SlideShare a Scribd company logo
1 of 75
Download to read offline
Section	3.5
     Inverse	Trigonometric
           Functions
               V63.0121.006/016, Calculus	I



                      March	11, 2010


Announcements
   Exams	returned	in	recitation
   There	is	WebAssign	due	Tuesday	March	23	and	written	HW
   due	Thursday	March	25               .      .   .   .   .   .
Announcements




     Exams	returned	in	recitation
     There	is	WebAssign	due	Tuesday	March	23	and	written	HW
     due	Thursday	March	25
     next	quiz	is	Friday	April	2




                                        .   .   .   .   .     .
What	is	an	inverse	function?



   Definition
   Let f be	a	function	with	domain D and	range E. The inverse of f is
   the	function f−1 defined	by:

                              f−1 (b) = a,

   where a is	chosen	so	that f(a) = b.




                                               .    .   .    .   .      .
What	is	an	inverse	function?



   Definition
   Let f be	a	function	with	domain D and	range E. The inverse of f is
   the	function f−1 defined	by:

                               f−1 (b) = a,

   where a is	chosen	so	that f(a) = b.
   So
                    f−1 (f(x)) = x,      f(f−1 (x)) = x




                                                  .       .   .   .   .   .
What	functions	are	invertible?



   In	order	for f−1 to	be	a	function, there	must	be	only	one a in D
   corresponding	to	each b in E.
       Such	a	function	is	called one-to-one
       The	graph	of	such	a	function	passes	the horizontal	line	test:
       any	horizontal	line	intersects	the	graph	in	exactly	one	point
       if	at	all.
       If f is	continuous, then f−1 is	continuous.




                                                .    .   .   .    .    .
Outline


  Inverse	Trigonometric	Functions


  Derivatives	of	Inverse	Trigonometric	Functions
     Arcsine
     Arccosine
     Arctangent
     Arcsecant


  Applications




                                             .     .   .   .   .   .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                    y
                                    .



                             .       .        .                             x
                                                                            .
                             π              π                        s
                                                                     . in
                           −
                           .                .
                             2              2




                                                  .    .    .    .    .         .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                    y
                                    .

                                             .
                             .       .        .                             x
                                                                            .
                             π              π                        s
                                                                     . in
                           −
                           . .              .
                             2              2




                                                  .    .    .    .    .         .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                    y
                                    .
                                                  y
                                                  . =x
                                             .
                             .       .        .                             x
                                                                            .
                             π              π                        s
                                                                     . in
                           −
                           . .              .
                             2              2




                                                   .     .   .   .    .         .
arcsin
   Arcsin	is	the	inverse	of	the	sine	function	after	restriction	to
   [−π/2, π/2].

                                     y
                                     .
                                           . . rcsin
                                             a
                                                .
                             .       .         .                              x
                                                                              .
                             π               π                         s
                                                                       . in
                           −
                           . .               .
                             2               2
                                 .


         The	domain	of arcsin is [−1, 1]
                               [ π π]
         The	range	of arcsin is − ,
                                  2 2

                                                       .   .   .   .    .         .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]



                                    y
                                    .


                                                                       c
                                                                       . os
                                      .                .                   x
                                                                           .
                                    0
                                    .                .
                                                     π




                                                 .         .   .   .    .      .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]



                                    y
                                    .

                                     .
                                                                       c
                                                                       . os
                                      .                .                   x
                                                                           .
                                    0
                                    .                .
                                                     π
                                                       .




                                                 .         .   .   .    .      .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]



                                    y
                                    .
                                               y
                                               . =x
                                     .
                                                                       c
                                                                       . os
                                      .                .                   x
                                                                           .
                                    0
                                    .                .
                                                     π
                                                       .




                                                 .         .   .   .    .      .
arccos
   Arccos	is	the	inverse	of	the	cosine	function	after	restriction	to
   [0, π]

                                . . rccos
                                  a
                                     y
                                     .

                                     .
                                                                       c
                                                                       . os
                                      .     .          .                   x
                                                                           .
                                    0
                                    .                .
                                                     π
                                                       .



         The	domain	of arccos is [−1, 1]
         The	range	of arccos is [0, π]

                                                 .         .   .   .    .      .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
   [−π/2, π/2].
                                    y
                                    .




                                    .                                       x
                                                                            .
             3π              π             π              3π
           −
           .               −
                           .               .              .
              2              2             2                2




                                                                t
                                                                .an


                                                  .   .    .      .     .       .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
   [−π/2, π/2].
                                    y
                                    .




                                    .                                       x
                                                                            .
             3π              π             π              3π
           −
           .               −
                           .               .              .
              2              2             2                2




                                                                t
                                                                .an


                                                  .   .    .      .     .       .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
                                                         y
                                                         . =x
   [−π/2, π/2].
                                    y
                                    .




