Lecture10 Signal and Systems

babak danyal
babak danyalbabak danyal
EE-2027 SaS, 1/13
Lecture 10: Laplace Transform
5 Laplace transform (3 lectures):
Laplace transform as Fourier transform with
convergence factor. Properties of the Laplace
transform
Specific objectives for today:
• Introduce Laplace transform
• Understand the relationship to Fourier transform
• Investigate Laplace transform of exponential signals
• Derive region of convergence of Laplace transform
EE-2027 SaS, 2/13
Lecture 10: Resources
Core material
SaS, O&W, Chapter 9.1&9.2
Recommended material
MIT, Lecture 17
Note that in the next 3 lectures, we’re looking at
continuous time signals (and systems) only
EE-2027 SaS, 3/13
Introduction to the Laplace Transform
Fourier transforms are extremely useful in the study of many
problems of practical importance involving signals and LTI
systems.
purely imaginary complex exponentials est
, s=jω
A large class of signals can be represented as a linear
combination of complex exponentials and complex
exponentials are eigenfunctions of LTI systems.
However, the eigenfunction property applies to any
complex number s, not just purely imaginary (signals)
This leads to the development of the Laplace transform
where s is an arbitrary complex number.
Laplace and z-transforms can be applied to the analysis of
un-stable system (signals with infinite energy) and play a
role in the analysis of system stability
EE-2027 SaS, 4/13
The Laplace Transform
The response of an LTI system with impulse response h(t) to a
complex exponential input, x(t)=est
, is
where s is a complex number and
when s is purely imaginary, this is the Fourier transform, H(jω)
when s is complex, this is the Laplace transform of h(t), H(s)
The Laplace transform of a general signal x(t) is:
and is usually expressed as:
st
esHty )()( =
∫
∞
∞−
−
= dtethsH st
)()(
∫
∞
∞−
−
= dtetxsX st
)()(
)()( sXtx
L
↔
EE-2027 SaS, 5/13
Laplace and Fourier Transform
The Fourier transform is the Laplace transform when s is
purely imaginary:
An alternative way of expressing this is when s = σ+jω
The Laplace transform is the Fourier transform of the
transformed signal x’(t) = x(t)e-σt
. Depending on whether σ is
positive/negative this represents a growing/negative signal
{ })()( txFsX js
== ω
[ ]
)}('{
)('
)(
)()( )(
txF
dtetx
dteetx
dtetxjX
tj
tjt
tj
=
=
=
=+
∫
∫
∫
∞
∞−
−
∞
∞−
−−
∞
∞−
+−
ω
ωσ
ωσ
ωσ
EE-2027 SaS, 6/13
Example 1: Laplace Transform
Consider the signal
The Fourier transform X(jω) converges for a>0:
The Laplace transform is:
which is the Fourier Transform of e-(σ+a)t
u(t)
Or
If a is negative or zero, the Laplace Transform still exists
)()( tuetx at−
=
0,
1
)()(
0
>
+
=== ∫∫
∞
−−
∞
∞−
−−
a
aj
dteedtetuejX tjattjat
ω
ω ωω
∫
∫∫
∞
−+−
∞
+−
∞
∞−
−−
=
==
0
)(
0
)(
)()(
dtee
dtedtetuesX
tjta
tasstat
ωσ
0,
)(
1
)( >+
++
=+ a
ja
jX σ
ωσ
ωσ
as
as
sXtue
L
at
−>
+
=↔−
}Re{,
1
)()(
EE-2027 SaS, 7/13
Example 2: Laplace Transform
Consider the signal
The Laplace transform is:
Convergence requires that Re{s+a}<0 or Re{s}<-a.
The Laplace transform expression is identical to Example 1
(similar but different signals), however the regions of
convergence of s are mutually exclusive (non-
intersecting).
For a Laplace transform, we need both the expression and
the Region Of Convergence (ROC).
)()( tuetx at
−−= −
as
dte
dttueesX
tas
stat
+
=
−=
−−=
∫
∫
∞−
+−
∞
∞−
−−
1
)()(
0
)(
EE-2027 SaS, 8/13
Example 3: sin(ωt)u(t)
The Laplace transform of the signal x(t) = sin(ωt)u(t) is:
( )
22
222
1
2
1
0
)(
0
)(
2
1
0
)(
2
1
0
)(
2
1
2
1
2
)(
1
)(
1
)()(
)()(
ω
ω
ω
ω
ωω
ωω
ωω
ωω
ωω
+
=






