SlideShare uma empresa Scribd logo
1 de 18
Baixar para ler offline
Estudos de Controle
– Modelagem (1)
1
Modelos Matemáticos
• Modelagem matemática de sistemas dinâmicos:
• Analisar características dinâmicas.
• São conjuntos de equações que representam
com precisão ou razoavelmente bem a dinâmica
do sistema.
• Não é único. Geralmente utilizam-se equações
diferenciais.
• É considerada a parte mais importante da análise
de sistemas de controle.
2
Propriedades
• Sistemas lineares:
• Definição: um sistema é dito linear se o
princípio da superposição se aplicar a ele. Ou
seja, a resposta produzida pela aplicação
simultânea de duas funções diversas é a soma
das duas respostas individuais.
• Nesses sistemas, a resposta para cada entrada
pode ser calculada tratando uma de cada vez e
somando o resultado.
• Geralmente, se causa e efeito são
proporcionais, o sistema é linear. 3
Propriedades
• Sistemas lineares invariantes no tempo:
• Os sistemas dinâmicos cujos coeficientes das
equações diferenciais são constantes são
chamados de sistemas lineares invariantes no
tempo.
• Exemplo: termostato.
• Sistemas lineares variantes no tempo:
• São os sistemas cujos coeficientes das
equações diferenciais variam no tempo.
• Exemplo: veículo espacial (massa).
4
Função de transferência
• Caracterizam as relações de entrada e saída dos
sistemas.
• Geralmente escritas por equações diferenciais
lineares invariantes no tempo.
• Definição: relação entre a transformada de
Laplace da saída (função de resposta) e a
transformada de Laplace da entrada (função de
excitação), admitindo-se as condições iniciais
nulas.
5
Função de transferência
• Dada a equação diferencial de um sistema linear
invariante no tempo:
𝑎0
𝑑 𝑛 𝑦
𝑑𝑡 𝑛 + 𝑎1
𝑑 𝑛−1 𝑦
𝑑𝑡 𝑛−1 + … + 𝑎 𝑛−1
𝑑𝑦
𝑑𝑡
+ 𝑎 𝑛 𝑦 =
𝑏0
𝑑 𝑚 𝑥
𝑑𝑡 𝑚 + 𝑏1
𝑑 𝑚−1 𝑥
𝑑𝑡 𝑚−1 + ⋯ + 𝑏 𝑚−1
𝑑𝑥
𝑑𝑡
+ 𝑏 𝑚 𝑥
onde 𝑛 ≥ 𝑚, y é a saída do sistema e x é a entrada.
Então, a função de transferência é
𝐺 𝑠 =
𝑌(𝑠)
𝑋(𝑠)
=
𝑏0 𝑠 𝑚 + 𝑏1 𝑠 𝑚−1 + ⋯ 𝑏 𝑚−1 𝑠 + 𝑏 𝑚
𝑎0 𝑠 𝑛 + 𝑎1 𝑠 𝑛−1 + ⋯ 𝑎 𝑛−1 𝑠 + 𝑎 𝑛 6
Função de transferência
• Muito utilizada na análise e projeto de sistemas
lineares invariantes no tempo.
• É um método operacional para expressar a
equação diferencial que relaciona a variável de
saída à variável de entrada.
• É uma propriedade inerente ao sistema,
independentemente da magnitude e da natureza
da função de entrada.
• Não fornece nenhuma informação relativa à
estrutura física do sistema. 7
Função de transferência
• Permite estudar a saída do sistema para várias
maneiras de entrada, fornecendo informações
da natureza do sistema.
• Se a função de transferência não é conhecida,