                                    .                                       x
                                                                            .
             3π              π             π              3π
           −
           .               −
                           .               .              .
              2              2             2                2




                                                                t
                                                                .an


                                                  .   .    .      .     .       .
arctan
   Arctan	is	the	inverse	of	the	tangent	function	after	restriction	to
   [−π/2, π/2].
                                    y
                                    .

                                  π
                                  .                                         a
                                                                            . rctan
                                  2

                                        .                                   x
                                                                            .

                                    π
                                −
                                .
                                    2

         The	domain	of arctan is (−∞, ∞)
                               ( π π)
         The	range	of arctan is − ,
                                  2 2
                         π                  π
          lim arctan x = , lim arctan x = −
         x→∞             2  x→−∞            2
                                                  .   .    .    .       .       .
arcsec
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
   [0, π/2) ∪ (π, 3π/2].
                                   y
                                   .




                                     .                                      x
                                                                            .
             3π              π             π                  3π
           −
           .               −
                           .               .                  .
              2              2             2                    2




                                               s
                                               . ec


                                                      .   .    .    .   .       .
arcsec
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
   [0, π/2) ∪ (π, 3π/2].
                                   y
                                   .



                                     .
                                     .                                          x
                                                                                .
             3π              π             π                      3π
           −
           .               −
                           .               .              .       .
              2              2             2                        2




                                               s
                                               . ec


                                                      .       .    .    .   .       .
arcsec
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
                                                          y
                                                          . =x
   [0, π/2) ∪ (π, 3π/2].
                                   y
                                   .



                                    .
                                    .                                          x
                                                                               .
             3π             π             π                      3π
           −
           .              −
                          .               .              .       .
              2             2             2                        2




                                              s
                                              . ec


                                                     .       .    .    .   .       .
arcsec                           3π
                                 .
   Arcsecant	is	the	inverse	of	secant	after	restriction	to
                                   2
   [0, π/2) ∪ (π, 3π/2].
                                . .  y

                                  π
                                  .
                                  2 .

                                     .   .                                x
                                                                          .
                                                      .



         The	domain	of arcsec is (−∞, −1] ∪ [1, ∞)
                               [ π ) (π ]
         The	range	of arcsec is 0,   ∪    ,π
                                   2    2
                         π                 3π
          lim arcsec x = , lim arcsec x =
         x→∞             2 x→−∞             2
                                                  .       .   .   .   .       .
Values	of	Trigonometric	Functions

                  π        π        π                 π
       x 0
                  6        4        3                 2
                           √        √
                  1          2        3
    sin x 0                                           1
                  2         2        2
                  √        √
                    3        2      1
    cos x 1                                           0
                   2        2       2
                   1                √
    tan x 0       √       1           3               undef
                    3
                  √                      1
    cot x undef     3     1             √             0
                                          3
                  2         2
    sec x 1       √        √        2                 undef
                   3         2
                            2            2
    csc x undef   2        √            √             1
                             2            3
                                    .         .   .       .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2




                                    .   .   .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2

   Solution
          π
          6




                                    .   .   .   .   .   .
What	is arctan(−1)?

                 .


    3
    . π/4
            .




                 .                .




                      .
                          −
                          . π/4


                                      .   .   .   .   .   .
What	is arctan(−1)?

                          .

                                                          (        )
    3
    . π/4                                                     3π
            .                                 Yes, tan                 = −1
                                                               4
                             √
                              2
                s
                . in(3π/4) =
                             2
                      .
                      √                       .
                        2
       . os(3π/4) = −
       c
                       2

                                  .
                                      −
                                      . π/4


                                                  .   .       .        .   .   .
What	is arctan(−1)?

                          .

                                                          ( )
    3
    . π/4                                                3π
            .                                 Yes, tan        = −1
                                                          4
                             √                But, the	range	of arctan
                                                ( π π)
                              2
                s
                . in(3π/4) =                  is − ,
                             2                      2 2
                      .
                      √                       .
                        2
       . os(3π/4) = −
       c
                       2

                                  .
                                      −
                                      . π/4


                                                  .   .       .   .   .   .
What	is arctan(−1)?

                    .

                                                          (   )
    3
    . π/4                                                  3π
            .                                  Yes, tan          = −1
                                                            4
                                               But, the	range	of arctan
                                                 ( π π)
                               √               is − ,
                                 2                    2 2
                   c
                   . os(π/4) =
                     .          2              Another	angle	whose
                                               .                    π
                                               tangent	is −1 is − , and
                              √                                     4
                               2               this	is	in	the	right	range.
                . in(π/4) = −
                s
                              2
                                   .
                                       −
                                       . π/4


                                                 .    .       .   .   .   .
What	is arctan(−1)?

                    .

