AWS Personalize 중심으로 살펴본 추천 시스템 원리와 구축

S
Sungmin KimSolutions Architect em Amazon Web Services
© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved | 4
© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved
추천 시스템의 원리와 구축 사례
Sungmin Kim
AWS Solutions Architect
Amazon Personalize
Agenda
• 추천의 정의
• 추천의 중요성
• 추천 성과 지표
• Amazon Personalize 소개
• Amazon Personalize 적용 아키텍처
“추천” 이란 무엇일까?
“추천”은 왜 중요할까?
E-Commerce의 중요한 지표
• Retention Rate – 고객 체류 시간
• Churn Rate – 고객 이탈율
• (Purchase) Conversion Rate – (구매) 전환율
추천
검색 결제
“추천”은 왜 중요할까?
검색
• 원하는 결과를 빨리 찾기
• 정확
• 신속
추천
• 새로운 경험
• 탐험, 탐색
• 발견의 기쁨
추천 알고리즘의 종류
• Collaborative Filtering
• Content-based Filtering
• Hybrid = Collaborative Filtering + Content-based Filtering
Collaborative Filtering
user1
user2
user3
user1
user2
user3
Content-based Filtering
article read
by me
Similar
Recommend
new article
Read
Collaborative Filtering
(+)
• Content 를 분석 할 필요 없음.
• 사용자 행동 로그만으로 추천 계산
가능.
• 다양한 곳에 적용 가능.
(-)
• Cold Start 문제 발생.
Content-based Filtering
(-)
• Content가 풍부한 곳에 적용 가능.
• 적용 범위가 비교적 제한적.
(예: Music, Movies 등은 적용이 쉽지 않음)
(+)
• Content 분석 만으로 추천 가능.
• 사용자 행동 로그 없이 추천 계산 가능.
• Cold Start 문제 완화.
Hybrid = Collaborative + Content-based
어떻게 추천을 적용할까?
Personalization
Non-Personalization
추천
CF
Content
-based
Hybrid
Non-
Personalization
Personalization
Cold-Start Problem
User-Item
Interactions
(e.g. View,
Buy, Cart)
Content
(e.g. Customer
reviews, Product
Details)
데이터
적용
데이터
준비
요구
사항
정리
추천
모델
개발
배포 및
적용
A/B Test
새로운 Feature
새로운 요구 사항
추천 서비스 개발 및 적용 - 반복적인 작업
Deliver high-quality
recommendations
Deliver
personalization in
days, not months
Real-time Works with any
product or content
Amazon Personalize
amazon.com 에서 사용하는 머신 러닝 기술을 이용한
실시간 개인화 및 추천 서비스
Solution
(Recipes)
Model selection,
training, tunning
and verification
Campaign
Model hosting,
and inference
Amazon
Personalize
Data Set Group
Users Items
Interactions
Data Sets
User events /
interactions
Item meta data
(a.k.a catalog
information -
optional)
User meta data
(e.g.
demographics
– optional)
Amazon Personalize
How it works
• GetRecommendations
• GetPersonalizedRanking
Setting up Amazon Personalize
어떤 데이터를 준비해야할까?
• 3 가지 데이터
• Users
• 사용자 메타 데이터
• 연령, 성별, 고객 멤버쉽 등
• Items
• Item 메타 데이터
• 가격, SKU(상품 재고 관리 단위), 재고 여부 등
• (User-Item) Interactions
• 사용자의 Item에 대한 행동 로그 데이터
• 구매(buy), 장바구니 담기(cart), 상품 보기(view) 등
• Interactions 데이터는 추천 계산에 사용되므로 반드시 필요함
• User, Items는 추천 계산에서 사용할 데이터 제외 및 추천 결과 filtering 용도로 사용
• 입력 데이터는 S3에 CSV 포맷의 저장, 첫번째 row에 컬럼 Header가 필요함
Formatting Your Input Data Example
컬럼 Header
CSV 포맷
Users Items Interactions
https://docs.aws.amazon.com/personalize/latest/dg/how-it-
works-dataset-schema.html
Users Items Interactions
https://docs.aws.amazon.com/personalize/latest/dg/how-it-
works-dataset-schema.html
{
"type": "record",
"name": "Users | Items | Interactions",
"namespace": "com.amazonaws.personalize.schema",
"fields": [
{
"name": "Field Name",
"type": "Data Type"
},
….
],
"version": "1.0"
}
데이터는 얼마나 준비해야할까?
Minimum Suggested Data Volume
• More than 50 users.
