(gets smaller), itspressureincreases(getsbigger).This regularityortrendbecomesevenmore apparentina graph of thisdata. A graph isa pictorial representationof patternsusingacoordinate system.
  • 26. Whenthe data from the table isplottedasa graph, the trendinthe relationshipbetweenthe pressureand volume of a gas sample becomesmore apparent.The graph givesthe scientistinformationtoaidinthe searchfor the exactregularitythatexistsinthese data. Whenscientistsrecordtheirresultsin adata table,the independentvariable isputin the firstcolumn(s),the dependentvariable isrecordedinthe lastcolumn(s)andthe controlledvariablesare typicallynotincludedatall. Note inthe data table that the first columnislabeled“Volume (inliters)”andthatthe secondcolumnislabeled“Pressure(in atm). That indicatesthatthe volume wasbeingchanged(the independentvariable) tosee howit affectedthe pressure (dependentvariable). In a graph, the independentvariableisrecordedalongthe x-axis(horizontal axis) or as part of a keyfor the graph,the dependentvariable isrecordedalongthe y-axis(vertical axis),andthe controlledvariablesare notincludedatall. Note inthe data table thatthe X- axisislabeled“Volume (liters)”andthatthe Y-axisislabeled“Pressure (atm). That indicatesthatthe volume wasbeingchanged(the independentvariable) tosee how itaffected the pressure (dependentvariable). DrawingLine Graphs Readinginformationfromaline graphis easierandmore accurate as the size of the graph increases.Inthe twographsshownbelow,the firstgraphusesonlyasmall fractionof the space available onthe graphpaper.The secondgraphusesall the space available forthe same graph. If you were attemptingtodetermine the pressure atatemperature of 260 K, usingthe graph on the leftwouldgive alessaccurate resultthanusingthe graph onthe right. Volume (liters) Pressure (atm) 10.0 0.50 5.0 1.00 3.33 1.50
  • 27. 2.50 2.00 2.00 2.50 1.67 3.00 CC – Tracy Poulsen 19 www.ck12.org Whenyoudraw a line graph,you shouldarrange the numbersonthe axisto use as much of the graphpaper as youcan. If the lowesttemperature inyourdatais 100 K andthe highesttemperature inyour data is160 K, youshouldarrange for 100 K to be on the extreme leftof yourgraph and 160 K to be onthe extreme rightof your graph.The creator of the graph on the leftdidnottake thisadvice and didnot produce a verygood graph.You should alsomake sure that the axisonyour graph are labeledandthatyourgraph has a title. Whenconstructinga graph,there are some general principlestokeepinmind: Take up as much of the graph paper as possible. The lowestx-value shouldbe onthe far leftof the paper and the highestx-valueshouldbe on the far rightside of the paper. Your lowesty-valueshouldbe near the bottomof the graph and the
  • 28. highesty-valuenearthe top. Choose yourscale to allowyouto do this. You do notneedto start countingat zero. Countyourx- andy-scalesbyconsistentamounts. If youstartcountingyourx-axis where everybox countsas2-units,youmustcount that waythe course of the entire axis. Your y-axismaycountby a differentscale (maybe everybox countsas5 instead),butyoumustcountthe entire y-axisbythatscale. Bothof youraxisshouldbe labeled,includingunits. Whatwasmeasuredalongthat axisand whatunitwas itmeasuredin? For X-Yscatter plots,drawa best-fit-line orcurve thatfitsyourdata, insteadof connectingthe dots. You wanta line thatshowsthe overall trendin the data, but mightnot hitexactlyall of yourdata points. What isthe overall patterninthe data? ReadingInformationfromaGraph Whenwe draw a line graphfroma setof data points,we are creatingdatapoints betweenknowndatapoints.This processiscalledinterpolation.Eventhoughwe mayhave fouractual data pointsthatwere measured,we assume the relationshipthatexistsbetween the quantitiesatthe actual data pointsalsoexistsatall the pointson the line graphbetween the actual data points.Considerthe followingsetof datafor the solubilityof KClO3inwater. The table showsthat there are exactlysix knowndatapoints.Whenthe datais graphed,however,the graphmakerassumesthatthe relationshipbetweenthe temperature CC – Tracy Poulsen20 www.ck12.org and the solubilityremainsthe same.The line isdrawnbyinterpolatingthe datapoints betweenthe actual datapoints.
  • 29. We can nowreasonablycertainlyreaddatafromthe graph forpointsthat were not actuallymeasured.If we wishtodeterminethe solubilityof KClO3at70°C, we follow the vertical gridline for70°C up to where ittouchesthe graphedline andthenfollow the horizontal gridline tothe axistoread the solubility.Inthiscase,we wouldreadthe solubility to be 30. g/100 mL of H2O at 70°C. There are alsooccasionswhenscientists wishto determinedatapointsfroma graphthat are not betweenactual datapointsbutare beyondthe endsof the actual data points.Creatingdatapoints beyondthe endof the graph line,usingthe basic shape of the curve as a guide iscalled extrapolation. Suppose the graphfor the solubilityof potassiumchlorate hasbeenmade fromjustthree actual data points.If the actual data pointsforthe curve were the solubilityat60°C, 80°C, and 100°C, the graph wouldbe the solidline shownon the graph above.If the solubilityat30°C wasdesired,we couldextrapolate (thedottedline) fromthe graphand suggestthe solubilitytobe 5.0 g/100 mL of H2O. If we check onthe more complete graphabove,youcan see thatthe solubilityat30°C isclose to 10 g/100 mL of H2O. The reasonthe secondgraphproducessuch a pooransweristhat the relationshipthat appearsinthe lesscomplete graphdoesnotholdbeyondthe endsof the graph.Forthis reason,extrapolationisonlyacceptable forgraphswhere there isevidence thatthe
  • 30. relationshipshowninthe graphwill be true beyondthe endsof the graph.Extrapolationis more dangerousthatinterpolationintermsof possiblyproducingincorrectdata. In situationsinwhichboththe independentanddependentvariablesare measured or countedquantities,anX-Yscatter plotisthe most useful andappropriate type of graph. A line graphcannotbe usedforindependentvariablesthatare groupsof data, or nonmeasured data. In these situationsinwhichgroupsof data,ratherthan exact measurements,were recordedas the independentvariable,abar graphcan typicallybe used. Considerthe datain the followingtable. For thisdata, a bar graph ismore appropriate because independentvariable isagroup, not a measurement(forexample,everythingthathappenedin1980). The concept of the average yearlyrainfall halfwaybetweenthe years1980 and 1981 doesnot make sense,soa Temperature (°C) Solubility (g/100 mL H2O) 0 3.3 20 7.3 40 13.9 60 23.8 80 37.5 100 56.3 CC – Tracy Poulsen CC – Tracy Poulsen 21 www.ck12.org Year Rainfall (inches) 1980 24.7 1981 21.2
  • 31. 1982 14.5 1983 13.2 1984 21.1 1985 16.8 1986 19.9 1987 29.2 1988 31.6 1989 21.0 line graphdoesn'twork.Additionally,eachyearrepresentsagroupthat we are lookingat, and nota measuredquantity.A bargraph isbettersuitedforthistype of data. Fromthisbar graph,you couldveryquicklyanswerquestionslike,“Whichyearwasmostlikelyadrought yearfor Trout Creek?”,and“Whichyear wasTrout Creekmostlikelytohave sufferedfrom a flood?” Findingthe Slope of aGraph As youmay recall fromalgebra,the slope of the line maybe determinedfromthe graph.The slope representsthe rate at which one variable ischangingwithrespecttothe othervariable.Fora straight-linegraph,the slope isconstantfor the entire line butfora non-lineargraph,the slope isdifferentat differentpointsalongthe line. Fora straight- line graph,the slope forall pointsalongthe line canbe determinedfromanysectionof the graph.For a non-lineargraph,the mustbe determinedforeachpointfromdata at that point.Considerthe givendatatable andthe lineargraphthat follows. The relationshipinthissetof datais linear,thatis,itproducesa straight-line graph.