                                                          (   )
    3
    . π/4                                                  3π
            .                                  Yes, tan          = −1
                                                            4
                                               But, the	range	of arctan
                                                 ( π π)
                               √               is − ,
                                 2                    2 2
                   c
                   . os(π/4) =
                     .          2              Another	angle	whose
                                               .                    π
                                               tangent	is −1 is − , and
                              √                                     4
                               2               this	is	in	the	right	range.
                . in(π/4) = −
                s                                                     π
                              2                So arctan(−1) = −
                                                                      4
                                   .
                                       −
                                       . π/4


                                                 .    .       .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2

   Solution
          π
          6
            π
          −
            4



                                    .   .   .   .   .   .
Check: Values	of	inverse	trigonometric	functions

   Example
   Find
          arcsin(1/2)
          arctan(−1)
                 ( √ )
                      2
          arccos −
                     2

   Solution
          π
          6
            π
          −
            4
          3π
           4

                                    .   .   .   .   .   .
Caution: Notational	ambiguity




           . in2 x =.(sin x)2
           s                             . in−1 x = (sin x)−1
                                         s




      sinn x means	the nth	power	of sin x, except	when n = −1!
      The	book	uses sin−1 x for	the	inverse	of sin x, and	never	for
      (sin x)−1 .
                        1
      I use csc x for       and arcsin x for	the	inverse	of sin x.
                      sin x
                                               .   .    .       .   .   .
Outline


  Inverse	Trigonometric	Functions


  Derivatives	of	Inverse	Trigonometric	Functions
     Arcsine
     Arccosine
     Arctangent
     Arcsecant


  Applications




                                             .     .   .   .   .   .
Theorem	(The	Inverse	Function	Theorem)
Let f be	differentiable	at a, and f′ (a) ̸= 0. Then f−1 is	defined	in	an
open	interval	containing b = f(a), and

                                              1
                       (f−1 )′ (b) =   ′ −1
                                       f (f   (b))




                                                     .   .   .   .   .    .
Theorem	(The	Inverse	Function	Theorem)
Let f be	differentiable	at a, and f′ (a) ̸= 0. Then f−1 is	defined	in	an
open	interval	containing b = f(a), and

                                                 1
                          (f−1 )′ (b) =   ′ −1
                                          f (f   (b))


“Proof”.
If y = f−1 (x), then
                                 f(y ) = x ,
So	by	implicit	differentiation

                      dy        dy     1         1
             f′ (y)      = 1 =⇒    = ′     = ′ −1
                      dx        dx   f (y)   f (f (x))



                                                        .   .   .   .   .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                    dy        dy     1          1
            cos y      = 1 =⇒    =       =
                    dx        dx   cos y   cos(arcsin x)




                                             .   .   .     .   .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:




                                                  .



                                              .       .   .   .   .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:

                                                          1
                                                          .
                                                                      x
                                                                      .



                                                  .



                                              .       .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:

                                                           1
                                                           .
                                                                       x
                                                                       .


                                                      y
                                                      . = arcsin x
                                                  .



                                              .        .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:

                                                         1
                                                         .
                                                                     x
                                                                     .


                                                    y
                                                    . = arcsin x
                                                  . √
                                                    . 1 − x2


                                              .      .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:
                     √
     cos(arcsin x) = 1 − x2                              1
                                                         .
                                                                     x
                                                                     .


                                                    y
                                                    . = arcsin x
                                                  . √
                                                    . 1 − x2


                                              .      .       .   .       .   .
The	derivative	of	arcsin

   Let y = arcsin x, so x = sin y. Then

                     dy        dy     1          1
             cos y      = 1 =⇒    =       =
                     dx        dx   cos y   cos(arcsin x)

  To	simplify, look	at	a	right
  triangle:
                     √
     cos(arcsin x) = 1 − x2                              1
                                                         .
                                                                     x
                                                                     .
   So
     d                1                             y
                                                    . = arcsin x
        arcsin(x) = √
     dx              1 − x2                       . √
                                                    . 1 − x2


                                              .      .       .   .       .   .
Graphing	arcsin	and	its	derivative


                                                                 1
                                                        .√
                                                                1 − x2
     The	domain	of f is
     [−1, 1], but	the	domain                            . . rcsin
                                                          a
     of f′ is (−1, 1)
      lim f′ (x) = +∞
     x →1 −
      lim f′ (x) = +∞                  .
                                       |       .        .
                                                        |
     x→−1+                           −
                                     . 1               1
                                                       .


                                      .




                                      .    .       .        .        .   .
The	derivative	of	arccos

   Let y = arccos x, so x = cos y. Then

                   dy        dy      1             1
         − sin y      = 1 =⇒    =         =
                   dx        dx   − sin y   − sin(arccos x)




                                              .   .   .   .   .   .
The	derivative	of	arccos

   Let y = arccos x, so x = cos y. Then

                    dy        dy      1             1
          − sin y      = 1 =⇒    =         =
                    dx        dx   − sin y   − sin(arccos x)

  To	simplify, look	at	a	right
  triangle:
                     √
     sin(arccos x) = 1 − x2                          1
                                                     .           √
                                                                 . 1 − x2
  So
   d                  1                         y
                                                . = arccos x
      arccos(x) = − √                       .
   dx                1 − x2                          x
                                                     .