+
=






+
−
−
=








+
+
−−
=
−=
−=
∞+−∞−−
∞
+−
∞
−−
∞
∞−
−−
∫∫
∫
s
s
j
jsjs
js
e
js
e
dtedte
dtetueesX
j
j
tjstjs
j
tjs
j
tjs
j
sttjtj
j
0}Re{ >s
0}Re{ >s
EE-2027 SaS, 9/13
It is worthwhile reflecting that the Fourier transform does not
exist for a fairly wide class of signals, such as the
response of an unstable, first order system, the Fourier
transform does not exist/converge
E.g. x(t) = eat
u(t), a>0
does not exist (is infinite) because the signal’s energy is
infinite
This is because we multiply x(t) by a complex sinusoidal
signal which has unit magnitude for all t and integrate for
all time. Therefore, as the Dirichlet convergence
conditions say, the Fourier transform exists for most
signals with finite energy
Fourier Transform does not Converge …
∫
∞
−
=
0
) (dt e e j Xt j atω
ω
EE-2027 SaS, 10/13
The Region Of Convergence (ROC) of the Laplace transform is
the set of values for s (=σ+jω) for which the Fourier
transform of x(t)e-σt
converges (exists).
The ROC is generally displayed by drawing separating
line/curve in the complex plane, as illustrated below for
Examples 1 and 2, respectively.
The shaded regions denote the ROC for the Laplace transform
Region of Convergence
Re
Im
-a Re
Im
-a
as −>}Re{ as −<}Re{
EE-2027 SaS, 11/13
Example 4: Laplace Transform
Consider a signal that is the sum of two real exponentials:
The Laplace transform is then:
Using Example 1, each expression can be evaluated as:
The ROC associated with these terms are Re{s}>-1 and Re{s}>-2.
Therefore, both will converge for Re{s}>-1, and the Laplace
transform:
)(2)(3)( 2
tuetuetx tt −−
−=
[ ]
∫∫
∫
∞
∞−
−−
∞
∞−
−−
∞
∞−
−−−
−=
−=
dtetuedtetue
dtetuetuesX
sttstt
sttt
)(2)(3
)(2)(3)(
2
2
1
2
2
3
)(
+
−
+
=
ss
sX
23
1
)( 2
++
−
=
ss
s
sX
EE-2027 SaS, 12/13
Lecture 10: Summary
The Laplace transform is a superset of the Fourier transform
– it is equal to it when s=jω i.e. F{x(t)} = X(jω)
Laplace transform of a continuous time signal is defined by:
And can be imagined as being the Fourier transform of the
signal x’(t) = x(t)eσt
, when s=σ+jω
The region of convergence (ROC) associated with the
Laplace transform defines the region in s (complex) space
for which the Laplace transform converges.
In simple cases it corresponds to the values for s (σ) for
which the transformed signal has finite energy
∫
∞
∞−
−
= dtetxsX st
)()(
EE-2027 SaS, 13/13
Questions
Theory
SaS, O&W, Q9.1-9.4, 9.13
Matlab
There are laplace() and ilaplace() functions in the
Matlab symbolic toolbox
>> syms a w t s
>> laplace(exp(a*t))
>> laplace(sin(w*t))
>> ilaplace(1/(s-1))
Try these functions to evaluate the signals of interest
These use the symbolic integration function int()
1 de 13

Recomendados

Lecture6 Signal and Systems por
Lecture6 Signal and SystemsLecture6 Signal and Systems
Lecture6 Signal and Systemsbabak danyal
1.9K visualizações17 slides
Lecture7 Signal and Systems por
Lecture7 Signal and SystemsLecture7 Signal and Systems
Lecture7 Signal and Systemsbabak danyal
3.1K visualizações16 slides
Lecture1 Intro To Signa por
Lecture1 Intro To SignaLecture1 Intro To Signa
Lecture1 Intro To Signababak danyal
928 visualizações18 slides
Unit step function por
Unit step functionUnit step function
Unit step functionKifaru Malale
145.7K visualizações10 slides
Introduction to Fourier transform and signal analysis por
Introduction to Fourier transform and signal analysisIntroduction to Fourier transform and signal analysis
Introduction to Fourier transform and signal analysis宗翰 謝
7.1K visualizações49 slides
Laplace transform & fourier series por
Laplace transform & fourier seriesLaplace transform & fourier series
Laplace transform & fourier seriesvaibhav tailor
2.7K visualizações33 slides