  • 32. The slope of thisline isconstantat all points on the line.The slope of aline isdefinedasthe rise (change invertical position) dividedbythe run (change inhorizontal position). Frequentlyinscience,all of ourdata pointsdo not fall exactlyonaline.Inthissituation,we draw a bestfitline,ora line thatgoesas close to all of ourpointsas possible.Whenfinding the slope,itisimportantto use twopointsthat are on the bestfitline itself,insteadof our measureddatapointswhichmaynot be on our bestfitline.Fora pairof pointsonthe line, the coordinatesof the pointsare identifiedas(x1,y1) and (x2,y2).In thiscase,the points selectedare (260, 1.3) and (180, 0.9). The slope canthenbe calculatedinthe manner: CC – Tracy Poulsen Temperature vs.Volume foraGas Temperature (°C) Volume of Gas (mL) 20 60 40 65 60 70 80 75 100 80 120 85 CC – Tracy Poulsen22 www.ck12.org Therefore,the slope of the lineis0.005 atm/K.The fact that the slope ispositive indicates that the line isrisingasit movesfromlefttorightand that the pressure increasesby0.005
  • 33. atm for each1 Kelvinincreaseintemperature. A negativeslope wouldindicate thatthe line was fallingasitmovesfromlefttoright. LessonSummary Twocommonmethodsof presentingdatathataid inthe search forregularitiesand trendsare tablesandgraphs. Whenwe drawa line graphfroma set of data points,we are creatingdata points betweenknowndatapoints.Thisprocessiscalledinterpolation. Creatingdatapointsbeyondthe endof the graph line,usingthe basicshape of the curve as a guide iscalledextrapolation. The slope of a graph representsthe rate atwhichone variable ischangingwith respectto the othervariable. Vocabulary Graph: a pictorial representationof patternsusingacoordinate system Interpolation:the processof estimatingvaluesbetweenmeasuredvalues Extrapolation:the processof creatingdatapointsbeyondthe endof the graphline, usingthe basicshape of the curve as a guide Slope:the ratioof the change in one variable withrespecttothe othervariable. FurtherReading/Supplemental Links Use the followinglinktocreate bothx-yandbar graphs: http://nces.ed.gov/nceskids/createagraph/default.aspx These websitesoffermore tipsongraphingandinterpretingdata: http://staff.tuhsd.k12.az.us/gfoster/standard/bgraph2.htmand http://www.sciencebuddies.org/science-fair-projects/project_data_analysis.shtml 1.3: ReviewQuestions 1) Ona data table,where isthe independentvariabletypicallylisted? Whataboutthe dependentvariable? 2) Ona graph,howdo youidentifythe
  • 34. independentvariable anddependentvariable? 3) Andrewwascompletinghisdensitylabforhis chemistrylabexam. He collectedthe given data for volume andmass. a) Identifythe independentanddependent variablesinthisexperiment. b) Draw a graph to representthe data, includingabest-fit-line. #3 data Volume of Solution(mL) Mass of Solution(g) 0.3 3.4 0.6 6.8 0.9 10.2 1.9 21.55 2.9 32.89 3.9 44.23 4.9 55.57 23 www.ck12.org c) If the graph isa straightline,calculate the slope,includingunits. d) What wouldyouexpectthe massof 2.5 mL of solutiontohave? e) What volume wouldyouexpect60g of the solutiontooccupy? 4) Donnaiscompletinganexperimenttofindthe effect of the concentrationof ammoniaonrate (or speed) of
  • 35. the reaction.She has collectedthe givendatafromher time trialsand is readyforthe analysis. a) Identifythe independentanddependentvariablesin thisexperiment. b) Draw a graph to representthe data,includinga best-fit-line c) If the concentrationof ammoniawas0.30 mol/L, howmuch time haspassed? d) After8 seconds,whatwill be the approximate concentrationof ammonia? 5) Considerthe datatable foran experimentonthe behaviorof gases. a) Identifythe independentanddependentvariables inthisexperiment. b) Draw a graph to representthe data. c) Calculate the slope,includingunits. d) What wouldbe the pressure at55°C? e) What wouldbe the pressure at 120°C? #5 data Temperature (°C) Pressure (mmHg) 10 726 20 750 40 800
  • 36. 70 880 100 960 #4 data Time (s) Concentration of ammonia(mol/L) 0.71 2.40 1.07 2.21 1.95 2.00 5.86 1.53 10.84 1.30 14.39 1.08 20.43 0.81 29.67 0.60 39.80 0.40 49.92 0.20 24 www.ck12.org Chapter2: The Structure of the Atom 2.1: EarlyIdeasof Atoms Objectives Give a shorthistoryof the conceptof the atom. Describe the contributionsof DemocritusandDaltontoatomictheory. Summarize Dalton'satomictheoryandexplainitshistorical development. Introduction You learnedearlierhowall matterinthe universe ismade outof tinybuildingblocks calledatoms.All modernscientistsacceptthe conceptof the atom, but whenthe conceptof the atom was firstproposedabout2,500 yearsago,ancientphilosophers laughedatthe idea. It has alwaysbeendifficulttoconvince peopleof the existenceof thingsthatare too small to see.We will spendsome time consideringthe evidence (observations) thatconvince
  • 37. scientistsof the existence of atoms. Democritus andthe GreekPhilosophers Before we discussthe experimentsandevidence that have,overthe years,convincedscientiststhatmatteris made up of atoms,it’sonlyfair to give credittothe man whoproposed“atoms”inthe firstplace.About2,500 years ago, earlyGreekphilosophersbelievedthe entire universe was a single,huge,entity.Inotherwords,“everythingwas one.”Theybelievedthatall objects,all matter,andall substanceswere connectedasasingle,big,unchangeable “thing.” One of the firstpeople topropose “atoms”wasa man knownasDemocritus.Asan alternative tothe beliefs of the Greekphilosophers,he suggestedthatatomos,or atomon– tiny,indivisible,solidobjects - make upall matterin the universe. Democritusthenreasonedthatchangesoccurwhen the many atomosinan objectwere reconnectedor recombinedindifferentways.Democritusevenextended histheory,suggestingthatthere were differentvarietiesof atomoswithdifferentshapes,sizes, andmasses.He thought,however,thatshape,size andmasswere the onlypropertiesdifferentiatingthe differenttypesof atomos.AccordingtoDemocritus,othercharacteristics,likecolorand taste,didnot reflectpropertiesof the atomosthemselves, butrather,resultedfromthe differentwaysinwhichthe atomoswere combinedandconnectedtoone another. Greekphilosopherstrulybelievedthat,above all else,ourunderstandingof the world shouldrelyon“logic.”Infact, theyarguedthat the worldcouldn’tbe understoodusingour sensesatall,because oursensescoulddeceive us.Therefore,insteadof relyingon observation,Greekphilosopherstriedtounderstandthe worldusingtheirmindsand,more specifically,the powerof reason.
