O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.

Electromagnetic counterparts of Gravitational Waves - Elena Pian

316 visualizações

Publicada em

Waves on the lake: the astrophysics behind gravitational waves
May 28 – June 1, 2018

Publicada em: Ciências
  • DOWNLOAD FULL eBOOK INTO AVAILABLE FORMAT ......................................................................................................................... ......................................................................................................................... 1.DOWNLOAD FULL. PDF eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. doc eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. PDF eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. doc eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, CookeBOOK Crime, eeBOOK Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui
  • DOWNLOAD FULL eBOOK INTO AVAILABLE FORMAT ......................................................................................................................... ......................................................................................................................... 1.DOWNLOAD FULL. PDF eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. doc eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. PDF eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. EPUB eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... 1.DOWNLOAD FULL. doc eBook here { https://tinyurl.com/y3nhqquc } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, CookeBOOK Crime, eeBOOK Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui
  • Seja a primeira pessoa a gostar disto

Electromagnetic counterparts of Gravitational Waves - Elena Pian

  1. 1. Como Lake School, 1st June 2018 Elena Pian INAF - Astrophysics and Space Science Observatory, Bologna Electromagnetic counterparts of Gravitational Waves
  2. 2. Setting multi-messenger astronomy in context: Search and follow-up of electromagnetic counterparts of cosmic sources of: 1) Neutrinos 2) cosmic rays 3) GWs
  3. 3. Cosmic neutrino spectrum
  4. 4. Solar neutrinos Proton-proton reaction chain (simplest version): This process is responsible for radiation production in stars smaller than 1.3 solar masses
  5. 5. Core-collapse supernova neutrinos Electron capture (or inverse beta decay): This process is responsible for neutronization of massive stellar cores undergoing gravitational collapse (neutron star remnant formation)
  6. 6. SN1987A (LMC, 50 kpc) The neutrino detectors IMB (USA), Kamiokande (Japan) and Baksan (Russia) detected a handful of neutrinos each, a few hours before light detection from SN1987A (I. Shelton 1987, IAU Circ. 4316) Color-composite of SN1987A nowadays: visible (HST, green), radio (red, ALMA), X- rays (purple, Chandra) 2”
  7. 7. Super Kamiokande experiment for MeV neutrino detection
  8. 8. Electron capture (p + e-  n + nu_e) and beta+ decay (p  n + e+ + nu_e) Are also responsible for supernova light emission, dominated by the decay chain: 56Ni  56Co  56Fe The emitted neutrino flux is normally way too weak to be detected
  9. 9. Light curves of various types of supernovae In general, LCs follow radioactive exponential decay of 56-Cobalt
  10. 10. Periodic table of elements https://en.wikipedia.org/wiki/R-process Lanthanides: Z = 57-71
  11. 11. ICECUBE South Pole neutrino observatory Esperimento per rivelare i cosiddetti “ultra-high-energy neutrinos” (Energia > 1 TeV) https://icecube.wisc.edu Colonne di fotomoltiplicatori
  12. 12. Hadronic processes (particle cascades) in relativistic jetted sources can produce UHE neutrinos. Only promising case so far of association between UHE neutrino and cosmic source: BL Lac object TXS0506+056 (z = 0.33, Paiano et al. 2018) IceCube detected a PeV event on 22 Sep 2017 (Kopper & Blaufuss 2017) from a sky area that is compatible with variable multi-wavelength emission Ultra-high energy neutrinos (>1 TeV)
  13. 13. ~200 sources (M82, NGC253) http://tevcat.uchicago.eduTeV Sky interactive map TXS0506+056, MAGIC