Mais conteúdo relacionado

Mais procurados

Chapter3 laplace por
Chapter3 laplaceChapter3 laplace
Chapter3 laplaceKing Mongkut's University of Technology Thonburi
917 visualizações49 slides
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis por
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisDSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisAmr E. Mohamed
7.6K visualizações50 slides
Application of Convolution Theorem por
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theoremijtsrd
1.6K visualizações4 slides
Optics Fourier Transform Ii por
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Iidiarmseven
4.3K visualizações32 slides
Example of the Laplace Transform por
Example of the Laplace TransformExample of the Laplace Transform
Example of the Laplace TransformDavid Parker
3.7K visualizações6 slides
An Intuitive Approach to Fourier Optics por
An Intuitive Approach to Fourier OpticsAn Intuitive Approach to Fourier Optics
An Intuitive Approach to Fourier Opticsjose0055
3.4K visualizações27 slides

Mais procurados(20)

DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis por Amr E. Mohamed
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier AnalysisDSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
DSP_FOEHU - MATLAB 02 - The Discrete-time Fourier Analysis
Amr E. Mohamed7.6K visualizações
Application of Convolution Theorem por ijtsrd
Application of Convolution TheoremApplication of Convolution Theorem
Application of Convolution Theorem
ijtsrd1.6K visualizações
Optics Fourier Transform Ii por diarmseven
Optics Fourier Transform IiOptics Fourier Transform Ii
Optics Fourier Transform Ii
diarmseven4.3K visualizações
Example of the Laplace Transform por David Parker
Example of the Laplace TransformExample of the Laplace Transform
Example of the Laplace Transform
David Parker3.7K visualizações
An Intuitive Approach to Fourier Optics por jose0055
An Intuitive Approach to Fourier OpticsAn Intuitive Approach to Fourier Optics
An Intuitive Approach to Fourier Optics
jose00553.4K visualizações
Laplace transforms por yash patel
Laplace transforms Laplace transforms
Laplace transforms
yash patel2.3K visualizações
signal and system Dirac delta functions (1) por iqbal ahmad
signal and system Dirac delta functions (1)signal and system Dirac delta functions (1)
signal and system Dirac delta functions (1)
iqbal ahmad3.3K visualizações
DSP, Differences between Fourier series ,Fourier Transform and Z transform por Naresh Biloniya
DSP, Differences between  Fourier series ,Fourier Transform and Z transform DSP, Differences between  Fourier series ,Fourier Transform and Z transform
DSP, Differences between Fourier series ,Fourier Transform and Z transform
Naresh Biloniya3.6K visualizações
discrete time signals and systems por Zlatan Ahmadovic
 discrete time signals and systems  discrete time signals and systems
discrete time signals and systems
Zlatan Ahmadovic13.9K visualizações
Z transform por ayushagrawal464
Z transformZ transform
Z transform
ayushagrawal46410.7K visualizações
Laplace transform and its application por mayur1347
Laplace transform and its applicationLaplace transform and its application
Laplace transform and its application
mayur134711.7K visualizações
Laplace Transformation & Its Application por Chandra Kundu
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
Chandra Kundu58.1K visualizações
Properties of fourier transform por Nisarg Amin
Properties of fourier transformProperties of fourier transform
Properties of fourier transform
Nisarg Amin13.1K visualizações
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties por Dr.SHANTHI K.G
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Fourier Transform ,LAPLACE TRANSFORM,ROC and its Properties
Dr.SHANTHI K.G371 visualizações
Laplace transforms por wilmersaguamamani
Laplace transformsLaplace transforms
Laplace transforms
wilmersaguamamani8.4K visualizações
Fourier series por Shiv Prasad Gupta
Fourier seriesFourier series
Fourier series
Shiv Prasad Gupta7.2K visualizações
5. fourier properties por skysunilyadav
5. fourier properties5. fourier properties
5. fourier properties
skysunilyadav1.3K visualizações
signal and system Lecture 1 por iqbal ahmad
signal and system Lecture 1signal and system Lecture 1
signal and system Lecture 1
iqbal ahmad3.4K visualizações

Destaque

Btech admission in india por
Btech admission in indiaBtech admission in india
Btech admission in indiaEdhole.com
566 visualizações15 slides
05 weekly report (9 may 2012) por
05 weekly report (9 may 2012)05 weekly report (9 may 2012)
05 weekly report (9 may 2012)King Mongkut's University of Technology Thonburi
326 visualizações1 slide
Logics of the laplace transform por
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transformTarun Gehlot
1.4K visualizações26 slides
sampling theorem | Communication Systems por
sampling theorem | Communication Systemssampling theorem | Communication Systems
sampling theorem | Communication SystemsLearn By Watch
564 visualizações6 slides
Laplace Transform of Periodic Function por
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic FunctionDhaval Shukla
16.8K visualizações10 slides
Dsp U Lec02 Data Converters por
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converterstaha25
1.7K visualizações26 slides