                                                 .       .   .      .   .   .
Graphing	arcsin	and	arccos



      . . rccos
        a


                   . . rcsin
                     a


       .
       |     .     |.
                   .
     −
     . 1          1
                  .


      .



                               .   .   .   .   .   .
Graphing	arcsin	and	arccos



      . . rccos
        a
                               Note
                                                     (π    )
                                         cos θ = sin    −θ
                   . . rcsin
                     a                                2
                                                 π
                                   =⇒ arccos x = − arcsin x
                                                 2
       .
       |     .     |.
                   .           So	it’s	not	a	surprise	that	their
     −
     . 1          1
                  .            derivatives	are	opposites.

      .



                                             .    .    .     .     .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                    dy        dy     1
           sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                    dx        dx   sec2 y




                                              .    .   .      .   .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:




                                                   .



                                               .       .   .   .   .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:



                                                                   x
                                                                   .



                                                   .
                                                           1
                                                           .


                                               .       .   .   .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:



                                                                    x
                                                                    .


                                                       y
                                                       . = arctan x
                                                   .
                                                           1
                                                           .


                                               .       .   .    .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:


                                               √
                                               . 1 + x2             x
                                                                    .


                                                       y
                                                       . = arctan x
                                                   .
                                                           1
                                                           .


                                               .       .   .    .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                     dy        dy     1
            sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                     dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:

                      1
    cos(arctan x) = √
                     1 + x2                    √
                                               . 1 + x2             x
                                                                    .


                                                       y
                                                       . = arctan x
                                                   .
                                                           1
                                                           .


                                               .       .   .    .       .   .
The	derivative	of	arctan

   Let y = arctan x, so x = tan y. Then

                      dy        dy     1
             sec2 y      = 1 =⇒    =        = cos2 (arctan x)
                      dx        dx   sec2 y

  To	simplify, look	at	a	right
  triangle:

                      1
    cos(arctan x) = √
                     1 + x2                     √
                                                . 1 + x2             x
                                                                     .
   So
        d                1                              y
                                                        . = arctan x
           arctan(x) =                              .
        dx             1 + x2
                                                            1
                                                            .


                                                .       .   .    .       .   .
Graphing	arctan	and	its	derivative


                              y
                              .
                                   . /2
                                   π
                                                             a
                                                             . rctan
                                                                 1
                                                             .
                                                             1 + x2
                               .                             x
                                                             .



                                   −
                                   . π/2


      The	domain	of f and f′ are	both (−∞, ∞)
      Because	of	the	horizontal	asymptotes, lim f′ (x) = 0
                                           x→±∞

                                            .   .    .   .   .    .
Example
                    √
Let f(x) = arctan    x. Find f′ (x).




                                       .   .   .   .   .   .
Example
                    √
Let f(x) = arctan    x. Find f′ (x).

Solution

         d        √       1     d√     1   1
            arctan x =    (√ )2    x=    · √
         dx            1+    x  dx    1+x 2 x
                           1
                     = √       √
                       2 x + 2x x




                                       .   .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first.




                           .   .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))




                                                 .       .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:




                                              .



                                                  .      .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:




                                              .



                                                  .      .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:



                                                      x
                                                      .



                                              .
                                                          1
                                                          .


                                                  .           .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:



                                                       x
                                                       .


                                                  y
                                                  . = arcsec x
                                              .
                                                           1
                                                           .


                                                   .           .   .   .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                    dy        dy        1                1
      sec y tan y      = 1 =⇒    =             =
                    dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:
                     √
                        x2 − 1
     tan(arcsec x) =                                                   √
                          1                            x
                                                       .               . x2 − 1


                                                  y
                                                  . = arcsec x
                                              .
                                                           1
                                                           .


                                                   .           .   .      .   .   .
The	derivative	of	arcsec

   Try	this	first. Let y = arcsec x, so x = sec y. Then

                      dy        dy        1                1
        sec y tan y      = 1 =⇒    =             =
                      dx        dx   sec y tan y   x tan(arcsec(x))

  To	simplify, look	at	a	right
  triangle:
                     √
                        x2 − 1
     tan(arcsec x) =                                                    √
                          1                             x
                                                        .               . x2 − 1
   So
    d                1                             y
                                                   . = arcsec x
       arcsec(x) = √                           .
    dx            x x2 − 1
                                                            1
                                                            .


                                                    .           .   .      .   .   .
Another	Example




  Example
  Let f(x) = earcsec x . Find f′ (x).




                                        .   .   .   .   .   .
Another	Example




  Example
  Let f(x) = earcsec x . Find f′ (x).