ela pode ser determinada experimentalmente
com o auxílio de entradas conhecidas e análise
das respectivas respostas do sistema.
8
Função de transferência
• Exemplo:
• Sistema de controle de posição de um satélite,
considerando apenas um eixo. Dois jatos
localizados em A e B aplicam força de reação
para girar o corpo, com empuxo igual a
𝐹
2
e o
torque resultante seja T=Fl.
9
Função de transferência
• Exemplo:
• Como os jatos são aplicados por um certo
tempo, o torque é uma função do tempo 𝑇 𝑡 .
• O momento de inércia em relação ao eixo de
rotação no centro da massa é J.
• Obtenha a função de transferência admitindo
que a entrada é o torque 𝑇 𝑡 e o
deslocamento angular 𝜃(𝑡) é a saída.
10
Função de transferência
• Exemplo:
• Aplicando a segunda lei de Newton:
𝑇 𝑡 = 𝐽
𝑑2 𝜃(𝑡)
𝑑𝑡2
• Transformada de Laplace:
𝑇 𝑠 = 𝐽𝑠2
𝜃(𝑠)
• Função de transferência:
𝐺 𝑠 =
𝜃(𝑠)
𝑇 (𝑠)
=
1
𝐽𝑠2
11
Função de transferência
• Integral de Convolução
• Dada a função de transferência, podemos
escrevê-la também da seguinte forma
𝑌 𝑠 = 𝐺 𝑠 𝑋(𝑠)
• Que equivale no domínio do tempo a integral
de convolução
𝑦 𝑡 = 𝑔 𝑡 − 𝜏 𝑥 𝜏 𝑑𝜏
𝑡
0
12
Função de transferência
• Função de resposta impulsiva:
• A saída de um sistema a um impulso unitário
com condições iniciais nula é dado por
𝑌 𝑠 = 𝐺(𝑠)
• No domínio do tempo g(t) é chamada de
função de resposta impulsiva, que também é
chamada de função característica do sistema.
• Logo, é possível obter informações sobre as
características dinâmicas do sistema por meio
da excitação por um impulso de entrada. 13
Função de transferência
• Diagrama de blocos:
• Representação gráfica das funções
desempenhadas por cada componente e o
fluxo de sinais entre eles.
• Blocos funcionais – símbolo da operação
matemática aplicada ao sinal de entrada do
bloco, produzindo uma saída.
• Somador e ponto de ramificação.
14
G(s)
Função de transferência
• Diagrama de blocos de um sistema de malha
fechada:
• Quando a saída é realimentada para comparação
com a entrada, é necessário converter a forma
do sinal de saída à do sinal de entrada.
• Elemento de realimentação, cuja função de
transferência é H(s).
15
Função de transferência
• Função de transferência de malha aberta:
• Relação entre o sinal de realimentação e o
sinal de erro atuante.
𝐵(𝑠)
𝐸(𝑠)
= 𝐺 𝑠 𝐻(𝑠)
• Função de transferência do ramo direto:
• Relação entre o sinal de saída e o sinal de erro
atuante.
𝐶(𝑠)
𝐸(𝑠)
= 𝐺 𝑠 16
Função de transferência
• Malha fechada
• Relaciona o sinal de saída e o sinal de entrada.
𝐶(𝑠)
𝑅(𝑠)
=
𝐺(𝑠)
1 + 𝐺 𝑠 𝐻(𝑠)
17
Obrigada!
ays@icmc.usp.br
www.lsec.icmc.usp.br
18