Destaque(20)

Btech admission in india por Edhole.com
Btech admission in indiaBtech admission in india
Btech admission in india
Edhole.com566 visualizações
Logics of the laplace transform por Tarun Gehlot
Logics of the laplace transformLogics of the laplace transform
Logics of the laplace transform
Tarun Gehlot1.4K visualizações
sampling theorem | Communication Systems por Learn By Watch
sampling theorem | Communication Systemssampling theorem | Communication Systems
sampling theorem | Communication Systems
Learn By Watch564 visualizações
Laplace Transform of Periodic Function por Dhaval Shukla
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
Dhaval Shukla16.8K visualizações
Dsp U Lec02 Data Converters por taha25
Dsp U   Lec02 Data ConvertersDsp U   Lec02 Data Converters
Dsp U Lec02 Data Converters
taha251.7K visualizações
Dsp U Lec03 Analogue To Digital Converters por taha25
Dsp U   Lec03 Analogue To Digital ConvertersDsp U   Lec03 Analogue To Digital Converters
Dsp U Lec03 Analogue To Digital Converters
taha251.1K visualizações
Laplace problems por Arianne Banglos
Laplace problemsLaplace problems
Laplace problems
Arianne Banglos243 visualizações
Dsp U Lec08 Fir Filter Design por taha25
Dsp U   Lec08 Fir Filter DesignDsp U   Lec08 Fir Filter Design
Dsp U Lec08 Fir Filter Design
taha255.3K visualizações
Dsp U Lec01 Real Time Dsp Systems por taha25
Dsp U   Lec01 Real Time Dsp SystemsDsp U   Lec01 Real Time Dsp Systems
Dsp U Lec01 Real Time Dsp Systems
taha253.2K visualizações
Laplace Transform And Its Applications por Smit Shah
Laplace Transform And Its ApplicationsLaplace Transform And Its Applications
Laplace Transform And Its Applications
Smit Shah2K visualizações
Dsp U Lec06 The Z Transform And Its Application por taha25
Dsp U   Lec06 The Z Transform And Its ApplicationDsp U   Lec06 The Z Transform And Its Application
Dsp U Lec06 The Z Transform And Its Application
taha256.7K visualizações
Dsp U Lec10 DFT And FFT por taha25
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
taha258.7K visualizações
Dsp U Lec07 Realization Of Discrete Time Systems por taha25
Dsp U   Lec07 Realization Of Discrete Time SystemsDsp U   Lec07 Realization Of Discrete Time Systems
Dsp U Lec07 Realization Of Discrete Time Systems
taha256.5K visualizações
Dsp U Lec09 Iir Filter Design por taha25
Dsp U   Lec09 Iir Filter DesignDsp U   Lec09 Iir Filter Design
Dsp U Lec09 Iir Filter Design
taha255.2K visualizações
Dsp U Lec05 The Z Transform por taha25
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
taha2510.2K visualizações
Dsp U Lec04 Discrete Time Signals & Systems por taha25
Dsp U   Lec04 Discrete Time Signals & SystemsDsp U   Lec04 Discrete Time Signals & Systems
Dsp U Lec04 Discrete Time Signals & Systems
taha257.3K visualizações
8085 MICROPROCESSOR por THANDAIAH PRABU
8085 MICROPROCESSOR 8085 MICROPROCESSOR
8085 MICROPROCESSOR
THANDAIAH PRABU69K visualizações
Signals and systems por Pricha Leelanukrom
Signals  and systemsSignals  and systems
Signals and systems
Pricha Leelanukrom3.8K visualizações

Similar a Lecture10 Signal and Systems

Mba admission in india por
Mba admission in indiaMba admission in india
Mba admission in indiaEdhole.com
381 visualizações15 slides
TLT por
TLTTLT
TLTJohar M. Ashfaque
201 visualizações11 slides
Laplace transform por
Laplace transformLaplace transform
Laplace transformAfwanilhuda Nst
7.3K visualizações30 slides
Laplace por
LaplaceLaplace
LaplaceAman kumar singh
267 visualizações10 slides
Laplace Transform and its applications por
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applicationsDeepRaval7
7.9K visualizações21 slides
Laplace transform por
Laplace transformLaplace transform
Laplace transformNaveen Sihag
1.2K visualizações22 slides

Similar a Lecture10 Signal and Systems(20)

