CNTKでの分散学習 – 3/6
from cntk import distributed
...
learner = cntk.learner.momentum_sgd(...) # create local learner
distributed_after = epoch_size # number of samples to warm start with
distributed_learner = distributed.data_parallel_distributed_learner(
learner = learner,
num_quantization_bits = 32, # non-quantized gradient accumulation
distributed_after = 0) # no warm start
損失関数の定義
CNTKでの分散学習 – 4/6
minibatch_source = MinibatchSource(...)
...
trainer = Trainer(z, ce, pe, distributed_learner)
...
session = training_session(trainer=trainer,
mb_source=minibatch_source, ...)
session.train()
...
distributed.Communicator.finalize() # must be called to finalize
MPI in case of successful distributed training
最適化方法の定義
https://docs.microsoft.com/en-us/cognitive-toolkit/multiple-gpus-and-
machines#2-configuring-parallel-training-in-cntk-in-python
Some preparation for Deep Learning!
CNTKから2つのGPUが見えて
いる
GPU利用可能か確認
https://github.com/kyoro1/decode2018/blob/master/2.%20distributed%20learning%2
0with%20Faster%20R-CNN.ipynb