  Solution
                                                 1
                          f′ (x) = earcsec x · √
                                              x x2 − 1




                                                    .    .   .   .   .   .
Outline


  Inverse	Trigonometric	Functions


  Derivatives	of	Inverse	Trigonometric	Functions
     Arcsine
     Arccosine
     Arctangent
     Arcsecant


  Applications




                                             .     .   .   .   .   .
Application


  Example
  One	of	the	guiding	principles
  of	most	sports	is	to	“keep
  your	eye	on	the	ball.” In
  baseball, a	batter	stands 2 ft
  away	from	home	plate	as	a
  pitch	is	thrown	with	a
  velocity	of 130 ft/sec (about
  90 mph). At	what	rate	does
  the	batter’s	angle	of	gaze
  need	to	change	to	follow	the
  ball	as	it	crosses	home	plate?



                                   .   .   .   .   .   .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
angle	the	batter’s	eyes	make	with	home	plate	while	following	the
ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
y = 0.




                                                              y
                                                              .


                                                              1
                                                              . 30 ft/sec

                                                   .
                                                   θ
                                           .
                                       .           2
                                                   . ft

                                               .    .     .       .   .     .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
 angle	the	batter’s	eyes	make	with	home	plate	while	following	the
 ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
 y = 0.
We	have θ = arctan(y/2).
Thus
   dθ        1         1 dy
      =              ·
                    2 2 dt
   dt   1 + ( y /2 )

                                                               y
                                                               .


                                                               1
                                                               . 30 ft/sec

                                                    .
                                                    θ
                                            .
                                        .           2
                                                    . ft

                                                .    .     .       .   .     .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
 angle	the	batter’s	eyes	make	with	home	plate	while	following	the
 ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
 y = 0.
We	have θ = arctan(y/2).
Thus
     dθ        1         1 dy
        =              ·
                      2 2 dt
     dt   1 + ( y /2 )

 When y = 0 and y′ = −130,                                         y
                                                                   .
then
dθ               1 1
            =      · (−130) = −65 rad/sec                          1
                                                                   . 30 ft/sec
dt   y =0       1+0 2
                                                        .
                                                        θ
                                                .
                                            .           2
                                                        . ft

                                                    .    .     .       .   .     .
Let y(t) be	the	distance	from	the	ball	to	home	plate, and θ the
 angle	the	batter’s	eyes	make	with	home	plate	while	following	the
 ball. We	know y′ = −130 and	we	want θ′ at	the	moment	that
 y = 0.
We	have θ = arctan(y/2).
Thus
     dθ        1         1 dy
        =              ·
                      2 2 dt
     dt   1 + ( y /2 )

 When y = 0 and y′ = −130,                                         y
                                                                   .
then
dθ               1 1
            =      · (−130) = −65 rad/sec                          1
                                                                   . 30 ft/sec
dt   y =0       1+0 2
                                                        .
                                                        θ
 The	human	eye	can	only                         .
track	at 3 rad/sec!                         .           2
                                                        . ft

                                                    .    .     .       .   .     .
Recap

        y         y′

                   1
    arcsin x   √
                 1 − x2
                    1
    arccos x − √           Remarkable	that	the
                  1 − x2
                           derivatives	of	these
                   1       transcendental functions
    arctan x
                1 + x2     are	algebraic	(or	even
                    1      rational!)
    arccot x  −
                 1 + x2
                   1
    arcsec x   √
              x x2 − 1
                    1
    arccsc x − √
               x x2 − 1
                             .   .   .    .   .       .

More Related Content

What's hot

3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivativesmath265
 
The binomial expansion
The binomial expansionThe binomial expansion
The binomial expansionJJkedst
 
Parent functions and Transformations
Parent functions and TransformationsParent functions and Transformations
Parent functions and Transformationstoni dimella
 
Lesson 14 derivative of inverse hyperbolic functions
Lesson 14 derivative of inverse hyperbolic functionsLesson 14 derivative of inverse hyperbolic functions
Lesson 14 derivative of inverse hyperbolic functionsRnold Wilson
 
Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functionsJessica Garcia
 
2.9 graphs of factorable rational functions t
2.9 graphs of factorable rational functions t2.9 graphs of factorable rational functions t
2.9 graphs of factorable rational functions tmath260
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations ymath260
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
2.4 defintion of derivative
2.4 defintion of derivative2.4 defintion of derivative
2.4 defintion of derivativemath265
 
Lesson 13 derivative of hyperbolic functions
Lesson 13 derivative of hyperbolic functionsLesson 13 derivative of hyperbolic functions
Lesson 13 derivative of hyperbolic functionsRnold Wilson
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Lineseltzermath
 
4.1 derivatives as rates linear motions
4.1 derivatives as rates linear motions4.1 derivatives as rates linear motions
4.1 derivatives as rates linear motionsmath265
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient xmath260
 

What's hot (20)

Graph transformations
Graph transformationsGraph transformations
Graph transformations
 