Mba admission in india por Edhole.com
Mba admission in indiaMba admission in india
Mba admission in india
Edhole.com381 visualizações
Laplace transform por Afwanilhuda Nst
Laplace transformLaplace transform
Laplace transform
Afwanilhuda Nst7.3K visualizações
Laplace Transform and its applications por DeepRaval7
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
DeepRaval77.9K visualizações
Laplace transform por Naveen Sihag
Laplace transformLaplace transform
Laplace transform
Naveen Sihag1.2K visualizações
Laplace transform por Naveen Sihag
Laplace transformLaplace transform
Laplace transform
Naveen Sihag27.8K visualizações
EC8352-Signals and Systems - Laplace transform por NimithaSoman
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
NimithaSoman565 visualizações
LaplaceA ppt.pdf por MirzaAttiq
LaplaceA ppt.pdfLaplaceA ppt.pdf
LaplaceA ppt.pdf
MirzaAttiq89 visualizações
Chapter 2 laplace transform por LenchoDuguma
Chapter 2 laplace transformChapter 2 laplace transform
Chapter 2 laplace transform
LenchoDuguma755 visualizações
14210111030 por JayRaj Gadhavi
1421011103014210111030
14210111030
JayRaj Gadhavi220 visualizações
Inverse laplace transforms por EngrAbdullahMohamedS
Inverse laplace transformsInverse laplace transforms
Inverse laplace transforms
EngrAbdullahMohamedS3.9K visualizações
Mca admission in india por Edhole.com
Mca admission in indiaMca admission in india
Mca admission in india
Edhole.com260 visualizações
Properties of Fourier transform por Muhammed Afsal Villan
Properties of Fourier transformProperties of Fourier transform
Properties of Fourier transform
Muhammed Afsal Villan6.7K visualizações
M1 unit viii-jntuworld por mrecedu
M1 unit viii-jntuworldM1 unit viii-jntuworld
M1 unit viii-jntuworld
mrecedu1.1K visualizações
Mba Ebooks ! Edhole por Edhole.com
Mba Ebooks ! EdholeMba Ebooks ! Edhole
Mba Ebooks ! Edhole
Edhole.com348 visualizações
Admissions in India 2015 por Edhole.com
Admissions in India 2015Admissions in India 2015
Admissions in India 2015
Edhole.com659 visualizações

Mais de babak danyal

applist por
applistapplist
applistbabak danyal
1.1K visualizações2 slides
Easy Steps to implement UDP Server and Client Sockets por
Easy Steps to implement UDP Server and Client SocketsEasy Steps to implement UDP Server and Client Sockets
Easy Steps to implement UDP Server and Client Socketsbabak danyal
8K visualizações11 slides
Java IO Package and Streams por
Java IO Package and StreamsJava IO Package and Streams
Java IO Package and Streamsbabak danyal
2.3K visualizações8 slides
Swing and Graphical User Interface in Java por
Swing and Graphical User Interface in JavaSwing and Graphical User Interface in Java
Swing and Graphical User Interface in Javababak danyal
3.3K visualizações29 slides
Tcp sockets por
Tcp socketsTcp sockets
Tcp socketsbabak danyal
1.7K visualizações13 slides
block ciphers and the des por
block ciphers and the desblock ciphers and the des
block ciphers and the desbabak danyal
2.1K visualizações69 slides

Mais de babak danyal(20)