  • 38. Democrituswasknownas “The LaughingPhilosopher.”It’sagood thinghe likedtolaugh,because most otherphilosopherswere laughingat histheories. 25 www.ck12.org So howcouldthe Greekphilosophershave knownthat Democritushada good ideawithhistheoryof “atomos?" It wouldhave takensome careful observationandafew simple experiments.Now youmightwonderwhyGreekphilosophers didn’tperformanyexperimentstoactuallytestDemocritus’ theory.The problem,of course,wasthatGreek philosophers didn’tbelieve inexperimentsatall.Remember,Greek philosophersdidn’ttrusttheirsenses,theyonlytrustedthe reasoningpowerof the mind. The earlyGreekphilosopherstriedtounderstandthe nature of the worldthroughreasonandlogic,but notthrough experimentandobservation.Asaresult,theyhadsome very interestingideas,buttheyfeltnoneedtojustifytheirideas basedon life experiences.Inalotof ways,youcan thinkof the Greekphilosophersasbeing“all thoughtandnoaction.”It’s trulyamazinghowmuch theyachievedusingtheirminds,but because theyneverperformedanyexperiments,theymissedor rejectedalotof discoveriesthattheycouldhave made otherwise. Greekphilosophers dismissedDemocritus’theoryentirely.Sadly,ittookovertwomillenniabeforethe theoryof atomos(or “atoms,”as they’re knowntoday) wasfullyappreciated. Dalton'sAtomicTheory Althoughthe conceptof atomsis nowwidelyaccepted,thiswasn’talwaysthe case. Scientistsdidn’talwaysbelieve thateverythingwascomposedof small particlescalled
  • 39. atoms. The workof several scientistsandtheirexperimental datagave evidence forwhatis nowcalledthe atomictheory. In the late 1700’s, Antoine Lavoisier,aFrenchscientist,experimentedwiththe reactionsof manymetals. He carefullymeasuredthe massof a substance before reactingand againmeasuredthe massaftera reactionhadoccurredin a closedsystem(meaningthat nothingcouldenterorleave the container). He foundthatnomatter whatreactionhe looked at, the mass of the starting materialswasalwaysequal tothe massof the endingmaterials. Thisis nowcalledthe lawof conservationof mass. Thiswent contrary to whatmany scientistsatthe time thought. Forexample,whenapiece of ironrusts,itappearsto gain mass. Whena logis burned,itappearsto lose mass. Inthese examples,though,the reaction doesnottake place ina closedcontainerandsubstances,suchasthe gasesinthe air, are able to enteror leave. Whenironrusts,itiscombiningwithoxygeninthe air,whichiswhyit seemstogainmass. What Lavoisierfoundwasthatno masswas actuallybeinggainedor lost. It was comingfromthe air. Thiswas a veryimportantfirststepingivingevidence for the ideathat everythingismade of atoms. The atoms(andmass) are not beingcreatedor destroyed. The atomsare simplyreactingwithotheratomsthatare alreadypresent. In the late 1700s andearly1800s, scientistsbegannoticingthatwhencertain substances,like hydrogenandoxygen,were combinedtoproduce anew substance,like water,the reactants(hydrogenandoxygen) alwaysreactedinthe same proportionsbymass. In otherwords,if 1 gram of hydrogenreactedwith8 grams of oxygen,then2grams of hydrogenwouldreactwith16 grams of oxygen,and3 grams of hydrogenwouldreactwith 24 grams of oxygen.Strangely,the observationthathydrogen andoxygenalwaysreactedin Greekphilosopherstriedto understandthe nature of the worldthroughreasonand logicbut notthrough experimentandobservation.26 www.ck12.org the “same proportionsbymass” wasn’tspecial.Infact,itturnedout that the reactantsin everychemical reactionreactedinthe same proportionsbymass. Thisobservationis
  • 40. summarizedinthe lawof definiteproportions. Take,forexample,nitrogenandhydrogen, whichreact to produce ammonia.Inchemical reactions, 1gram of hydrogenwill reactwith 4.7 grams of nitrogen,and2 gramsof hydrogenwill reactwith9.4 gramsof nitrogen.Can youguesshowmuch nitrogenwouldreactwith3 grams of hydrogen? Scientistsstudied reactionafterreaction,buteverytime the resultwasthe same.The reactantsalwaysreacted inthe same proportions. At the same time that scientistswerefindingthispattern out,a mannamedJohnDalton wasexperimentingwithseveral reactionsinwhichthe reactantelementsformedmore thanone type of product,dependingonthe experimental conditionshe used.One commonreactionthathe studiedwasthe reaction betweencarbonandoxygen.Whencarbonandoxygenreact, theyproduce twodifferentsubstances –we’ll call these substances“A”and “B.” It turnedout that,giventhe same amountof carbon,formingB alwaysrequiredexactlytwice as much oxygenasformingA.Inotherwords,if you can make A with3 gramsof carbon and 4 grams of oxygen,Bcan be made withthe same 3 grams of carbon, butwith8 grams oxygen. Daltonaskedhimself –whydoesB require 2timesas much oxygenasA? Whynot 1.21 timesas much oxygen,or0.95 timesasmuch oxygen?Whya whole numberlike2? The situationbecame evenstrangerwhenDaltontried similarexperimentswithdifferentsubstances.Forexample, whenhe reactednitrogenandoxygen,Daltondiscoveredthathe couldmake three different substances – we’ll call them“C,”“D,” and “E.” As itturnedout,for the same amount of nitrogen,Dalwaysrequiredtwice asmuchoxygenasC. Similarly,Ealwaysrequiredexactly fourtimesas muchoxygenas C.Once again,Daltonnoticedthatsmall whole numbers(2 and 4) seemedtobe the rule.Thisobservationcame tobe knownas the law of multiple proportions. Daltonthoughtabouthis resultsandtriedtofindsome theorythatwouldexplainit,as well asa theorythat wouldexplainthe Law of Conservationof Mass(massis neithercreated
  • 41. nor destroyed,orthe massyouhave at the beginningisequal tothe massat the endof a change).One wayto explainthe relationshipsthatDaltonandothershad observedwasto suggestthatmaterialslike nitrogen,carbonandoxygenwere composedof small,indivisible quantitieswhichDaltoncalled“atoms”(inreference toDemocritus’original idea).Dalton usedthisideato generate whatisnowknownasDalton’sAtomicTheorywhichstatedthe following: 1. Matter ismade of tinyparticlescalledatoms. 2. Atomsare indivisible(can’tbe brokenintosmallerparticles).Duringachemical reaction,atomsare rearranged,buttheydonot breakapart, nor are theycreatedor destroyed. 3. All atomsof a givenelementare identical inmassandotherproperties. 4. The atoms of differentelementsdifferinmassandotherproperties. Unlike the Greek philosophers,JohnDalton believedinbothlogical thinkingand experimentation. 27 www.ck12.org 5. Atomsof one elementcancombine withatomsof anotherelementtoform “compounds”– new,complex particles.Inagivencompound,however,the differenttypesof atomsare alwayspresentinthe same relative numbers. LessonSummary 2,500 years ago,Democritussuggestedthatall matterinthe universe wasmade upof tiny,indivisible,solidobjectshe called“atomos.” OtherGreekphilosophersdislikedDemocritus’“atomos”theorybecause theyfeltit was illogical. Daltonusedobservationsaboutthe ratiosinwhichelementswillreact tocombine and The Law of Conservationof Massto propose hisAtomicTheory.