3.1 higher derivatives
3.1 higher derivatives3.1 higher derivatives
3.1 higher derivatives
 
The binomial expansion
The binomial expansionThe binomial expansion
The binomial expansion
 
Parent functions and Transformations
Parent functions and TransformationsParent functions and Transformations
Parent functions and Transformations
 
Lesson 14 derivative of inverse hyperbolic functions
Lesson 14 derivative of inverse hyperbolic functionsLesson 14 derivative of inverse hyperbolic functions
Lesson 14 derivative of inverse hyperbolic functions
 
Logarithms
LogarithmsLogarithms
Logarithms
 
Absolute value functions
Absolute value functionsAbsolute value functions
Absolute value functions
 
2.9 graphs of factorable rational functions t
2.9 graphs of factorable rational functions t2.9 graphs of factorable rational functions t
2.9 graphs of factorable rational functions t
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations y
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
2.4 defintion of derivative
2.4 defintion of derivative2.4 defintion of derivative
2.4 defintion of derivative
 
Lesson 13 derivative of hyperbolic functions
Lesson 13 derivative of hyperbolic functionsLesson 13 derivative of hyperbolic functions
Lesson 13 derivative of hyperbolic functions
 
Lesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent LineLesson3.1 The Derivative And The Tangent Line
Lesson3.1 The Derivative And The Tangent Line
 
4.1 derivatives as rates linear motions
4.1 derivatives as rates linear motions4.1 derivatives as rates linear motions
4.1 derivatives as rates linear motions
 
Continuity
ContinuityContinuity
Continuity
 
Binomial
BinomialBinomial
Binomial
 
Radian measure
Radian measureRadian measure
Radian measure
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient x
 

More from Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 

More from Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 

Recently uploaded

Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxruthvilladarez
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxRosabel UA
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEaurabinda banchhor
 

Recently uploaded (20)

Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
TEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docxTEACHER REFLECTION FORM (NEW SET........).docx
TEACHER REFLECTION FORM (NEW SET........).docx
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Presentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptxPresentation Activity 2. Unit 3 transv.pptx
Presentation Activity 2. Unit 3 transv.pptx
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Dust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSEDust Of Snow By Robert Frost Class-X English CBSE
Dust Of Snow By Robert Frost Class-X English CBSE
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 