applist por babak danyal
applistapplist
applist
babak danyal1.1K visualizações
Easy Steps to implement UDP Server and Client Sockets por babak danyal
Easy Steps to implement UDP Server and Client SocketsEasy Steps to implement UDP Server and Client Sockets
Easy Steps to implement UDP Server and Client Sockets
babak danyal8K visualizações
Java IO Package and Streams por babak danyal
Java IO Package and StreamsJava IO Package and Streams
Java IO Package and Streams
babak danyal2.3K visualizações
Swing and Graphical User Interface in Java por babak danyal
Swing and Graphical User Interface in JavaSwing and Graphical User Interface in Java
Swing and Graphical User Interface in Java
babak danyal3.3K visualizações
Tcp sockets por babak danyal
Tcp socketsTcp sockets
Tcp sockets
babak danyal1.7K visualizações
block ciphers and the des por babak danyal
block ciphers and the desblock ciphers and the des
block ciphers and the des
babak danyal2.1K visualizações
key distribution in network security por babak danyal
key distribution in network securitykey distribution in network security
key distribution in network security
babak danyal36.4K visualizações
Lecture8 Signal and Systems por babak danyal
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
babak danyal1.7K visualizações
Lecture5 Signal and Systems por babak danyal
Lecture5 Signal and SystemsLecture5 Signal and Systems
Lecture5 Signal and Systems
babak danyal3.7K visualizações
Lecture4 Signal and Systems por babak danyal
Lecture4  Signal and SystemsLecture4  Signal and Systems
Lecture4 Signal and Systems
babak danyal3.4K visualizações
Lecture3 Signal and Systems por babak danyal
Lecture3 Signal and SystemsLecture3 Signal and Systems
Lecture3 Signal and Systems
babak danyal3.7K visualizações
Lecture2 Signal and Systems por babak danyal
Lecture2 Signal and SystemsLecture2 Signal and Systems
Lecture2 Signal and Systems
babak danyal4.6K visualizações
Lecture9 Signal and Systems por babak danyal
Lecture9 Signal and SystemsLecture9 Signal and Systems
Lecture9 Signal and Systems
babak danyal1.6K visualizações
Lecture9 por babak danyal
Lecture9Lecture9
Lecture9
babak danyal2.6K visualizações
Cns 13f-lec03- Classical Encryption Techniques por babak danyal
Cns 13f-lec03- Classical Encryption TechniquesCns 13f-lec03- Classical Encryption Techniques
Cns 13f-lec03- Classical Encryption Techniques
babak danyal1.7K visualizações
Classical Encryption Techniques in Network Security por babak danyal
Classical Encryption Techniques in Network SecurityClassical Encryption Techniques in Network Security
Classical Encryption Techniques in Network Security
babak danyal55.3K visualizações
Problems at independence por babak danyal
Problems at independenceProblems at independence
Problems at independence
babak danyal1.4K visualizações
Quaid-e-Azam and Early Problems of Pakistan por babak danyal
Quaid-e-Azam and Early Problems of PakistanQuaid-e-Azam and Early Problems of Pakistan
Quaid-e-Azam and Early Problems of Pakistan
babak danyal14.3K visualizações
Aligarh movement new por babak danyal
Aligarh movement newAligarh movement new
Aligarh movement new
babak danyal7.7K visualizações
Indus Water Treaty por babak danyal
Indus Water TreatyIndus Water Treaty
Indus Water Treaty
babak danyal5.3K visualizações

Último

Recap of our Class por
Recap of our ClassRecap of our Class
Recap of our ClassCorinne Weisgerber
77 visualizações15 slides
When Sex Gets Complicated: Porn, Affairs, & Cybersex por
When Sex Gets Complicated: Porn, Affairs, & CybersexWhen Sex Gets Complicated: Porn, Affairs, & Cybersex
When Sex Gets Complicated: Porn, Affairs, & CybersexMarlene Maheu
67 visualizações73 slides
REPRESENTATION - GAUNTLET.pptx por
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptxiammrhaywood
100 visualizações26 slides
GSoC 2024 por
GSoC 2024GSoC 2024
GSoC 2024DeveloperStudentClub10
79 visualizações15 slides
11.30.23 Poverty and Inequality in America.pptx por
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptxmary850239
160 visualizações33 slides
MercerJesse2.1Doc.pdf por
MercerJesse2.1Doc.pdfMercerJesse2.1Doc.pdf
MercerJesse2.1Doc.pdfjessemercerail
169 visualizações5 slides

Último(20)