  • 42. Dalton’sAtomicTheorystates: 1. Matter ismade of tinyparticlescalledatoms. 2. Atomsare indivisible.Duringachemical reaction,atomsare rearranged,butthey do notbreak apart,nor are theycreatedor destroyed. 3. All atomsof a givenelementare identical inmassandotherproperties. 4. The atomsof differentelementsdifferinmassandotherproperties. 5. Atomsof one elementcancombine withatomsof anotherelementtoform “compounds”– newcomplex particles.Ina givencompound,however,the different typesof atoms are alwayspresentinthe same relative numbers. Vocabulary Atom:Democritus’ wordforthe tiny,indivisible,solidobjectsthathe believedmade up all matterin the universe Dalton’sAtomicTheory:the firstscientifictheorytorelate chemical changestothe structure,properties,andbehaviorof the atom FurtherReading/Supplemental Links To see a videodocumentingthe earlyhistoryof the conceptof the atom, go to http://www.uen.org/dms/. Goto the k-12 library. Searchfor“historyof the atom”. Watch part 01. (youcan getthe username andpasswordfromyour teacher) VisionLearning:FromDemocritustoDalton: http://visionlearning.com/library/module_viewer.php?c3=&mid=49&l= 2.1: ReviewQuestions 1) (Multiple choice) Whichof the followingisnotpart of Dalton’sAtomicTheory? a) matteris made of tinyparticlescalledatoms. b) duringa chemical reaction,atomsare rearranged. c) duringa nuclearreaction,atomsare splitapart. d) all atomsof a specificelementare the same. 2) DemocritusandDaltonbothsuggestedthatall matterwascomposedof small particles,
  • 43. calledatoms. What isthe greatestadvantage Dalton’sAtomicTheoryhadover Democritus’? 28 www.ck12.org 3) Itturns out that a fewof the ideasinDalton’sAtomicTheoryaren’tentirelycorrect.Are inaccurate theoriesanindicationthatscience isawaste of time? 2.2: FurtherUnderstandingof the Atom Objectives Explainthe observationsthatledtoThomson'sdiscoveryof the electron. Describe Thomson's"plumpudding"mode of the atom andthe evidenceforit Draw a diagramof Thomson's"plumpudding"modelof the atomand explainwhyit has thisname. Describe Rutherford'sgoldfoil experimentandexplainhow thisexperimentaltered the "plumpudding"model. Draw a diagramof the Rutherfordmodel of the atomandlabel the nucleusandthe electroncloud. Introduction Dalton'sAtomicTheoryheldupwell toa lotof the differentchemical experimentsthatscientistsperformedtotest it.In fact, foralmost100 years,itseemedasif Dalton's AtomicTheorywasthe whole truth.However,in1897, a scientistnamedJ.J.Thomsonconductedsome researchthat suggestedthatDalton’sAtomicTheorywasn’tthe entire story. As itturns out,Daltonhad a lot right.He was rightin saying matteris made up of atoms;he wasright insayingthere are differentkindsof atomswithdifferentmassandother properties;he was“almost”rightinsayingatomsof a given elementare identical;he wasrightinsayingduringachemical
  • 44. reaction,atomsare merelyrearranged;he wasrightinsayinga givencompoundalwayshasatomspresentinthe same relative numbers.Buthe was WRONG insayingatomswere indivisible orindestructible.Asitturnsout,atomsare divisible.Infact,atomsare composedof evensmaller,more fundamental particles.These particles,calledsubatomicparticles,are particlesthatare smallerthanthe atom.We’ll talk aboutthe discoveriesof these subatomicparticlesnext. Thomson’sPlumPuddingModel In the mid-1800s, scientistswere beginningtorealize thatthe studyof chemistryand the studyof electricitywereactuallyrelated.First,amannamedMichael Faradayshowed howpassingelectricitythroughmixturesof different chemicalscouldcause chemical reactions.Shortlyafterthat,scientistsfoundthatbyforcingelectricitythroughatube filled withgas,the electricitymade the gasglow!Scientistsdidn’t,however,understandthe relationshipbetweenchemicalsand electricityuntil aBritishphysicistnamedJ.J.Thomson beganexperimentingwithwhatisknownasa cathode ray tube. The figure showsa basicdiagramof a cathode ray tube like the one J.J. Thomson wouldhave used.A cathode ray tube isa small glasstube witha cathode (a negatively chargedmetal plate) andan anode (apositivelychargedmetalplate) atoppositeends.By J.J.Thomsonconducted experimentsthatsuggested that Dalton’satomictheory wasn’ttellingthe entire story. 29 www.ck12.org separatingthe cathode andanode by a shortdistance,the cathode ray tube can generate what are knownascathode rays – rays of electricitythatflow fromthe cathode tothe anode.J. J. Thomsonwantedtoknowwhat cathode rayswere,where cathode rayscame from, and whethercathode rayshadany mass or charge.The techniquesthatJ.J.Thomsonusedto answerthese questionswere verycleverandearnedhimaNobel Prize inphysics.First,by
  • 45. cuttinga small hole inthe anode,J.J. Thomsonfoundthathe couldgetsome of the cathode rays to flowthroughthe hole inthe anode andintothe otherendof the glass cathode ray tube.Next,J.J.Thomsonfiguredoutthatif he paintedasubstance knownas“phosphor” ontothe far endof the cathode ray tube,he couldsee exactlywhere the cathode rayshit because the cathode raysmade the phosphorglow. J. J. Thomsonmusthave suspectedthat cathode rays were charged,because hisnextstepwasto place a positively chargedmetal plate on one side of the cathode ray tube and a negatively chargedmetal plate on the otherside of the cathode ray tube,as shownin Figure 3. The metal platesdidn’tactuallytouchthe cathode raytube,buttheywere close enoughthata remarkable thinghappened!The flow of the cathode rayspassingthroughthe hole inthe anode wasbentupwardstowardsthe positive metal plate andawayfromthe negative metal plate.Usingthe “opposite chargesattract, like chargesrepel”rule,J.J.Thomsonarguedthat if the cathode rays were attractedto the positivelychargedmetal plate andrepelledfromthe negativelychargedmetal plate,theythemselvesmusthave anegative charge! J. J.Thomsonthendidsome rather complex experimentswithmagnets,andusedhis resultstoprove that cathode rays were notonlynegativelycharged,butalsohadmass. Rememberthatanythingwithmassispart of whatwe call matter.In otherwords,these cathode rays mustbe the resultof negativelycharged“matter”flowingfromthe cathode to
  • 46. the anode.But there wasa problem.AccordingtoJ.J. Thomson’smeasurements,eitherthese cathode rays had a ridiculouslyhighcharge,orelse hadvery,verylittle mass–much less mass thanthe smallestknownatom.How wasthispossible?How couldthe mattermaking up cathode rays be smallerthanan atomif atoms were indivisible?J.J.Thomsonmade a radical proposal:maybe atomsare divisible.J.J.Thomson suggestedthatthe small, negativelychargedparticlesmakingupthe cathode ray were actuallypiecesof atoms.He calledthese pieces“corpuscles,”althoughtodaywe know themaselectrons.Thankstohis cleverexperimentsandcareful reasoning,J.J. Thomsoniscreditedwiththe discoveryof the electron. Thomson’sexperimentwithcathode raysfoundthatthe ray movedaway fromnegativelychargedplatesandtowardpositivelychargesplates. What doesthissay aboutthe charge of the ray? CC – Tracy Poulsen30 www.ck12.org Nowimagine whatwouldhappenif atomswere made entirelyof electrons.Firstof all,electronsare very,verysmall;infact,electronsare about2,000 timessmallerthanthe smallestknownatom,soeveryatomwouldhave tocontaina whole lotof electrons.But there’sanother,evenbiggerproblem:electronsare negativelycharged.Therefore,if atoms were made entirelyoutof electrons,atomswouldbe negativelychargedthemselves…and that wouldmeanall matterwasnegativelychargedaswell.Of course,matterisn’tnegatively charged.In fact,most matteriswhat we call neutral – it has no charge at all.If matteris composedof atoms,and atomsare composedof negative electrons,how canmatterbe neutral?The onlypossible explanationisthatatomsconsistof more than justelectrons. Atomsmustalso containsome type of positivelychargedmaterialthatbalancesthe negative charge onthe electrons.Negativeandpositive chargesof equal size cancel eachother out, justlike negative andpositive numbersof equal size.Whatdoyouget if youadd +1 and -1? You get0, or nothing.That’strue of numbers,andthat’salso true of charges.If an atom containsan electronwitha -1 charge,but alsosome formof material witha+1 charge, overall the atommusthave a (+1) + (-1) = 0 charge – inotherwords,the atom must be neutral,orhave no charge at all.