  14. 14. Cosmic rays: Victor Hess 1883-1964 1911-1913: Hess accomplishes first baloon flights To measure extraterretrial “radiation” Nobel Prize 1936, with Carl David Anderson
  15. 15. Pierre Auger Observatory for cosmic rays Argentinian territory area covered by PAO Typical detector Pierre Victor Auger (1899-1993)
  16. 16. Spectrum of Cosmic Rays Kotera & Olinto 2011
  17. 17. Relationship between magnetic field and Larmor radius Kotera & Olinto 2011 RL = E / ZeB
  18. 18. Hypothesis that supernova remnants (SNR) are good CR accelerator candidates. Are SNRs good “Pevatrons”? In order to be so, they must accelerate both nucleons and electrons, to account for predominance of nucleonic CR component
  19. 19. X-ray spectrum of NE rim is non- thermal (featureless power-law). X-ray synchrotron emission implies electron energies of ~100 TeV Supernova remnants: SN1006 (2 kpc, Type Ia SN) ASCA, 0.4-8 keV Koyama et al. 1995 TeV observation with CANGAROO N(E)~ E-2 Photon energy: Chandra
  20. 20. Y. Fukui, MIAPP 2018 Shock velocity ~ 10000 km/s
  21. 21. Aharonian et al. 2007 2’ = 2 pc SNR RX J1713.7-3946 (uncertain SN explosion type) HESS observation: sum of 2004 and 2005 data (ASCA contours in black ) High-resolution millimetric observations have revealed interstellar CO molecular gas interacting with the SNR. A molecular cloud of ∼200 solar masses is associated with the X-ray and TeV peak, providing strong evidence for proton acceleration (electrons suffer too severe synchrotron and Inverse Compton losses to survive and fill the molecular cloud volume).
  22. 22. Giuliani et al. 2011 SNR W44 with AGILE-GRID 1.1 x 0.75 deg2 AGILE-GRID map VLA, 324 MHz age ~20000 yr Distance ~3 kpc Neutral pion decay signature  hadronic process Neutral pion decay Bremsstrahlung Synchrotron IC
  23. 23. K. Fang, MIAPP 2018 Pulsars:
  24. 24. A double neutron star merger is expected to produce: 1) a GW signal at ~1-1000 Hz (nearly isotropic) 2) a short GRB (highly directional and anisotropic) 3) r-process nucleosynthesis (nearly isotropic) Lattimer & Schramm 1974; Eichler et al. 1989; Li & Paczynski 1998
  25. 25. Hulse & Taylor 1975; Taylor & Weisberg 1982 NP 1993 to Hulse & Taylor PSR1913+16 Orbital period = 7.75 hr Binary PSR J0737-3039: merger time of ~85 Myr Binary compact star systems with merger times less than the age of the Universe Orbital period decay caused by GW radiation: -> merger time of ~300 Myr 2003, Nat, 426, 531
  26. 26. Search for GW170817 optical counterpart: GW error regions and Swope 1m pointings Coulter et al. 2017
  27. 27. Comparison of Swope discovery image with archival HST image Coulter et al. 2017 (AT2017gfo)
  28. 28. Optical and near-infrared light curves of GW170817 / AT2017gfo Villar et al. 2018 , and references therein
  29. 29. Host of GW170817: Lenticular galaxy NGC 4993 (40 Mpc) Levan et al. 2017 MUSE contours in [N II] line 10”
  30. 30. ESO VLT X-Shooter spectral sequence of kilonova GW170817 Pian et al. 2017; Smartt et al. 2017 purely thermal spectrum (T = 5000 K). Initial expansion speed of ~0.2c Broad absorption lines indicate material at high speed (0.1-0.2c)
  31. 31. Receding photosphere: P-Cygni profile of absorption lines
  32. 32. Supernova spectral evolution: the photosphere (τ ~ 1) recedes with time (SN1998bw, 35 Mpc) Patat et al. 2001 Si II -> 6355 Å
  33. 33. Typical spectra of Stripped-envelope core-collapse SNe Pian & Mazzali 2017 Si II He I O I Fe II Hα
  34. 34. Geometry of 3-component model for kilonova Tanaka et al. 2017, PASJ (v ~ 0.2c) (v ~ 0.05c) (v ~ 0.05c)
  35. 35. Geometry of 3-component model for kilonova and resulting spectra Mej ~ 0.03 Tanaka et al. 2017, Utsumi et al. 2017 (v ~ 0.2c) (v ~ 0.05c) (v ~ 0.05c)
  36. 36. Element abundances at 1 day after merger Tanaka et al. 2017, PASJ solar actinideslanthanides Ye = np / (np + nn)
  37. 37. Kilonova 3-component model for AT2017gfo 1.5 days Dynamical ejecta, lanthanide-rich (Ye = 0.1-0.4) Wind, mixed (Ye = 0.25) Wind, lanthanide-free (Ye = 0.3) v ~ 0.2c v ~ 0.05c v ~ 0.05c
  38. 38. Kilonova 3-component model for AT2017gfo: ejecta mass is 0.03-0.05 solar masses
  39. 39. An example of a _good_ spectral fit (SN2004eo) Mazzali et al. 2008