Mais conteúdo relacionado

Mais procurados

Corrente elétrica
Corrente elétricaCorrente elétrica
Corrente elétricafisicaatual
 
Transformadores
TransformadoresTransformadores
TransformadoresPablyne RC
 
Instrumentos de medidas_eletricas2
Instrumentos de medidas_eletricas2Instrumentos de medidas_eletricas2
Instrumentos de medidas_eletricas2cccccccccc315
 
Aula 11 associação de resistores
Aula 11   associação de resistoresAula 11   associação de resistores
Aula 11 associação de resistoresMontenegro Física
 
Apostila eletricidade senai
Apostila eletricidade senaiApostila eletricidade senai
Apostila eletricidade senaicomentada
 
Resistencia dos-materiais-para-entender-
Resistencia dos-materiais-para-entender-Resistencia dos-materiais-para-entender-
Resistencia dos-materiais-para-entender-Ma Dos Anjos Pacheco
 
exercicios thevenin e norton
exercicios thevenin e nortonexercicios thevenin e norton
exercicios thevenin e nortonMarina Sartori
 
Termodinâmica (entropia e diagrama)
Termodinâmica (entropia e diagrama)Termodinâmica (entropia e diagrama)
Termodinâmica (entropia e diagrama)Valter Bravim Jr.
 
Eletropneumática e eletro hidráulica i
Eletropneumática e eletro hidráulica iEletropneumática e eletro hidráulica i
Eletropneumática e eletro hidráulica iCesar Loureiro
 
Medidas eletricas
Medidas eletricasMedidas eletricas
Medidas eletricasValdir Ce
 

Mais procurados (20)

Geradores E Receptores
Geradores E ReceptoresGeradores E Receptores
Geradores E Receptores
 
Corrente elétrica
Corrente elétricaCorrente elétrica
Corrente elétrica
 
Transformadores
TransformadoresTransformadores
Transformadores
 
Aula 04 - Lei de ohm
Aula 04 - Lei de ohmAula 04 - Lei de ohm
Aula 04 - Lei de ohm
 
A resistência elétrica
A resistência elétricaA resistência elétrica
A resistência elétrica
 
Instrumentos de medidas_eletricas2
Instrumentos de medidas_eletricas2Instrumentos de medidas_eletricas2
Instrumentos de medidas_eletricas2
 
Leis de ohm
Leis de ohmLeis de ohm
Leis de ohm
 
Aula 11 associação de resistores
Aula 11   associação de resistoresAula 11   associação de resistores
Aula 11 associação de resistores
 
Estudos de Controle - Aula 7: Análise de Resposta Transitória e de Regime Est...
Estudos de Controle - Aula 7: Análise de Resposta Transitória e de Regime Est...Estudos de Controle - Aula 7: Análise de Resposta Transitória e de Regime Est...
Estudos de Controle - Aula 7: Análise de Resposta Transitória e de Regime Est...
 
Estudos de Controle - Aula 5: Espaço de Estados
Estudos de Controle - Aula 5: Espaço de EstadosEstudos de Controle - Aula 5: Espaço de Estados
Estudos de Controle - Aula 5: Espaço de Estados
 
Apostila eletricidade senai
Apostila eletricidade senaiApostila eletricidade senai
Apostila eletricidade senai
 
Resistencia dos-materiais-para-entender-
Resistencia dos-materiais-para-entender-Resistencia dos-materiais-para-entender-
Resistencia dos-materiais-para-entender-
 
02 geradores e receptores eletricos
02  geradores e receptores eletricos02  geradores e receptores eletricos
02 geradores e receptores eletricos
 
exercicios thevenin e norton
exercicios thevenin e nortonexercicios thevenin e norton
exercicios thevenin e norton
 
Corrente alternada
Corrente alternadaCorrente alternada
Corrente alternada
 
Termodinâmica (entropia e diagrama)
Termodinâmica (entropia e diagrama)Termodinâmica (entropia e diagrama)
Termodinâmica (entropia e diagrama)
 
7 indutores
7 indutores7 indutores
7 indutores
 
Eletropneumática e eletro hidráulica i
Eletropneumática e eletro hidráulica iEletropneumática e eletro hidráulica i
Eletropneumática e eletro hidráulica i
 
Medidas eletricas
Medidas eletricasMedidas eletricas
Medidas eletricas
 
Circuitos RL
Circuitos RLCircuitos RL
Circuitos RL
 

Destaque

Doc modelagem _492246747
Doc modelagem _492246747Doc modelagem _492246747
Doc modelagem _492246747Peterson Silva
 