  • 47. Basedon the fact that atomsare neutral, andbasedon J.J. Thomson’sdiscoverythat atomscontainnegative subatomicparticlescalled“electrons,”scientistsassumedthatatoms mustalso containa positive substance.Itturnedoutthatthispositive substance wasanother kindof subatomicparticle,knownasthe proton.Althoughscientistsknewthatatomshadto containpositive material,protonsweren’tactuallydiscovered,orunderstood,until quiteabit later. WhenThomsondiscoveredthe negative electron,he realizedthatatomshadto containpositive materialaswell –otherwise theywouldn’tbe neutral overall.Asaresult, Thomsonformulatedwhat’sknownasthe “plumpudding”modelforthe atom.Accordingto the “plumpudding”model,the negative electronswere like piecesof fruitandthe positivematerial waslikethe batteror the pudding.Thismade alot of sense given Thomson’sexperimentsandobservations.Thomsonhad beenable toisolate electronsusingacathode ray tube; howeverhe hadnevermanagedtoisolate positive particles.Asa result,Thomsontheorizedthatthe positive material inthe atom mustformsomethinglike the “batter” ina plumpudding,while the negative electronsmustbe scatteredthroughthis“batter.”(If you’ve neverseenor tasteda plumpudding,youcan thinkof a chocolate chip cookie instead.Inthatcase,the positive materialinthe atom wouldbe the “batter”in the chocolate chipcookie, while the negativeelectronswouldbe scatteredthrough the batter like chocolate chips.) Notice how easyit wouldbe topickthe piecesof fruitoutof a plumpudding.Onthe otherhand,it wouldbe a lotharderto pick the batterout of the plumpudding,because the batteris everywhere.If anatomwere similartoa plumpuddinginwhichthe electronsare scatteredthroughoutthe “batter”of positive material,thenyou’dexpectitwouldbe easyto pickout the electrons,buta lotharderto pickout the positive material. Thomson’splumpuddingmodel
  • 48. was muchlike a chocolate chip cookie. Notice howthe chocolate chipsare the negativelycharged electrons,while the positivecharge isspreadthroughoutthe entire 31 www.ck12.org J.J.Thomsonhad measuredthe charge tomass ratioof the electron,buthadbeen unable toaccuratelymeasure the charge on the electron.Withhisoil dropexperiment,Robert Millikanwasable toaccuratelymeasure the charge of the electron.Whencombinedwiththe charge to massratio,he wasable to calculate the massof the electron.WhatMillikan didwas to put a charge ontinydropletsof oil andmeasuredtheirrate of descent.Byvaryingthe charge ondifferentdrops,he noticedthatthe electricchargesonthe drops were all multiples of 1.6x10-19 C, the charge ona single electron. Rutherford’sNuclearModel EverythingaboutThomson’sexperimentssuggested the “plumpudding”model wascorrect – butaccording to the scientificmethod,anynewtheoryormodel shouldbe tested by furtherexperimentationandobservation.Inthe case of the “plumpudding”model,itwouldtake amannamedErnest Rutherfordtoprove itinaccurate.Rutherfordandhis experimentswill be the topicof the nextsection. DisprovingThomson’s“plumpudding”modelbegan withthe discoverythatan elementknownasuraniumemits positivelychargedparticlescalledalphaparticlesasit undergoesradioactivedecay.Radioactive decayoccurswhen one elementdecomposesintoanotherelement.Itonlyhappens witha fewvery unstable elements.Alphaparticlesthemselves didn’tprove anythingaboutthe structure of the atom, they
  • 49. were,however,usedtoconductsome veryinterestingexperiments. ErnestRutherfordwasfascinatedbyall aspectsof alphaparticles.Forthe most part, though,he seemedtoviewalphaparticlesastinybulletsthathe coulduse tofire at all kinds of differentmaterials.One experimentinparticular,however,surprisedRutherford,and everyone else. Rutherfordfoundthat whenhe firedalphaparticles at a verythinpiece of gold foil,aninterestingthing happened.Almostall of the alphaparticleswentstraight throughthe foil as if they’d hitnothingat all.Thiswas whathe expectedtohappen. If Thomson’smodel was accurate,there was nothing hard enoughforthese small particlestohitthat would cause any change in their motion. Everyso often, though,one of the alpha particleswouldbe deflected ErnestRutherford ErnestRutherford'sGoldFoil Experimentinwhichalphaparticleswere shotat a piece of goldfoil. Mostof the particleswentstraightthrough,but some bouncedstraightback,indicatingtheywere hittingaverysmall,very dense particle inthe atom. CC – Tracy Poulsen32
  • 50. www.ck12.org slightlyasif ithad bouncedoff of somethinghard.Evenlessoften,Rutherfordobserved alphaparticlesbouncingstraightbackat the “gun” fromwhichtheyhad beenfired!Itwasas if these alphaparticleshadhita wall “head-on”andhadricochetedrightback inthe direction that theyhad come from. Rutherfordthoughtthatthese experimental resultswereratherodd.Rutherford describedfiringalphaparticlesatgoldfoil like shootingahigh-poweredrifle attissue paper. Wouldyoueverexpectthe bulletstohitthe tissue paperandbounce backat you?Of course not!The bulletswouldbreakthroughthe tissuepaperandkeepongoing,almostasif they’d hitnothingat all.That’swhat Rutherfordhadexpectedwouldhappenwhenhe firedalpha particlesatthe goldfoil.Therefore,the factthatmostalphaparticlespassedthroughdidn’t shockhim.On the otherhand,how couldhe explainthe alphaparticlesthatgotdeflected? Furthermore,howcouldhe explainthe alphaparticlesthatbouncedrightbackasif they’dhit a wall? Rutherforddecidedthatthe onlywaytoexplainhisresultswastoassume that the positive matterformingthe goldatomswasnot,infact,distributedlikethe batterinplum pudding,butrather,wasconcentratedinone spot,forminga small positivelychargedparticle somewhere inthe centerof the goldatom.We now call thisclumpof positivelycharged mass the nucleus.AccordingtoRutherford,the presence of anucleusexplainedhis experiments,because itimpliedthatmostalphaparticlespassedthroughthe goldfoil without hittinganythingatall.Once ina while,though,the alphaparticleswould actuallycollide witha goldnucleus,causingthe alphaparticlestobe deflected,oreventobounce rightback inthe directiontheycame from. While Rutherford’sdiscoveryof the positively chargedatomic nucleusofferedinsightintothe structure of the atom, italsoledto some questions.Accordingtothe “plumpudding”model,electronswerelikeplumsembedded inthe positive “batter”of the atom.Rutherford’smodel, though,suggestedthatthe positivecharge wasn’tdistributed like batter,butrather,wasconcentratedintoa tinyparticle at the centerof the atom,while mostof the restof the atom was
  • 51. emptyspace.What didthat meanforthe electrons?If they weren’tembeddedinthe positivematerial,exactlywhatwere theydoing?Andhowwere theyheldinthe atom?Rutherford suggestedthatthe electronsmightbe circlingor“orbiting” the positivelychargednucleusassome type of negatively chargedcloud,but at the time,there wasn’tmuchevidenceto suggestexactlyhowthe electronswereheldinthe atom. Despite the problemsandquestionsassociatedwith Rutherford’sexperiments,hisworkwithalphaparticlesdefinitelyseemedtopointtothe existence of anatomic“nucleus.”BetweenJ.J.Thomson,whodiscoveredthe electron,and Rutherford,whosuggestedthatthe positive chargesinanatomwere concentratedatthe atom’scenter,the 1890s andearly1900s saw huge stepsinunderstandingthe atomat the “subatomic”(orsmallerthanthe size of an atom) level.Althoughthere wasstill some uncertaintywithrespecttoexactlyhowsubatomicparticleswere organizedinthe atom, it was becomingmore andmore obviousthatatomswere indeeddivisible.Moreover,itwas clearthat an atom containsnegativelychargedelectronsandanucleuscontainingpositive Rutherfordsuggestedthat electronssurrounda central nucleus. (Obtainedfrom: http://upload.wikimedia.org/wiki pedia/commons/7/7d/Rutherford sches_Atommodell.png) 33 www.ck12.org charges.In the nextsection,we’ll lookmore carefullyatthe structure of the nucleus,and we’ll learnthatwhile the atomismade upof positive andnegative particles,italsocontains neutral particlesthatneitherThomson,norRutherford,were able todetectwiththeir experiments.