• More than 50 items.
• More than 1,500 interactions.
※ https://github.com/aws-samples/amazon-personalize-samples/blob/master/PersonalizeCheatSheet2.0.md
User personalization Personalized ranking
Similar items
Recipes
• User-personalization
• HRNN, HRNN-Metadata,
HRNN-Coldstart(legacy)
• Popularity-Count (baseline)
Recipe
• SIMS
Recipe
• Personalized-Ranking
Use case by Recipes
추천
데이터
Content
-based
적용
Non-
Personalization
Personalization
User-Item
Interactions
(e.g. View,
Buy, Cart)
Content
(e.g. Customer
reviews, Product
Details)
• User-Personalization
• Popularity-Count
• SIMS
• Personalized-Ranking
• SIMS
• Popularity-Count
• User-Personalization
• Personalized-Ranking
맛있는 요리처럼, 좋은 추천이란?
• Coverage
• Relevance (≈ Accuracy)
• Mean Reciprocal Rank@K
• NDCG@K
• Precision@K
Coverage
Relevance
※ Relevance: https://docs.aws.amazon.com/personalize/latest/dg/working-with-training-metrics.html
정말 더 좋은 추천이란?
• Coverage
• Relevance (≈ Accuracy)
• Mean Reciprocal Rank@K
• NDCG@K
• Precision@K
• Serendipity (≈ Surprise)
Serendipity
Coverage
Relevance
※ Relevance: https://docs.aws.amazon.com/personalize/latest/dg/working-with-training-metrics.html
relevance
serendipity
Why Serendipity?
It keeps your customers interested.
Amazon Personalize 정말 효과가 있을까?
https://aws.amazon.com/ko/solutions/case-studies/brandi/
Amazon Personalize를 사용하는 고객들
Let’s build it
• visit
• view
• cart
• buy
Web
Server
Users
Items
Transactions
(Interactions)
Web
Server
Reco.
Server
?
response
request
recommendations
• visit
• view
• cart
• buy
Users
Items
Transactions
(Interactions)
Web
Server
• visit
• view
• cart
• buy
Amazon Personalize
Users
Items
Transactions
(Interactions)
Amazon Personalize
Data Set Group
Users Items
Interactions
Solution
(Recipes)
Model selection,
training, tunning
and verification
Campaign
Model hosting,
and inference
Amazon
Personalize
Data Sets
Users, Items,
and Interactions
Dataset
Group
Dataset
Import
Web
Server
S3
Personalize
Recipe
&
Solution
Campaign
• visit
• view
• cart
• buy
자동화?
Users
Items
Transactions
(Interactions)
Dataset
Group
Dataset
Import
Web
Server
S3
Personalize
Recipe
&
Solution
Campaign
• visit
• view
• cart
• buy
https://github.com/aws-samples/amazon-personalize-samples/tree/master/next_steps/operations/ml_ops
AWS Step Functions
자동화?
Users
Items
Transactions
(Interactions)
https://github.com/aws-samples/amazon-personalize-samples/tree/master/next_steps/operations/ml_ops
Amazon Personalize MLOps using Step Functions
Amazon Step Functions
Amazon Step Functions
#6: Dynamic parallelism
#5: Parallel processing
#4: Human in the loop
#3: Error handling
#2: Branching
#1: Function orchestration
Amazon Step Functions Use Cases
Amazon Personalize MLOps using Step Functions
Dataset
Group
Dataset
Import
Web
Server
S3
Personalize
Recipe
&
Solution
Campaign
• visit
• view
• cart
• buy
AWS Step Functions
Users
Items
Transactions
(Interactions)
Web
Server
S3
Step Functions
Personalize
Runtime
API
• visit
• view
• cart
• buy
Users
Items
Transactions
(Interactions)
사용자 Interactions 실시간 Update?