Controle Digital de Velocidade de um Motor CC usando Matlab®
Controle Digital de Velocidade de um Motor CC usando Matlab®Controle Digital de Velocidade de um Motor CC usando Matlab®
Controle Digital de Velocidade de um Motor CC usando Matlab®Gerson Roberto da Silva
 
Fundam. controle processo
Fundam. controle processoFundam. controle processo
Fundam. controle processoEverton_michel
 
Transferencia de massa livro
Transferencia de massa livroTransferencia de massa livro
Transferencia de massa livroLuciano Costa
 
Ce aula 05 máquina cc
Ce aula 05 máquina ccCe aula 05 máquina cc
Ce aula 05 máquina ccIgor Fortal
 
[Livro]fundamentos de transferencia de calor e de massa incropera (1)
[Livro]fundamentos de transferencia de calor e de massa incropera (1)[Livro]fundamentos de transferencia de calor e de massa incropera (1)
[Livro]fundamentos de transferencia de calor e de massa incropera (1)Yves Garnard
 

Destaque (20)

Estudos de Controle - Aula 2: Laplace
Estudos de Controle - Aula 2: LaplaceEstudos de Controle - Aula 2: Laplace
Estudos de Controle - Aula 2: Laplace
 
Estudos de Controle - Aula 6: Revisão
Estudos de Controle - Aula 6: RevisãoEstudos de Controle - Aula 6: Revisão
Estudos de Controle - Aula 6: Revisão
 
Tutorial: Instalação do Linaro Ubuntu na Gumstix Overo® Fire COM
Tutorial: Instalação do Linaro Ubuntu na Gumstix Overo® Fire COMTutorial: Instalação do Linaro Ubuntu na Gumstix Overo® Fire COM
Tutorial: Instalação do Linaro Ubuntu na Gumstix Overo® Fire COM
 
Estudos de Controle - Aula 1: Introdução
Estudos de Controle - Aula 1: IntroduçãoEstudos de Controle - Aula 1: Introdução
Estudos de Controle - Aula 1: Introdução
 
Estudos de Controle - Aula 10: Análise de Resposta Transitória e de Regime Es...
Estudos de Controle - Aula 10: Análise de Resposta Transitória e de Regime Es...Estudos de Controle - Aula 10: Análise de Resposta Transitória e de Regime Es...
Estudos de Controle - Aula 10: Análise de Resposta Transitória e de Regime Es...
 
Estudos de Controle - Aula 11: Análise de Resposta Transitória e de Regime Es...
Estudos de Controle - Aula 11: Análise de Resposta Transitória e de Regime Es...Estudos de Controle - Aula 11: Análise de Resposta Transitória e de Regime Es...
Estudos de Controle - Aula 11: Análise de Resposta Transitória e de Regime Es...
 
Estudos de Controle - Aula 9: Análise de Resposta Transitória e de Regime Est...
Estudos de Controle - Aula 9: Análise de Resposta Transitória e de Regime Est...Estudos de Controle - Aula 9: Análise de Resposta Transitória e de Regime Est...
Estudos de Controle - Aula 9: Análise de Resposta Transitória e de Regime Est...
 
Doc modelagem _492246747
Doc modelagem _492246747Doc modelagem _492246747
Doc modelagem _492246747
 
A&M modas
A&M modasA&M modas
A&M modas
 
Alto verão 2016 - Malharia novos artigos
Alto verão 2016 - Malharia novos artigosAlto verão 2016 - Malharia novos artigos
Alto verão 2016 - Malharia novos artigos
 
Controle Digital de Velocidade de um Motor CC usando Matlab®
Controle Digital de Velocidade de um Motor CC usando Matlab®Controle Digital de Velocidade de um Motor CC usando Matlab®
Controle Digital de Velocidade de um Motor CC usando Matlab®
 