  • 52. LessonSummary Dalton’sAtomicTheorywasn’tentirelycorrect.Itturnsout thatatoms can be divided intosmallersubatomicparticles. AccordingtoThomson’s“plumpudding”model,the negativelychargedelectronsin an atom are like the piecesof fruitinaplumpudding,while the positivelycharged material islike the batter. WhenErnestRutherfordfiredalphaparticlesatathingoldfoil,mostalphaparticles wentstraightthrough;however,afewwere scatteredatdifferentangles,andsome evenbouncedstraightback. Inorder to explainthe resultsof hisGoldFoil experiment,Rutherfordsuggestedthat the positive matterinthe goldatomswasconcentratedat the centerof the goldatom inwhat we nowcall the nucleusof the atom. Vocabulary Subatomicparticles:particlesthatare smallerthanthe atom Electron:a negativelychargedsubatomicparticle Proton:a positivelychargedsubatomicparticle Nucleus:the small,dense centerof the atom FurtherReading/Supplemental Material A short historyof the changesin ourmodel of the atom, an image of the plum puddingmodel,andananimationof Rutherford'sexperimentcanbe viewedatPlum PuddingandRutherfordPage (http://www.newcastle- schools.org.uk/nsn/chemistry/Radioactivity/Plub%20Pudding%20and%20Rutherford %20Page.htm). To see a videodocumentingthe earlyhistoryof the conceptof the atom, go to http://www.uen.org/dms/. Goto the k-12 library. Searchfor“historyof the atom”. Watch part 02. (youcan getthe username andpasswordfromyour teacher) VisionLearning:The EarlyDays(Thomson,etc) http://visionlearning.com/library/module_viewer.php?mid=50&l=&c3= Discoveryof Electron(YouTube):
  • 53. http://www.youtube.com/watch%3Fv%3DIdTxGJjA4Jw Thomson’sExperiment:http://www.aip.org/history/electron/jjthomson.htm Discoveryof AtomicNucleus(YouTube): http://www.youtube.com/watch%3Fv%3DwzALbzTdnc8 Rutherford’sExperiment: http://www.mhhe.com/physsci/chemistry/essentialchemistry/flash/ruther14.swf 2.2: ReviewQuestions Decide whethereachof the followingstatementsistrue orfalse. 1) Electrons(cathode rays) are positivelycharged. 34 www.ck12.org 2) Electrons(cathode rays) canbe repelledbyanegativelychargedmetal plate. 3) J.J.Thomsoniscreditedwiththe discoveryof the electron. 4) The plumpuddingmodel isthe currentlyacceptedmodel of the atom #5-11: Match each conclusionregardingsubatomicparticlesandatomswiththe observation/datathatsupportsit. Conclusion Observations 5) All atomshave electrons a. Most alphaparticlesshotat goldfoil gostraight through,withoutanychange intheirdirection. 6) Atomsare mostlyempty space. b. A fewalphaparticlesshotatgoldfoil bounce inthe opposite direction. 7) Electronshave anegative charge c. Some alphaparticles(withpositive charges)when shotthrough goldfoil bendawayfromthe gold. 8) The nucleusispositively
  • 54. charged d. Nomatter whichelementThomsonputina cathode ray tube,the same negative particleswiththe same properties(suchascharge & mass) were ejected. 9) Atomshave a small,dense nucleus e.The particlesejectedinThomson’sexperimentbent away fromnegativelychargedplates,buttoward positivelychargedplates. 10) What isthe name givento the tinyclumpof positive material atthe centerof an atom? 11) Electronsare ______ negativelychargedmetalsplatesand______ positivelycharged metal plates. Considerthe followingtwoparagraphsfor#12-14 Scientist1:Althoughatomswere once regardedasthe smallestpartof nature,theyare composedof evensmallerparticles. All atomscontainnegativelychargedparticles, calledelectrons. However,the total charge of anyatom iszero. Therefore,thismeans that there mustalsobe positive charge inthe atom. The electronssitina bedof positivelychargedmass. Scientist2:It is true that atomscontainsmallerparticles. However,the electronsare not floatingina bedof positive charge. The positivecharge islocatedinthe central part of the atom, ina verysmall,dense mass,called anucleus. The electronsare foundoutside of the nucleus. 12) What isthe maindispute betweenthe twoscientists’theories? 13) Anotherscientistwasable tocalculate the exactcharge of an electrontobe -1.6x10-19 C. What effectdoesthishave onthe claimsof Scientist1? (Pickone answer) a) Goesagainsthis claim b) Supportshisclaim
  • 55. c) Has noeffectonhisclaim. 14) If a positivelychargedparticle wasshotata thinsheetof goldfoil,whatwouldthe secondscientistpredictto happen? 35 www.ck12.org 2.3: Protons,Neutrons,andElectronsinAtoms Objectives Describe the locations,charges,andmassesandthe three mainsubatomicparticles. Define atomicnumber. Describe the size of the nucleusinrelationtothe size of the atom. Define massnumber. Explainwhatisotopesare andhowisotopesaffectanelement’satomicmass. Determine the numberof protons,neutrons,andelectronsinanatom. Introduction Dalton’sAtomicTheoryexplainedalotabout matter,chemicals,andchemical reactions.Nevertheless,itwasn’tentirelyaccurate,becausecontrarytowhat Daltonbelieved, atomscan, in fact,be brokenapartintosmallersubunitsorsubatomic particles.We have beentalkingaboutthe electroningreatdetail,butthere are twootherparticlesof interestto use:protonsand neutrons. Inthissection,we’lllookatthe atoma little more closely. Protons,Electrons,andNeutrons We alreadylearnedthatJ.J.Thomsondiscoveredanegativelychargedparticle,called the electron. Rutherfordproposedthatthese electronsorbitapositive nucleus. In subsequentexperiments,he foundthatthere isa smallerpositivelychargedparticlein the nucleuswhichiscalledaproton. There is a thirdsubatomicparticle,knownasaneutron. ErnestRutherfordproposedthe existence of aneutral particle,withthe approximate massof a proton.Years later,JamesChadwickprovedthatthe nucleusof the atomcontainsthis
  • 56. neutral particle thathadbeenproposedbyErnestRutherford. Chadwickobservedthatwhen berylliumisbombardedwithalphaparticles,it emitsanunknownradiationthathasapproximately the same mass as a proton,but no electrical charge. Chadwickwasable to prove thatthe beryllium emissionscontainedaneutral particle - Rutherford’s neutron. As youmighthave alreadyguessedfromits name,the neutronisneutral.Inotherwords,ithas no charge whatsoever,andistherefore neither attractedto nor repelledfromotherobjects. Neutronsare ineveryatom(withone exception), and they’re boundtogetherwithotherneutronsand protonsinthe atomicnucleus. Before we move on,we must discusshow the differenttypesof subatomicparticles interactwitheachother.Whenit comesto neutrons,the answerisobvious.Since neutrons are neitherattractedto,norrepelledfromobjects,theydon’treallyinteractwithprotonsor electrons (beyondbeingboundintothe nucleuswiththe protons). Eventhoughelectrons,protons,andneutronsare all typesof subatomicparticles,they are notall the same size.Whenyoucompare the massesof electrons,protonsandneutrons, whatyou findis that electronshave anextremelysmallmass,comparedtoeitherprotonsor neutrons.Onthe otherhand,the massesof protonsandneutronsare fairlysimilar,although technically,the massof aneutronisslightlylargerthanthe massof a proton.Because Electronsare much smallerthan protonsor neutrons. If an electronwas the mass of a penny,aprotonor a neutronwouldhave the massof a large bowlingball! 36 www.ck12.org protonsand neutronsare so much