  40. 40. AT2017gfo evolves much more rapidly than any supernova Arcavi et al. 2017
  41. 41. Magellan spectral sequence of kilonova GW170817 Shappee et al. 2017 spectra at < 1 day indicate temperature of ~10000 K
  42. 42. gamma-ray bursts are brief flashes of radiation at 100-1000 keV. They are Produced by non-thermal processes in a relativistic plasma, most probably propagating in a jet. Their progenitors are core-collapse supernovae (long GRBs) and compact star mergers (short GRBs) relativistic jet
  43. 43. Hardness-Duration Classification of GRBs 50 - 300 keV flux 10 - 50 keV flux H = Short/Hard Long/Soft Kouveliotou+1993; von Kienlin+2014 long short
  44. 44. Cumulative distribution of projected offsets of various explosions with respect to their host centers Berger 2014 GRB050724 (z = 0.258)
  45. 45. Short GRB130603B (z = 0.356) Kilonova: Ejection of r-process material from a NS merger (0.01-0.1 Mo) (Barnes & Kasen 2013) MH ≈ -15 MR ≈ -13 Tanvir et al. 2013; Berger et al. 2013 MJ = -15.35
  46. 46. GW170817 and GRB170817A The short GRB170817A lags GW signal by 1.7s: is this timescale related to the engine or to the plasma outflow? First of all it tells us that GW and light propagation speeds differ by less than 1 part in e15 Epeak ~200 keV (GBM) Abbott et al. 2017; Savchenko et al. 2017; Fermi Collaboration 2017
  47. 47. Energy output of GRBs Courtesy: L. Amati
  48. 48. Multiwavelength light curves of AT2017gfo within ~3 weeks of BNS merger Troja et al. 2017
  49. 49. They peak earlier than ~100 s, unlike in GRB170817A, where no X-ray flux was detected for 10 days D’Avanzo et al. 2014 Van Eerten & MacFadyen 2011 X-ray light curves of short GRB afterglows normalized to Eiso “top-hat” jet
  50. 50. Geometry of GW/GRB/kilonova system Troja et al. 2017
  51. 51. Jet morphology Abbott et al. 2017
  52. 52. GRB170817A: multiwavelength LCs and emission models. A structured off-axis jet or a quasi-isotropic outflow are preferred Xie, Zrake, MacFadyen 2018 Narrow engine Wide engine Kilonova Kilonova Uniform jet
  53. 53. Typical angular sizes of GW error boxes in the era of Simultaneous LIGO Hanford, Livingstone, Virgo and INDIGO R. Weiss, CfA, Feb 2018
  54. 54. Conclusions on multi-messenger astrophysics (1) Multi-messenger astrophysics started ~100 years ago, when the search for cosmic rays started. Evidence that SNRs are PeVatrons has built up, but origin of highest energy cosmic rays is still unknown. Neutrino astronomy has spearheaded multi-messenger astrophysics: MeV neutrinos from the Sun and from SN1987A and UHE neutrinos from (jetted?) sources. While GWs from binary stellar BH mergers should not produce any EM signal, binary neutron star mergers produce kilonova -> first direct proof that neutron star mergers are r-process factories.
  55. 55. Conclusions on multi-messenger astrophysics (2) The preliminary models require more than one kilonova component, with different proportions of species (lanthanide-rich vs lanthanide-free). The ejecta are about 0.03-0.05 solar masses. More realistic atomic models and opacities are necessary to use with density structure profiles, nuclear reaction networks and radiative transport codes. Fundamental problem of NS Equation of State can be addressed with joint gravitational and electromagnetic information (see A. Perego’s talk; dynamical ejecta should be larger for smaller radii of the NSs, i.e. for softer EoS, and for asymmetric NS masses; larger remnant mass implies lower ejecta). O3 (starting Jan 2019) expectations are based on Abbott et al. (2017) predicted rate:
  56. 56. THESEUS https://www.isdc.unige.ch/theseus/ medium-size mission (M5) within the Cosmic Vision Programme, selected by ESA on 2017 May 7 to enter an assessment phase study 4 Soft X-ray Imager (SXI, 0.3 – 6 keV), ~1sr FOV, location accuracy < 1-2’ 0.7m InfraRed Telescope (IRT, 0.7 – 1.8 μm) 10’x10’ FOV, fast response, imaging and spectroscopy capabilities X-Gamma rays Imaging Spectrometer (XGIS, 2 keV – 20 MeV), coded-mask cameras based on Si diodes coupled with CsI crystal scintillator, ~1.5sr FOV, location accuracy of ~5’ in 2-30 keV

×