Amazon Personalize
Data Set Group
Users Items
Interactions
Solution
(Recipes)
Model selection,
training, tunning
and verification
Campaign
Model hosting,
and inference
Amazon
Personalize
Data Sets
Users, Items,
and Interactions
Amazon Personalize
Data Set Group
Users Items
Interactions
Solution
(Recipes)
Model selection,
training, tunning
and verification
Campaign
Model hosting,
and inference
Events
Tracker Data Sets
Users, Items,
and Interactions
Amazon
Personalize
Amazon Personalize
Data Set Group
Users Items
Interactions
Solution
(Recipes)
Model selection,
training, tunning
and verification
Campaign
Model hosting,
and inference
Events
Tracker Data Sets
Users, Items,
and Interactions
Real-Time
Events
Amazon
Personalize
Web
Server
S3
Step Functions
Personalize
Runtime
API
• visit
• view
• cart
• buy
Users
Items
Transactions
(Interactions)
사용자 Interactions 실시간 Update
Web
Server
Event
Tracker
S3
Step Functions
Personalize
Runtime
API
Users
Items
Transactions
(Interactions)
사용자 Interactions 실시간 Update
• visit
• view
• cart
• buy
Web
Server
Event
Tracker
S3
Step Functions
Personalize
Runtime
API
Users
Items
Transactions
(Interactions)
• visit
• view
• cart
• buy
사용자 Interactions 실시간 Update
Web
Server
Event
Tracker
S3
Personalize
Runtime
API
Step Functions
Users
Items
Transactions
(Interactions)
Kinesis Data
Streams
사용자 Interactions 실시간 Update
• visit
• view
• cart
• buy
Web
Server
Lambda Event
Tracker
S3
Personalize
Runtime
API
Step Functions
Users
Items
Transactions
(Interactions)
Kinesis Data
Streams
사용자 Interactions 실시간 Update
• visit
• view
• cart
• buy
PutEvents
Web
Server
Lambda Event
Tracker
S3
Kinesis
Firehose
Personalize
Runtime
API
Step Functions
Users
Items
Transactions
(Interactions)
Kinesis Data
Streams
• visit
• view
• cart
• buy
사용자 Interactions 실시간 Update
PutEvents
• Filter – 학습(training)에 사용할 records제외하기
• EVENT_TYPE – 특정 EVENT_TYPE의 records만 사용하고 싶은 경우
• EVENT_VALUE – 특정 threshold 값 이상의 records만 사용하고 싶은 경우
• (e.g. Review Rating > 2.0, Watch > 5)
• Dynamic Filter – 추천 API 호출 시 추천 결과에서 제외 하기
• GetRecommendations
• GetPersonalizedRanking
Dataset
Group
Dataset
Import
Recipe
&
Solution
Campaign
Amazon
Personalize
• GetRecommendations
• GetPersonalizedRanking
Filtering Recommendations
※ https://docs.aws.amazon.com/personalize/latest/dg/filter.html
Dynamic Filter
• Filtering by item
• EXCLUDE ItemId WHERE items.genre IN ($GENRE)
• EXCLUDE ItemId WHERE items.genre IN ("Comedy")
• INCLUDE ItemId WHERE items.number_of_downloads < 20
• Filtering by interactions
• INCLUDE ItemId WHERE interactions.event_type IN ("*")
• EXCLUDE ItemId WHERE interactions.event_type IN (“click”, “stream”)
• Filtering by item based on user properties
• EXCLUDE ItemId WHERE items.number_of_downloads < 20 IF CurrentUser.age > 18
AND CurrentUser.age < 30
• INCLUDE Item.ID WHERE items.genre IN (“Comedy”) | EXCLUDE ItemID WHERE
items.description IN ("classic”)
※ Amazon Personalize now supports dynamic filters for applying business rules to your recommendations on the fly
추천 결과 추천 결과
Web
Server
Amazon Personalize
X
X
Web
Server
Amazon Personalize
X
X
X
X
Lambda
X
X
X
X
Partially Filled Fully Filled
추천 Filtering을 Business Logic 처럼 적용하기
Amazon Personalize Filtering 사용 Filtering Business Logic 적용
Batch Recommendation
• 사용 사례
§ 많은 수의 사용자에 대한 추천을 한 번에 계산 및 저장 하고 싶은 경우
§ 배치 기반 워크플로(예: 이메일 또는 알림 전송)를 통해 추천 결과를 지속적으로
제공하고 싶은 경우
• 비용
§ 사용자들에게 동일한 추천 결과를 제공해도 되는 경우
§ 배치 처리가 훨씬 더 편리하고 경제적
• 배치 추론 작업 방법
• AWS 웹 콘솔
• API 호출