  • 57. more massive thanelectrons,almost all of the massof any atomcomes fromthe nucleus,whichcontainsall of the neutronsandprotons. The table showngivesthe propertiesandlocationsof electrons, protons,andneutrons.The third columnshowsthe massesof the three subatomicparticlesingrams.The secondcolumn,however,showsthe massesof the three subatomicparticlesin“atomicmass units”.Anatomicmass unit(amu) isdefinedasone-twelfththe massof acarbon-12 atom. Atomicmassunits(amu) are useful,because,asyoucan see,the massof a proton and the mass of a neutronare almostexactly1.0 inthisunitsystem. In additiontomass,anotherimportantpropertyof subatomicparticlesistheircharge. You alreadyknowthatneutronsare neutral,andthus have nocharge at all.Therefore,we say that neutronshave acharge of zero.What aboutelectronsandprotons?Youknow that electronsare negativelychargedandprotonsare positivelycharged,butwhat’samazingis that the positive charge ona protonis exactlyequal inmagnitude(magnitudemeans “absolute value”or“size whenyouignore positive andnegative signs”) tothe negative charge onan electron. The thirdcolumninthe table showsthe chargesof the three subatomicparticles.Notice thatthe charge onthe proton andthe charge on the electronhave the same magnitude. Negative andpositive chargesof equal magnitude cancel eachotherout.Thismeans that the negative charge onan electronperfectlybalancesthe positive charge onthe proton. In otherwords,a neutral atommust have exactlyone electronforeveryproton.If aneutral atom has 1 proton,it musthave 1 electron.If aneutral atom has2 protons,itmust have 2 electrons.If aneutral atomhas 10 protons,it musthave 10 electrons.Yougetthe idea.In orderto be neutral,anatommust have the same numberof electronsandprotons. AtomicNumberandMass Number Scientistscandistinguish
  • 58. betweendifferentelementsbycounting the numberof protons.If an atomhas onlyone proton,we knowit’sa hydrogenatom.Anatom withtwo protonsisalwaysa heliumatom. If scientistscountfourprotonsinan atom, theyknowit’sa berylliumatom. An atom withthree protonsisa lithium atom,an atom withfive protonsisa boronatom, an atomwithsix protonsis a carbon atom… the listgoeson. Since an atomof one element can be distinguishedfromanatomof anotherelementbythe numberof It isdifficulttofindqualitiesthat are differentfromeach elementanddistinguishonelementfromanother. Each element,however,doeshave aunique numberof protons. Sulfurhas16 protons,siliconhas14 protons,andgoldhas 79 protons. Sub-AtomicParticles,PropertiesandLocation Particle Relative Mass (amu) Electric Charge Location electron -1 outside the nucleus
  • 59. proton 1 +1 nucleus neutron 1 0 nucleus 37 www.ck12.org protonsinits nucleus,scientistsare alwaysinterestedinthisnumber,andhow thisnumber differsbetweendifferentelements.Therefore,scientistsgive thisnumberaspecial name.An element’satomicnumberisequal tothe numberof protonsinthe nuclei of anyof itsatoms. The periodictable givesthe atomicnumberof eachelement.The atomicnumberisawhole numberusuallywrittenabovethe chemical symbol of eachelement.The atomicnumberfor hydrogenis1, because everyhydrogenatomhas1 proton.The atomic numberforheliumis2 because everyheliumatomhas2 protons.What is the atomicnumberof carbon? Of course,since neutral atomshave tohave one electronforeveryproton,an element’satomicnumberalsotellsyouhow manyelectronsare ina neutral atomof that element.Forexample,hydrogenhasanatomic numberof 1. Thismeansthat an atom of hydrogenhasone proton,and,if it’sneutral,one electronaswell.Gold,onthe otherhand, has an atomicnumberof 79, whichmeansthat an atomof goldhas 79 protons,and,if it’s neutral,and79 electronsaswell. The mass numberof an atom isthe total numberof protonsand neutronsinits nucleus.Whydoyou thinkthatthe “mass number”includesprotonsandneutrons,butnot electrons?Youknowthatmost of the mass of an atomis concentratedinitsnucleus.The mass of an atom dependsonthe numberof protonsandneutrons.Youhave alreadylearned that the mass of an electronisvery,verysmall comparedtothe massof eitheraproton or a neutron(like the massof a pennycomparedtothe mass of a bowlingball).Countingthe numberof protonsand neutronstellsscientistsaboutthe total massof an atom. mass numberA = (numberof protons) +(numberof neutrons) An atom’smassnumberisa veryeasyto calculate providedyouknow the numberof protons and neutronsinanatom. Example:
  • 60. What isthe massnumberof an atom of heliumthatcontains2 neutrons? Solution: (numberof protons) = 2 (Rememberthatanatom of heliumalwayshas2 protons.) (numberof neutrons) =2 mass number= (numberof protons) +(numberof neutrons) mass number= 2 + 2 = 4 There are twomainwaysin whichscientistsfrequentlyshow the massnumberof an atom theyare interestedin. Itisimportanttonote that the mass numberisnot givenonthe periodictable. These twowaysincludewritinganuclearsymbol orby givingthe name of the elementwiththe massnumberwritten. To write a nuclearsymbol,the massnumberisplacedatthe upperleft(superscript) of the chemical symbol andthe atomicnumberisplacedatthe lowerleft(subscript) of the symbol.The complete nuclearsymbol forhelium-4isdrawnbelow. The followingnuclearsymbolsare foranickel nucleuswith31neutronsanda uranium nucleuswith146 neutrons. 38 www.ck12.org In the nickel nucleusrepresentedabove,the atomicnumber28indicatesthe nucleuscontains 28 protons,and therefore,itmustcontain31neutronsinordertohave a massnumberof 59. The uraniumnucleushas92 protonsas do all uraniumnuclei andthisparticularuranium nucleushas146 neutrons. The other wayof representingthesenucleiwouldbe Nickel-59andUranium-238, where 59 and 238 are the massnumbersof the two atoms,respectively. Note thatthe mass numbers(notthe numberof neutrons) isgiventothe side of the name. Isotopes Unlike the numberof protons,whichisalwaysthe same inatomsof the same element,the numberof neutronscanbe different,eveninatomsof the same element.Atoms