Motor CC no Matlab
Motor CC no MatlabMotor CC no Matlab
Motor CC no Matlab
 
Fundam. controle processo
Fundam. controle processoFundam. controle processo
Fundam. controle processo
 
Transferencia de massa livro
Transferencia de massa livroTransferencia de massa livro
Transferencia de massa livro
 
Ce aula 05 máquina cc
Ce aula 05 máquina ccCe aula 05 máquina cc
Ce aula 05 máquina cc
 
Desenvolvimento de sistemas embarcados
Desenvolvimento de sistemas embarcadosDesenvolvimento de sistemas embarcados
Desenvolvimento de sistemas embarcados
 
1modelagem ubá saia
1modelagem ubá saia1modelagem ubá saia
1modelagem ubá saia
 
Circuitos RLC
Circuitos RLCCircuitos RLC
Circuitos RLC
 
Modelo circuitos (RLC)
Modelo circuitos (RLC)Modelo circuitos (RLC)
Modelo circuitos (RLC)
 
[Livro]fundamentos de transferencia de calor e de massa incropera (1)
[Livro]fundamentos de transferencia de calor e de massa incropera (1)[Livro]fundamentos de transferencia de calor e de massa incropera (1)
[Livro]fundamentos de transferencia de calor e de massa incropera (1)
 

Semelhante a Estudos de Controle - Aula 3: Modelagem (1)

Sistemas 2009 1
Sistemas 2009 1Sistemas 2009 1
Sistemas 2009 1Eli Brito
 
Exercício 1 - Sistemas Discretos / Resposta em frequência
Exercício 1 - Sistemas Discretos / Resposta em frequênciaExercício 1 - Sistemas Discretos / Resposta em frequência
Exercício 1 - Sistemas Discretos / Resposta em frequênciaAlessandro Beda
 
Desenvolvimento análise de sistemas lineares
Desenvolvimento análise de sistemas linearesDesenvolvimento análise de sistemas lineares
Desenvolvimento análise de sistemas linearesMaique Mateus
 
Analise de funções de transferencia de malha fechada com Matlab
Analise de funções de transferencia de malha fechada com MatlabAnalise de funções de transferencia de malha fechada com Matlab
Analise de funções de transferencia de malha fechada com MatlabDavid Luna Santos
 
5 2 funcoes de transferencia
5 2   funcoes de transferencia5 2   funcoes de transferencia
5 2 funcoes de transferenciaPaulo Wanderley
 
Aula_07_Complexidade_de_Algoritmos.ppt
Aula_07_Complexidade_de_Algoritmos.pptAula_07_Complexidade_de_Algoritmos.ppt
Aula_07_Complexidade_de_Algoritmos.pptssuserd654cb1
 
Aula_07_Complexidade_de_Algoritmos (1).ppt
Aula_07_Complexidade_de_Algoritmos (1).pptAula_07_Complexidade_de_Algoritmos (1).ppt
Aula_07_Complexidade_de_Algoritmos (1).pptssuserd654cb1
 
Projeto de Controle de Posição entre veículos, Análise de Sistemas III
Projeto de Controle de Posição entre veículos, Análise de Sistemas IIIProjeto de Controle de Posição entre veículos, Análise de Sistemas III
Projeto de Controle de Posição entre veículos, Análise de Sistemas IIICiro Marcus
 
Controle con matlab - material adicional 1.pdf
Controle con matlab - material adicional 1.pdfControle con matlab - material adicional 1.pdf
Controle con matlab - material adicional 1.pdfCarlosAlexisAlvarado4
 
Sistemas de comunicação, digital, di.pdf
Sistemas de comunicação, digital, di.pdfSistemas de comunicação, digital, di.pdf
Sistemas de comunicação, digital, di.pdfBNBN31
 

Semelhante a Estudos de Controle - Aula 3: Modelagem (1) (20)