When Sex Gets Complicated: Porn, Affairs, & Cybersex por Marlene Maheu
When Sex Gets Complicated: Porn, Affairs, & CybersexWhen Sex Gets Complicated: Porn, Affairs, & Cybersex
When Sex Gets Complicated: Porn, Affairs, & Cybersex
Marlene Maheu67 visualizações
REPRESENTATION - GAUNTLET.pptx por iammrhaywood
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptx
iammrhaywood100 visualizações
11.30.23 Poverty and Inequality in America.pptx por mary850239
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptx
mary850239160 visualizações
MercerJesse2.1Doc.pdf por jessemercerail
MercerJesse2.1Doc.pdfMercerJesse2.1Doc.pdf
MercerJesse2.1Doc.pdf
jessemercerail169 visualizações
Sociology KS5 por WestHatch
Sociology KS5Sociology KS5
Sociology KS5
WestHatch70 visualizações
11.28.23 Social Capital and Social Exclusion.pptx por mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239298 visualizações
The Accursed House by Émile Gaboriau por DivyaSheta
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile Gaboriau
DivyaSheta201 visualizações
AI Tools for Business and Startups por Svetlin Nakov
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov107 visualizações
Java Simplified: Understanding Programming Basics por Akshaj Vadakkath Joshy
Java Simplified: Understanding Programming BasicsJava Simplified: Understanding Programming Basics
Java Simplified: Understanding Programming Basics
Akshaj Vadakkath Joshy295 visualizações
Google solution challenge..pptx por ChitreshGyanani1
Google solution challenge..pptxGoogle solution challenge..pptx
Google solution challenge..pptx
ChitreshGyanani1131 visualizações
Class 10 English lesson plans por TARIQ KHAN
Class 10 English  lesson plansClass 10 English  lesson plans
Class 10 English lesson plans
TARIQ KHAN288 visualizações
The Open Access Community Framework (OACF) 2023 (1).pptx por Jisc
The Open Access Community Framework (OACF) 2023 (1).pptxThe Open Access Community Framework (OACF) 2023 (1).pptx
The Open Access Community Framework (OACF) 2023 (1).pptx
Jisc110 visualizações
AUDIENCE - BANDURA.pptx por iammrhaywood
AUDIENCE - BANDURA.pptxAUDIENCE - BANDURA.pptx
AUDIENCE - BANDURA.pptx
iammrhaywood84 visualizações
Dance KS5 Breakdown por WestHatch
Dance KS5 BreakdownDance KS5 Breakdown
Dance KS5 Breakdown
WestHatch79 visualizações
MIXING OF PHARMACEUTICALS.pptx por Anupkumar Sharma
MIXING OF PHARMACEUTICALS.pptxMIXING OF PHARMACEUTICALS.pptx
MIXING OF PHARMACEUTICALS.pptx
Anupkumar Sharma77 visualizações
Solar System and Galaxies.pptx por DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar91 visualizações
231112 (WR) v1 ChatGPT OEB 2023.pdf por WilfredRubens.com
231112 (WR) v1  ChatGPT OEB 2023.pdf231112 (WR) v1  ChatGPT OEB 2023.pdf
231112 (WR) v1 ChatGPT OEB 2023.pdf
WilfredRubens.com157 visualizações