Lesson 15: Inverse Trigonometric Functions

  • 1. Section 3.5 Inverse Trigonometric Functions V63.0121.006/016, Calculus I March 11, 2010 Announcements Exams returned in recitation There is WebAssign due Tuesday March 23 and written HW due Thursday March 25 . . . . . .
  • 2. Announcements Exams returned in recitation There is WebAssign due Tuesday March 23 and written HW due Thursday March 25 next quiz is Friday April 2 . . . . . .
  • 3. What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. . . . . . .
  • 4. What is an inverse function? Definition Let f be a function with domain D and range E. The inverse of f is the function f−1 defined by: f−1 (b) = a, where a is chosen so that f(a) = b. So f−1 (f(x)) = x, f(f−1 (x)) = x . . . . . .
  • 5. What functions are invertible? In order for f−1 to be a function, there must be only one a in D corresponding to each b in E. Such a function is called one-to-one The graph of such a function passes the horizontal line test: any horizontal line intersects the graph in exactly one point if at all. If f is continuous, then f−1 is continuous. . . . . . .
  • 6. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . .
  • 7. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . x . π π s . in − . . 2 2 . . . . . .
  • 8. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . . . x . π π s . in − . . . 2 2 . . . . . .
  • 9. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . y . =x . . . . x . π π s . in − . . . 2 2 . . . . . .
  • 10. arcsin Arcsin is the inverse of the sine function after restriction to [−π/2, π/2]. y . . . rcsin a . . . . x . π π s . in − . . . 2 2 . The domain of arcsin is [−1, 1] [ π π] The range of arcsin is − , 2 2 . . . . . .
  • 11. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . c . os . . x . 0 . . π . . . . . .
  • 12. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . . c . os . . x . 0 . . π . . . . . . .
  • 13. arccos Arccos is the inverse of the cosine function after restriction to [0, π] y . y . =x . c . os . . x . 0 . . π . . . . . . .
  • 14. arccos Arccos is the inverse of the cosine function after restriction to [0, π] . . rccos a y . . c . os . . . x . 0 . . π . The domain of arccos is [−1, 1] The range of arccos is [0, π] . . . . . .
  • 15. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . .
  • 16. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . .
  • 17. arctan Arctan is the inverse of the tangent function after restriction to y . =x [−π/2, π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 t .an . . . . . .
  • 18. arctan Arctan is the inverse of the tangent function after restriction to [−π/2, π/2]. y . π . a . rctan 2 . x . π − . 2 The domain of arctan is (−∞, ∞) ( π π) The range of arctan is − , 2 2 π π lim arctan x = , lim arctan x = − x→∞ 2 x→−∞ 2 . . . . . .
  • 19. arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . x . 3π π π 3π − . − . . . 2 2 2 2 s . ec . . . . . .
  • 20. arcsec Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . .
  • 21. arcsec Arcsecant is the inverse of secant after restriction to y . =x [0, π/2) ∪ (π, 3π/2]. y . . . x . 3π π π 3π − . − . . . . 2 2 2 2 s . ec . . . . . .
  • 22. arcsec 3π . Arcsecant is the inverse of secant after restriction to 2 [0, π/2) ∪ (π, 3π/2]. . . y π . 2 . . . x . . The domain of arcsec is (−∞, −1] ∪ [1, ∞) [ π ) (π ] The range of arcsec is 0, ∪ ,π 2 2 π 3π lim arcsec x = , lim arcsec x = x→∞ 2 x→−∞ 2 . . . . . .
  • 23. Values of Trigonometric Functions π π π π x 0 6 4 3 2 √ √ 1 2 3 sin x 0 1 2 2 2 √ √ 3 2 1 cos x 1 0 2 2 2 1 √ tan x 0 √ 1 3 undef 3 √ 1 cot x undef 3 1 √ 0 3 2 2 sec x 1 √ √ 2 undef 3 2 2 2 csc x undef 2 √ √ 1 2 3 . . . . . .
  • 24. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 . . . . . .
  • 25. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 . . . . . .
  • 26. What is arctan(−1)? . 3 . π/4 . . . . − . π/4 . . . . . .
  • 27. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 √ 2 s . in(3π/4) = 2 . √ . 2 . os(3π/4) = − c 2 . − . π/4 . . . . . .
  • 28. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 √ But, the range of arctan ( π π) 2 s . in(3π/4) = is − , 2 2 2 . √ . 2 . os(3π/4) = − c 2 . − . π/4 . . . . . .
  • 29. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 But, the range of arctan ( π π) √ is − , 2 2 2 c . os(π/4) = . 2 Another angle whose . π tangent is −1 is − , and √ 4 2 this is in the right range. . in(π/4) = − s 2 . − . π/4 . . . . . .
  • 30. What is arctan(−1)? . ( ) 3 . π/4 3π . Yes, tan = −1 4 But, the range of arctan ( π π) √ is − , 2 2 2 c . os(π/4) = . 2 Another angle whose . π tangent is −1 is − , and √ 4 2 this is in the right range. . in(π/4) = − s π 2 So arctan(−1) = − 4 . − . π/4 . . . . . .
  • 31. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 . . . . . .
  • 32. Check: Values of inverse trigonometric functions Example Find arcsin(1/2) arctan(−1) ( √ ) 2 arccos − 2 Solution π 6 π − 4 3π 4 . . . . . .
  • 33. Caution: Notational ambiguity . in2 x =.(sin x)2 s . in−1 x = (sin x)−1 s sinn x means the nth power of sin x, except when n = −1! The book uses sin−1 x for the inverse of sin x, and never for (sin x)−1 . 1 I use csc x for and arcsin x for the inverse of sin x. sin x . . . . . .
  • 34. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . .
  • 35. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) . . . . . .
  • 36. Theorem (The Inverse Function Theorem) Let f be differentiable at a, and f′ (a) ̸= 0. Then f−1 is defined in an open interval containing b = f(a), and 1 (f−1 )′ (b) = ′ −1 f (f (b)) “Proof”. If y = f−1 (x), then f(y ) = x , So by implicit differentiation dy dy 1 1 f′ (y) = 1 =⇒ = ′ = ′ −1 dx dx f (y) f (f (x)) . . . . . .