Sist cont i_conf2_2014
Sist cont i_conf2_2014Sist cont i_conf2_2014
Sist cont i_conf2_2014
 
Sistemas 2009 1
Sistemas 2009 1Sistemas 2009 1
Sistemas 2009 1
 
Exercício 1 - Sistemas Discretos / Resposta em frequência
Exercício 1 - Sistemas Discretos / Resposta em frequênciaExercício 1 - Sistemas Discretos / Resposta em frequência
Exercício 1 - Sistemas Discretos / Resposta em frequência
 
Aula 01
Aula 01Aula 01
Aula 01
 
Aula 01
Aula 01Aula 01
Aula 01
 
Desenvolvimento análise de sistemas lineares
Desenvolvimento análise de sistemas linearesDesenvolvimento análise de sistemas lineares
Desenvolvimento análise de sistemas lineares
 
Analise de funções de transferencia de malha fechada com Matlab
Analise de funções de transferencia de malha fechada com MatlabAnalise de funções de transferencia de malha fechada com Matlab
Analise de funções de transferencia de malha fechada com Matlab
 
5 2 funcoes de transferencia
5 2   funcoes de transferencia5 2   funcoes de transferencia
5 2 funcoes de transferencia
 
Aula_07_Complexidade_de_Algoritmos.ppt
Aula_07_Complexidade_de_Algoritmos.pptAula_07_Complexidade_de_Algoritmos.ppt
Aula_07_Complexidade_de_Algoritmos.ppt
 
Aula_07_Complexidade_de_Algoritmos (1).ppt
Aula_07_Complexidade_de_Algoritmos (1).pptAula_07_Complexidade_de_Algoritmos (1).ppt
Aula_07_Complexidade_de_Algoritmos (1).ppt
 
Projeto de Controle de Posição entre veículos, Análise de Sistemas III
Projeto de Controle de Posição entre veículos, Análise de Sistemas IIIProjeto de Controle de Posição entre veículos, Análise de Sistemas III
Projeto de Controle de Posição entre veículos, Análise de Sistemas III
 
Aula 4
Aula   4Aula   4
Aula 4
 
Análise da Resposta Transitória
Análise da Resposta TransitóriaAnálise da Resposta Transitória
Análise da Resposta Transitória
 
Simulink 4
Simulink 4Simulink 4
Simulink 4
 
Controle con matlab - material adicional 1.pdf
Controle con matlab - material adicional 1.pdfControle con matlab - material adicional 1.pdf
Controle con matlab - material adicional 1.pdf
 
Exercicio de Modelagem de Suspensão Dinamica
Exercicio de Modelagem de Suspensão DinamicaExercicio de Modelagem de Suspensão Dinamica
Exercicio de Modelagem de Suspensão Dinamica
 
Sistemas de comunicação, digital, di.pdf
Sistemas de comunicação, digital, di.pdfSistemas de comunicação, digital, di.pdf
Sistemas de comunicação, digital, di.pdf
 
Apresentação
ApresentaçãoApresentação
Apresentação
 
Trabalho01
Trabalho01Trabalho01
Trabalho01
 
Cap1.pdf
Cap1.pdfCap1.pdf
Cap1.pdf
 

Mais de Lab. de Sistemas Embarcados Críticos - ICMC/USP (7)

Aula prática 4 de Introdução à Programação com Arduino.
Aula prática 4 de Introdução à Programação com Arduino.Aula prática 4 de Introdução à Programação com Arduino.
Aula prática 4 de Introdução à Programação com Arduino.
 
Aula prática 2 de Introdução à Programação com Arduino.
Aula prática 2 de Introdução à Programação com Arduino.Aula prática 2 de Introdução à Programação com Arduino.
Aula prática 2 de Introdução à Programação com Arduino.
 
Aula prática 1 de Introdução à Programação com Arduino.
Aula prática 1 de Introdução à Programação com Arduino.Aula prática 1 de Introdução à Programação com Arduino.
Aula prática 1 de Introdução à Programação com Arduino.
 