Web
Server
S3
Kinesis
Firehose
API
GW
Personalize
Batch Inference
Users
Items
Transactions
(Interactions)
S3
Dynamo
DB
Glue
Lambda
Kinesis Data
Streams
Batch Recommendation
• visit
• view
• cart
• buy
실시간 vs 배치 추천 비용
데이터 양
실시간 추천
배치 추천
비용 ü 학습용 데이터 양
ü 모델 학습 시간
ü 추론 API 호출 시간(TPS)
Summary
• 추천의 중요성
- Retention Rate, Churn Rate, Conversion Rate 등의 E-Commerce 주요 지표에 영항을 줌
• 추천 평가 기준
- Coverage, Relevance, Serendipity의 조화
• Amazon Personalize 적용 시 필요한 데이터
- Users, Items, Interactions
• Amazon Personalize Recipes
- User-Personalization, SIMS, Popularity-Count, Personalized-Ranking
• Amazon Personalize 적용 순서
- Data Ingestion(Data Set Group 생성 & Data Set Import) → Training (Recipe & Solution 생성) →
Inference(Campaign 생성)
• AWS Step Functions을 이용한 추천 계산 작업 자동화(MLOps)
• 추천 결과 필터링 방법
- 추천 계산 시, Interactions 데이터 필터링
- 추천 API 호출 시, 결과에서 필터링 (Dynamic Filter)
- 추천 계산 결과 후처리 (Business Logic 적용 하기)
Data First, Algorithm Later
Reference
• Amazon Personalize Immersion Day
• https://personalization-immersionday.workshop.aws/en/
• Sample Code
• https://github.com/aws-samples/amazon-personalize-samples/
• Personalize Cheat Sheet
• https://github.com/aws-samples/amazon-personalize-
samples/blob/master/PersonalizeCheatSheet2.0.md
• AWS 리소스 허브 – AI & 기계학습
• https://kr-resources.awscloud.com/aws-ai-and-machinelearning
© 2020, Amazon Web Services, Inc. or its Affiliates.
Sungmin, Kim
AWS Solutions Architect
추천 서비스를 위한
데이터 분석 시스템 구축하기
Agenda
• 데이터 분석의 위한 사전 지식
• 데이터 구조
• 데이터 온도 스펙트럼
• 데이터 파이프라인
• 추천 시스템 구축을 위해 필요한 데이터
• 사용자 행동 로그
• 추천 성과 분석 지표
• 사용자 행동 로그 수집을 위한 데이터 분석 아키텍처
• 추천 성과 분석을 위한 데이터 분석 시스템 확장
• Lesson Learned – Architectural Principles
데이터 분석에 필요한 3가지 개념
Structured, Unstructured, and Semi-Structured
Structure
Hot data Warm data Cold data
Low
High
High Request rate
Low
High Cost / GB
Low High
Latency
Low High
Data Volume
Low
In-Memory SQL
NoSQL Search
Object Storage
Archive
Storage
Graph
Data Temperature Spectrum
Simplify Big Data Processing
Collect Consume
Store Process/Analyze
Data
1 4
0 9
5
Answers &
Insights
Time to answer (Latency)
Throughput
Cost
ETL
추천 시스템에 필요한 데이터
• 추천 계산을 위한 사용자 행동 로그
• 상품 상세 페이지 보기
• 장바구니 담기
• 상품 구매
• …
• 추천 성과 측정을 위한 데이터
• 추천 아이템 노출 횟수
• 추천 아이템 클릭 횟수
• 추천 아이템 노출 위치
• …
visit
view
cart
buy
사용자 행동 로그 수집
Data Set Group
Users Items
Interactions
Solution
(Recipes)
Model selection,
training, tunning
and verification
Campaign
Model hosting,
and inference
Events
Tracker Data Sets
Users, Items,
and Interactions
Real-Time
Events
Amazon
Personalize
• visit
• view
• cart
• buy
Web
Server
Users
Items
Interactions
Amazon Personalize
사용자 행동 로그 수집
• visit
• view
• cart
• buy
Web
Server
Users
Items
Interactions
Dataset
Group
Dataset
Import
Recipe
&
Solution
Campaign
Amazon Personalize
Personalize
Runtime
API
사용자 행동 로그 수집
• visit
• view
• cart
• buy
Web
Server
Users
Items
Interactions
Dataset
Group
Dataset
Import
Recipe
&
Solution
Campaign
AWS Step
Functions
workflow
Personalize
Runtime
API
사용자 행동 로그 수집
• visit
• view
• cart
• buy
Web
Server
Users
Items
Interactions
Dataset
Group
Dataset
Import
Recipe
&
Solution
Campaign
AWS Step
Functions
workflow
S3
Personalize
Runtime
API
사용자 행동 로그 수집
• visit
• view
• cart
• buy
Web
Server
Users
Items
Interactions
Dataset
Group
Dataset
Import
Recipe
&
Solution
Campaign
AWS Step
Functions
workflow
Personalize
Runtime
API
Users Items
Interactions
S3
사용자 행동 로그 수집
• visit
• view
• cart
• buy
Web
Server
S3
Users
Items
Interactions
Step Functions
How to deliver?