  • 37. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) . . . . . .
  • 38. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: . . . . . . .
  • 39. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . . . . . . . .
  • 40. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . y . = arcsin x . . . . . . .
  • 41. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: 1 . x . y . = arcsin x . √ . 1 − x2 . . . . . .
  • 42. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . y . = arcsin x . √ . 1 − x2 . . . . . .
  • 43. The derivative of arcsin Let y = arcsin x, so x = sin y. Then dy dy 1 1 cos y = 1 =⇒ = = dx dx cos y cos(arcsin x) To simplify, look at a right triangle: √ cos(arcsin x) = 1 − x2 1 . x . So d 1 y . = arcsin x arcsin(x) = √ dx 1 − x2 . √ . 1 − x2 . . . . . .
  • 44. Graphing arcsin and its derivative 1 .√ 1 − x2 The domain of f is [−1, 1], but the domain . . rcsin a of f′ is (−1, 1) lim f′ (x) = +∞ x →1 − lim f′ (x) = +∞ . | . . | x→−1+ − . 1 1 . . . . . . . .
  • 45. The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) . . . . . .
  • 46. The derivative of arccos Let y = arccos x, so x = cos y. Then dy dy 1 1 − sin y = 1 =⇒ = = dx dx − sin y − sin(arccos x) To simplify, look at a right triangle: √ sin(arccos x) = 1 − x2 1 . √ . 1 − x2 So d 1 y . = arccos x arccos(x) = − √ . dx 1 − x2 x . . . . . . .
  • 47. Graphing arcsin and arccos . . rccos a . . rcsin a . | . |. . − . 1 1 . . . . . . . .
  • 48. Graphing arcsin and arccos . . rccos a Note (π ) cos θ = sin −θ . . rcsin a 2 π =⇒ arccos x = − arcsin x 2 . | . |. . So it’s not a surprise that their − . 1 1 . derivatives are opposites. . . . . . . .
  • 49. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y . . . . . .
  • 50. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: . . . . . . .
  • 51. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x . . 1 . . . . . . .
  • 52. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: x . y . = arctan x . 1 . . . . . . .
  • 53. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: √ . 1 + x2 x . y . = arctan x . 1 . . . . . . .
  • 54. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 x . y . = arctan x . 1 . . . . . . .
  • 55. The derivative of arctan Let y = arctan x, so x = tan y. Then dy dy 1 sec2 y = 1 =⇒ = = cos2 (arctan x) dx dx sec2 y To simplify, look at a right triangle: 1 cos(arctan x) = √ 1 + x2 √ . 1 + x2 x . So d 1 y . = arctan x arctan(x) = . dx 1 + x2 1 . . . . . . .
  • 56. Graphing arctan and its derivative y . . /2 π a . rctan 1 . 1 + x2 . x . − . π/2 The domain of f and f′ are both (−∞, ∞) Because of the horizontal asymptotes, lim f′ (x) = 0 x→±∞ . . . . . .
  • 57. Example √ Let f(x) = arctan x. Find f′ (x). . . . . . .
  • 58. Example √ Let f(x) = arctan x. Find f′ (x). Solution d √ 1 d√ 1 1 arctan x = (√ )2 x= · √ dx 1+ x dx 1+x 2 x 1 = √ √ 2 x + 2x x . . . . . .
  • 59. The derivative of arcsec Try this first. . . . . . .
  • 60. The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) . . . . . .
  • 61. The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . .
  • 62. The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: . . . . . . .
  • 63. The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x . . 1 . . . . . . .
  • 64. The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: x . y . = arcsec x . 1 . . . . . . .
  • 65. The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = √ 1 x . . x2 − 1 y . = arcsec x . 1 . . . . . . .
  • 66. The derivative of arcsec Try this first. Let y = arcsec x, so x = sec y. Then dy dy 1 1 sec y tan y = 1 =⇒ = = dx dx sec y tan y x tan(arcsec(x)) To simplify, look at a right triangle: √ x2 − 1 tan(arcsec x) = √ 1 x . . x2 − 1 So d 1 y . = arcsec x arcsec(x) = √ . dx x x2 − 1 1 . . . . . . .
  • 67. Another Example Example Let f(x) = earcsec x . Find f′ (x). . . . . . .
  • 68. Another Example Example Let f(x) = earcsec x . Find f′ (x). Solution 1 f′ (x) = earcsec x · √ x x2 − 1 . . . . . .
  • 69. Outline Inverse Trigonometric Functions Derivatives of Inverse Trigonometric Functions Arcsine Arccosine Arctangent Arcsecant Applications . . . . . .
  • 70. Application Example One of the guiding principles of most sports is to “keep your eye on the ball.” In baseball, a batter stands 2 ft away from home plate as a pitch is thrown with a velocity of 130 ft/sec (about 90 mph). At what rate does the batter’s angle of gaze need to change to follow the ball as it crosses home plate? . . . . . .
  • 71. Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . .
  • 72. Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · 2 2 dt dt 1 + ( y /2 ) y . 1 . 30 ft/sec . θ . . 2 . ft . . . . . .
  • 73. Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · 2 2 dt dt 1 + ( y /2 ) When y = 0 and y′ = −130, y . then dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y =0 1+0 2 . θ . . 2 . ft . . . . . .
  • 74. Let y(t) be the distance from the ball to home plate, and θ the angle the batter’s eyes make with home plate while following the ball. We know y′ = −130 and we want θ′ at the moment that y = 0. We have θ = arctan(y/2). Thus dθ 1 1 dy = · 2 2 dt dt 1 + ( y /2 ) When y = 0 and y′ = −130, y . then dθ 1 1 = · (−130) = −65 rad/sec 1 . 30 ft/sec dt y =0 1+0 2 . θ The human eye can only . track at 3 rad/sec! . 2 . ft . . . . . .
  • 75. Recap y y′ 1 arcsin x √ 1 − x2 1 arccos x − √ Remarkable that the 1 − x2 derivatives of these 1 transcendental functions arctan x 1 + x2 are algebraic (or even 1 rational!) arccot x − 1 + x2 1 arcsec x √ x x2 − 1 1 arccsc x − √ x x2 − 1 . . . . . .