Lecture10 Signal and Systems

  • 1. EE-2027 SaS, 1/13 Lecture 10: Laplace Transform 5 Laplace transform (3 lectures): Laplace transform as Fourier transform with convergence factor. Properties of the Laplace transform Specific objectives for today: • Introduce Laplace transform • Understand the relationship to Fourier transform • Investigate Laplace transform of exponential signals • Derive region of convergence of Laplace transform
  • 2. EE-2027 SaS, 2/13 Lecture 10: Resources Core material SaS, O&W, Chapter 9.1&9.2 Recommended material MIT, Lecture 17 Note that in the next 3 lectures, we’re looking at continuous time signals (and systems) only
  • 3. EE-2027 SaS, 3/13 Introduction to the Laplace Transform Fourier transforms are extremely useful in the study of many problems of practical importance involving signals and LTI systems. purely imaginary complex exponentials est , s=jω A large class of signals can be represented as a linear combination of complex exponentials and complex exponentials are eigenfunctions of LTI systems. However, the eigenfunction property applies to any complex number s, not just purely imaginary (signals) This leads to the development of the Laplace transform where s is an arbitrary complex number. Laplace and z-transforms can be applied to the analysis of un-stable system (signals with infinite energy) and play a role in the analysis of system stability
  • 4. EE-2027 SaS, 4/13 The Laplace Transform The response of an LTI system with impulse response h(t) to a complex exponential input, x(t)=est , is where s is a complex number and when s is purely imaginary, this is the Fourier transform, H(jω) when s is complex, this is the Laplace transform of h(t), H(s) The Laplace transform of a general signal x(t) is: and is usually expressed as: st esHty )()( = ∫ ∞ ∞− − = dtethsH st )()( ∫ ∞ ∞− − = dtetxsX st )()( )()( sXtx L ↔
  • 5. EE-2027 SaS, 5/13 Laplace and Fourier Transform The Fourier transform is the Laplace transform when s is purely imaginary: An alternative way of expressing this is when s = σ+jω The Laplace transform is the Fourier transform of the transformed signal x’(t) = x(t)e-σt . Depending on whether σ is positive/negative this represents a growing/negative signal { })()( txFsX js == ω [ ] )}('{ )(' )( )()( )( txF dtetx dteetx dtetxjX tj tjt tj = = = =+ ∫ ∫ ∫ ∞ ∞− − ∞ ∞− −− ∞ ∞− +− ω ωσ ωσ ωσ
  • 6. EE-2027 SaS, 6/13 Example 1: Laplace Transform Consider the signal The Fourier transform X(jω) converges for a>0: The Laplace transform is: which is the Fourier Transform of e-(σ+a)t u(t) Or If a is negative or zero, the Laplace Transform still exists )()( tuetx at− = 0, 1 )()( 0 > + === ∫∫ ∞ −− ∞ ∞− −− a aj dteedtetuejX tjattjat ω ω ωω ∫ ∫∫ ∞ −+− ∞ +− ∞ ∞− −− = == 0 )( 0 )( )()( dtee dtedtetuesX tjta tasstat ωσ 0, )( 1 )( >+ ++ =+ a ja jX σ ωσ ωσ as as sXtue L at −> + =↔− }Re{, 1 )()(
  • 7. EE-2027 SaS, 7/13 Example 2: Laplace Transform Consider the signal The Laplace transform is: Convergence requires that Re{s+a}<0 or Re{s}<-a. The Laplace transform expression is identical to Example 1 (similar but different signals), however the regions of convergence of s are mutually exclusive (non- intersecting). For a Laplace transform, we need both the expression and the Region Of Convergence (ROC). )()( tuetx at −−= − as dte dttueesX tas stat + = −= −−= ∫ ∫ ∞− +− ∞ ∞− −− 1 )()( 0 )(
  • 8. EE-2027 SaS, 8/13 Example 3: sin(ωt)u(t) The Laplace transform of the signal x(t) = sin(ωt)u(t) is: ( ) 22 222 1 2 1 0 )( 0 )( 2 1 0 )( 2 1 0 )( 2 1 2 1 2 )( 1 )( 1 )()( )()( ω ω ω ω ωω ωω ωω ωω ωω + =       + =       + − − =         + + −− = −= −= ∞+−∞−− ∞ +− ∞ −− ∞ ∞− −− ∫∫ ∫ s s j jsjs js e js e dtedte dtetueesX j j tjstjs j tjs j tjs j sttjtj j 0}Re{ >s 0}Re{ >s
  • 9. EE-2027 SaS, 9/13 It is worthwhile reflecting that the Fourier transform does not exist for a fairly wide class of signals, such as the response of an unstable, first order system, the Fourier transform does not exist/converge E.g. x(t) = eat u(t), a>0 does not exist (is infinite) because the signal’s energy is infinite This is because we multiply x(t) by a complex sinusoidal signal which has unit magnitude for all t and integrate for all time. Therefore, as the Dirichlet convergence conditions say, the Fourier transform exists for most signals with finite energy Fourier Transform does not Converge … ∫ ∞ − = 0 ) (dt e e j Xt j atω ω
  • 10. EE-2027 SaS, 10/13 The Region Of Convergence (ROC) of the Laplace transform is the set of values for s (=σ+jω) for which the Fourier transform of x(t)e-σt converges (exists). The ROC is generally displayed by drawing separating line/curve in the complex plane, as illustrated below for Examples 1 and 2, respectively. The shaded regions denote the ROC for the Laplace transform Region of Convergence Re Im -a Re Im -a as −>}Re{ as −<}Re{
  • 11. EE-2027 SaS, 11/13 Example 4: Laplace Transform Consider a signal that is the sum of two real exponentials: The Laplace transform is then: Using Example 1, each expression can be evaluated as: The ROC associated with these terms are Re{s}>-1 and Re{s}>-2. Therefore, both will converge for Re{s}>-1, and the Laplace transform: )(2)(3)( 2 tuetuetx tt −− −= [ ] ∫∫ ∫ ∞ ∞− −− ∞ ∞− −− ∞ ∞− −−− −= −= dtetuedtetue dtetuetuesX sttstt sttt )(2)(3 )(2)(3)( 2 2 1 2 2 3 )( + − + = ss sX 23 1 )( 2 ++ − = ss s sX
  • 12. EE-2027 SaS, 12/13 Lecture 10: Summary The Laplace transform is a superset of the Fourier transform – it is equal to it when s=jω i.e. F{x(t)} = X(jω) Laplace transform of a continuous time signal is defined by: And can be imagined as being the Fourier transform of the signal x’(t) = x(t)eσt , when s=σ+jω The region of convergence (ROC) associated with the Laplace transform defines the region in s (complex) space for which the Laplace transform converges. In simple cases it corresponds to the values for s (σ) for which the transformed signal has finite energy ∫ ∞ ∞− − = dtetxsX st )()(
  • 13. EE-2027 SaS, 13/13 Questions Theory SaS, O&W, Q9.1-9.4, 9.13 Matlab There are laplace() and ilaplace() functions in the Matlab symbolic toolbox >> syms a w t s >> laplace(exp(a*t)) >> laplace(sin(w*t)) >> ilaplace(1/(s-1)) Try these functions to evaluate the signals of interest These use the symbolic integration function int()