Oficina de Arduino
Oficina de ArduinoOficina de Arduino
Oficina de Arduino
 
Tutorial: Instalação de Ubuntu em uma Gumstix Overo
Tutorial: Instalação de Ubuntu em uma Gumstix OveroTutorial: Instalação de Ubuntu em uma Gumstix Overo
Tutorial: Instalação de Ubuntu em uma Gumstix Overo
 
Trabalhos em desenvolvimento no LSEC
Trabalhos em desenvolvimento no LSECTrabalhos em desenvolvimento no LSEC
Trabalhos em desenvolvimento no LSEC
 
Capítulo 1: O Avião e sua História
Capítulo 1: O Avião e sua HistóriaCapítulo 1: O Avião e sua História
Capítulo 1: O Avião e sua História
 

Estudos de Controle - Aula 3: Modelagem (1)

  • 1. Estudos de Controle – Modelagem (1) 1
  • 2. Modelos Matemáticos • Modelagem matemática de sistemas dinâmicos: • Analisar características dinâmicas. • São conjuntos de equações que representam com precisão ou razoavelmente bem a dinâmica do sistema. • Não é único. Geralmente utilizam-se equações diferenciais. • É considerada a parte mais importante da análise de sistemas de controle. 2
  • 3. Propriedades • Sistemas lineares: • Definição: um sistema é dito linear se o princípio da superposição se aplicar a ele. Ou seja, a resposta produzida pela aplicação simultânea de duas funções diversas é a soma das duas respostas individuais. • Nesses sistemas, a resposta para cada entrada pode ser calculada tratando uma de cada vez e somando o resultado. • Geralmente, se causa e efeito são proporcionais, o sistema é linear. 3
  • 4. Propriedades • Sistemas lineares invariantes no tempo: • Os sistemas dinâmicos cujos coeficientes das equações diferenciais são constantes são chamados de sistemas lineares invariantes no tempo. • Exemplo: termostato. • Sistemas lineares variantes no tempo: • São os sistemas cujos coeficientes das equações diferenciais variam no tempo. • Exemplo: veículo espacial (massa). 4
  • 5. Função de transferência • Caracterizam as relações de entrada e saída dos sistemas. • Geralmente escritas por equações diferenciais lineares invariantes no tempo. • Definição: relação entre a transformada de Laplace da saída (função de resposta) e a transformada de Laplace da entrada (função de excitação), admitindo-se as condições iniciais nulas. 5
  • 6. Função de transferência • Dada a equação diferencial de um sistema linear invariante no tempo: 𝑎0 𝑑 𝑛 𝑦 𝑑𝑡 𝑛 + 𝑎1 𝑑 𝑛−1 𝑦 𝑑𝑡 𝑛−1 + … + 𝑎 𝑛−1 𝑑𝑦 𝑑𝑡 + 𝑎 𝑛 𝑦 = 𝑏0 𝑑 𝑚 𝑥 𝑑𝑡 𝑚 + 𝑏1 𝑑 𝑚−1 𝑥 𝑑𝑡 𝑚−1 + ⋯ + 𝑏 𝑚−1 𝑑𝑥 𝑑𝑡 + 𝑏 𝑚 𝑥 onde 𝑛 ≥ 𝑚, y é a saída do sistema e x é a entrada. Então, a função de transferência é 𝐺 𝑠 = 𝑌(𝑠) 𝑋(𝑠) = 𝑏0 𝑠 𝑚 + 𝑏1 𝑠 𝑚−1 + ⋯ 𝑏 𝑚−1 𝑠 + 𝑏 𝑚 𝑎0 𝑠 𝑛 + 𝑎1 𝑠 𝑛−1 + ⋯ 𝑎 𝑛−1 𝑠 + 𝑎 𝑛 6
  • 7. Função de transferência • Muito utilizada na análise e projeto de sistemas lineares invariantes no tempo. • É um método operacional para expressar a equação diferencial que relaciona a variável de saída à variável de entrada. • É uma propriedade inerente ao sistema, independentemente da magnitude e da natureza da função de entrada. • Não fornece nenhuma informação relativa à estrutura física do sistema. 7