  • 61. of the same element,containingthe same numberof protons,butdifferentnumbersof neutronsare knownas isotopes. Since the isotopesof anygivenelementall containthe same numberof protons,theyhave the same atomicnumber(forexample,the atomicnumberof heliumisalways2).However,since the isotopesof agivenelementcontaindifferent numbersof neutrons,differentisotopeshave differentmassnumbers.The followingtwo examplesshouldhelptoclarifythispoint. Example: a) What isthe atomic numberandthe mass numberof an isotope of lithiumcontaining3 neutrons.A lithiumatomcontains3protonsin itsnucleus. b) What isthe atomicnumberand the mass numberof an isotope of lithiumcontaining4 neutrons.A lithiumatomcontains3protonsin itsnucleus. Solution: a) atomicnumber= (numberof protons) = 3 (numberof neutrons) =3 mass number= (numberof protons) +(numberof neutrons) mass number= 3 + 3 = 6 b) atomic number= (numberof protons) = 3 (numberof neutrons) =4 mass number= (numberof protons) +(numberof neutrons) mass number= 3 + 4 = 7 Notice thatbecause the lithiumatomalwayshas3 protons,the atomicnumberfor lithiumisalways3.The mass number,however,is6 inthe isotope with3 neutrons,and7 in the isotope with4 neutrons.Innature,onlycertainisotopesexist.Forinstance,lithiumexists as an isotope with3 neutrons,andasan isotope with4 neutrons,butitdoesn’texistsasan isotope with2neutrons,oras an isotope with5neutrons. Thiswhole discussionof isotopesbringsusbackto Dalton’sAtomicTheory. Accordingto Dalton,atomsof a givenelementare identical.Butif atomsof a givenelement can have differentnumbersof neutrons,thentheycanhave differentmassesaswell!How
  • 62. didDaltonmissthis?It turnsout that elementsfoundinnature existasconstantuniform mixturesof theirnaturallyoccurringisotopes.Inotherwords,apiece of lithiumalways containsbothtypesof naturallyoccurringlithium(the type with3neutronsandthe type with 39 www.ck12.org 4 neutrons).Moreover,italwayscontainsthe twointhe same relativeamounts(or“relative abundances”).Ina chunkof lithium,93%will alwaysbe lithiumwith4neutrons,while the remaining7%will alwaysbe lithiumwith3neutrons. Daltonalwaysexperimentedwithlarge chunksof anelement –chunksthat contained all of the naturallyoccurringisotopesof thatelement.Asaresult,whenhe performedhis measurements,he wasactuallyobservingthe averagedpropertiesof all the differentisotopes inthe sample.Formostof our purposesinchemistry, we willdothe same thinganddeal withthe average massof the atoms. Luckily,aside fromhavingdifferentmasses,mostother propertiesof differentisotopesare similar. We can use whatwe knowaboutatomic numberandmassnumberto findthe numberof protons,neutrons,andelectronsinanygivenatomorisotope. Considerthe followingexamples: Example:Howmanyprotons,electrons,andneutronsare inanatom of ? Solution: Findingthe numberof protonsissimple. The atomicnumber,#of protons,islistedinthe bottomrightcorner. # protons= 19. For all atomswithno charge,the numberof electronsisequal tothe numberof protons. # electrons=19. The mass number,40, is the sumof the protonsand the neutrons. To findthe # of neutron, subtract the numberof protonsfromthe massnumber. # neutrons= 40 – 19 = 21. Example:Howmanyprotons,electrons,andneutronsinanatomof zinc-65? Solution: Findingthe numberof protonsissimple. The atomicnumber,#of protons,isfoundon the periodictable. All zincatomshave # protons= 30.
  • 63. For all atomswithno charge,the numberof electronsisequal tothe numberof protons. # electrons =30. The mass number,65, is the sumof the protonsand the neutrons. To findthe # of neutron, subtract the numberof protonsfromthe massnumber. # neutrons= 65 – 30 = 35. LessonSummary Electronsare a type of subatomicparticle withanegative charge. Protonsare a type of subatomicparticle withapositive charge.Protonsare bound togetherinan atom’snucleusasa resultof the strongnuclearforce. Neutronsare a type of subatomicparticle withnocharge (they’re neutral).Like protons,neutronsare boundintothe atom’snucleusasa resultof the strongnuclear force. Protonsandneutronshave approximatelythe same mass,buttheyare bothmuch more massive thanelectrons(approximately2,000 timesasmassive asan electron). The positive charge ona protonis equal inmagnitude tothe negative charge onan electron.Asa result,aneutral atommust have an equal numberof protonsand electrons. Each elementhasaunique numberof protons.Anelement’satomicnumberisequal to the numberof protonsin the nuclei of anyof itsatoms. The mass numberof an atom isthe sum of the protonsand neutronsinthe atom 40 www.ck12.org Isotopesare atomsof the same element(same numberof protons) thathave different numbersof neutronsintheiratomicnuclei. Vocabulary Neutron:asubatomicparticle withnocharge Atomicmassunit(amu):a unitof mass equal toone-twelfththe massof a carbon- twelve atom Atomicnumber:the numberof protonsinthe nucleusof an atom Mass number:the total numberof protonsand neutronsinthe nucleusof anatom Isotopes:atomsof the same elementthathave the same numberof protonsbut
  • 64. differentnumbersof neutrons FurtherReading/Supplemental Material JeopardyGame: http://www.quia.com/cb/36842.html For a Bill Nye videoonatoms,goto http://www.uen.org/dms/. Goto the k-12 library. Searchfor “Bill Nye atoms”. (youcan getthe username andpasswordfrom your teacher) 2.3: ReviewQuestions Label eachof the followingstatementsastrue or false. 1) The nucleusof an atomcontainsall of the protonsinthe atom. 2) The nucleusof an atomcontainsall of the electronsinthe atom. 3) Neutral atomsmustcontainthe same numberof neutronsasprotons. 4) Neutral atomsmustcontainthe same numberof electronsasprotons. Match the subatomicpropertywithitsdescription. Sub-AtomicParticle Characteristics 5) electron a. has a charge of +1 6) neutron b.has a massof approximately1/1840 amu 7) proton c. isneitherattractedto,nor repelledfromchargedobjects Indicate whethereachstatementistrue orfalse. 8) Anelement’satomicnumberisequal tothe numberof protonsinthe nuclei of anyof its atoms. 9) A neutral atom with4 protonsmusthave 4 electrons. 10) Anatom with7 protonsand 7 neutronswill have amassnumberof 14. 11) Anatom with7 protonsand 7 neutronswill have anatomicnumberof 14. 12) A neutral atom with7 electronsand7 neutronswill have anatomicnumberof 14. Use the periodictable tofindthe symbol forthe elementwith:
  • 65. 13) 44 electronsinaneutral atom 14) 30 protons 15) Anatomicnumberof 36 41 www.ck12.org In the table below,Column1containsdatafor 5 differentelements.Column2containsdata for the same 5 elements,howeverdifferentisotopesof those elements.Matchthe atomin the firstcolumnto itsisotope inthe secondcolumn. Original element Isotopeof the same element 16) an atomwith2 protonsand 1 neutron a. a C (carbon) atomwith6 neutrons 17) a Be (beryllium) atomwith5neutrons b. an atom with2 protonsand 2 neutrons 18) an atomwithan atomic numberof 6 and mass numberof 13 c. an atomwithan atomicnumberof 7 and a mass numberof 15 19) an atomwith1 protonand a mass numberof 1 d. an atom withan atomicnumberof 1 and 1 neutron 20) an atomwithan atomic numberof 7 and 7 neutrons e. an atomwithan atomic numberof 4 and 6 neutrons Write the nuclearsymbol foreach elementdescribed: 21) 32 neutronsinan atomwithmass numberof 58