  • 8. Função de transferência • Permite estudar a saída do sistema para várias maneiras de entrada, fornecendo informações da natureza do sistema. • Se a função de transferência não é conhecida, ela pode ser determinada experimentalmente com o auxílio de entradas conhecidas e análise das respectivas respostas do sistema. 8
  • 9. Função de transferência • Exemplo: • Sistema de controle de posição de um satélite, considerando apenas um eixo. Dois jatos localizados em A e B aplicam força de reação para girar o corpo, com empuxo igual a 𝐹 2 e o torque resultante seja T=Fl. 9
  • 10. Função de transferência • Exemplo: • Como os jatos são aplicados por um certo tempo, o torque é uma função do tempo 𝑇 𝑡 . • O momento de inércia em relação ao eixo de rotação no centro da massa é J. • Obtenha a função de transferência admitindo que a entrada é o torque 𝑇 𝑡 e o deslocamento angular 𝜃(𝑡) é a saída. 10
  • 11. Função de transferência • Exemplo: • Aplicando a segunda lei de Newton: 𝑇 𝑡 = 𝐽 𝑑2 𝜃(𝑡) 𝑑𝑡2 • Transformada de Laplace: 𝑇 𝑠 = 𝐽𝑠2 𝜃(𝑠) • Função de transferência: 𝐺 𝑠 = 𝜃(𝑠) 𝑇 (𝑠) = 1 𝐽𝑠2 11
  • 12. Função de transferência • Integral de Convolução • Dada a função de transferência, podemos escrevê-la também da seguinte forma 𝑌 𝑠 = 𝐺 𝑠 𝑋(𝑠) • Que equivale no domínio do tempo a integral de convolução 𝑦 𝑡 = 𝑔 𝑡 − 𝜏 𝑥 𝜏 𝑑𝜏 𝑡 0 12
  • 13. Função de transferência • Função de resposta impulsiva: • A saída de um sistema a um impulso unitário com condições iniciais nula é dado por 𝑌 𝑠 = 𝐺(𝑠) • No domínio do tempo g(t) é chamada de função de resposta impulsiva, que também é chamada de função característica do sistema. • Logo, é possível obter informações sobre as características dinâmicas do sistema por meio da excitação por um impulso de entrada. 13
  • 14. Função de transferência • Diagrama de blocos: • Representação gráfica das funções desempenhadas por cada componente e o fluxo de sinais entre eles. • Blocos funcionais – símbolo da operação matemática aplicada ao sinal de entrada do bloco, produzindo uma saída. • Somador e ponto de ramificação. 14 G(s)
  • 15. Função de transferência • Diagrama de blocos de um sistema de malha fechada: • Quando a saída é realimentada para comparação com a entrada, é necessário converter a forma do sinal de saída à do sinal de entrada. • Elemento de realimentação, cuja função de transferência é H(s). 15
  • 16. Função de transferência • Função de transferência de malha aberta: • Relação entre o sinal de realimentação e o sinal de erro atuante. 𝐵(𝑠) 𝐸(𝑠) = 𝐺 𝑠 𝐻(𝑠) • Função de transferência do ramo direto: • Relação entre o sinal de saída e o sinal de erro atuante. 𝐶(𝑠) 𝐸(𝑠) = 𝐺 𝑠 16
  • 17. Função de transferência • Malha fechada • Relaciona o sinal de saída e o sinal de entrada. 𝐶(𝑠) 𝑅(𝑠) = 𝐺(𝑠) 1 + 𝐺 𝑠 𝐻(𝑠) 17