ü Fastly
ü Without loss
Personalize
Runtime
API
사용자 행동 로그 수집
Key Components of Real-time Analytics
Data
Source
Stream
Storage
Stream
Process
Stream
Ingestion
Data
Sink
Devices and/or
applications that
produce real-time
data at high
velocity
Data from tens of
thousands of data
sources can be
written to a single
stream
Data are stored in the
order they were
received for a set
duration of time and
can be replayed
indefinitely during
that time
Records are read in
the order they are
produced, enabling
real-time analytics
or streaming ETL
Data lake
(most common)
Database
(least common)
Web
Server
S3
Users
Items
Interactions
Step Functions
Data Source
Data Sink
Personalize
Runtime
API
사용자 행동 로그 수집
• visit
• view
• cart
• buy
• visit
• view
• cart
• buy
Web
Server
S3
Users
Items
Interactions
Step Functions
Data Source
Data Sink
Personalize
Runtime
API
사용자 행동 로그 수집
Stream
Storage
• visit
• view
• cart
• buy
Web
Server
S3
Stream
Delivery
Users
Items
Interactions
Step Functions
Data Source
Data Sink
Personalize
Runtime
API
사용자 행동 로그 수집
Stream
Storage
• visit
• view
• cart
• buy
Web
Server
S3
Stream
Delivery
Users
Items
Interactions
Step Functions
Kinesis Data
Streams
Managed Streaming
for Kafka
Kinesis Data
Firehose
Personalize
Runtime
API
사용자 행동 로그 수집
Stream
Storage
Why is Stream Storage?
• Decouple producers &
consumers
• Persistent buffer
• Collect multiple streams
• Preserve client ordering
• Parallel consumption
• Streaming MapReduce
Hash
Function
Consumer
Consumer
Consumer
Consumer Group
PK
PK
PK
PK
= next consumer offset oldest data
newest data
Amazon Kinesis
Data Streams
Amazon Managed
Streaming for Kafka
Producers
shard/partition-1
shard/partition-2
5 4 3 2 1 0
3 2 1 0
4 3 2 1 0
4
2
0
shard/partition-3
Anatomy of
Comparing Amazon Kinesis Data Streams to MSK
• Streams and shards
• AWS API experience
• Throughput provisioning model
• Seamless scaling
• Typically lower costs
• Deep AWS integrations
• Topics and partitions
• Open-source compatibility
• Strong third-party tooling
• Cluster provisioning model
• Apache Kafka scaling isn’t
seamless to clients
• Raw performance
Amazon Kinesis Data Streams Amazon MSK
Stream Ingestion
• AWS SDKs
• Publish directly from application code via APIs
• AWS Mobile SDK
• Kinesis Agent
• Monitors log files and forwards lines as messages to
Kinesis Data Streams
• Kinesis Producer Library (KPL)
• Background process aggregates and batches messages
• 3rd party and open source
• Kafka Connect (kinesis-kafka-connector)
• fluentd (aws-fluent-plugin-kinesis)
• Log4J Appender (kinesis-log4j-appender)
• and more …
Data
Source
Stream
Storage
Stream
Process
Stream
Ingestion
Data
Sink
Amazon Kinesis
Data Streams
Elasticsearch
Service
Redshift
Stream Delivery
Data
Source
Stream
Storage
Stream
Process
Stream
Ingestion
Data
Sink
Stream
Delivery
Kinesis Data
Firehose
• Kinesis Agent
• CloudWatch Logs
• CloudWatch Events
• AWS IoT
• Direct PUT using APIs
• Kinesis Data Streams
• MSK(Kafka) using
Kafka Connect
Kinesis Data
Analytics
S3
Amazon Kinesis Data Firehose
• Zero administration and seamless elasticity
• Direct-to-data store integration
• Serverless continuous data transformations
• Near real-time
Kinesis Firehose: Filter, Enrich, Convert
Data
Source
apache log
apache log
json Data
Sink
[Wed Oct 11 14:32:52 2017] [error] [client 192.34.86.178]
[Wed Oct 11 14:32:53 2017] [info] [client 127.0.0.1]
{
"date": "2017/10/11 14:32:52",
"status": "error",
"source": "192.34.86.178",
"city": "Boston",
"state": "MA"
}
geo-ip
{
"recordId": "1",
"result": "Ok",
"data": {
"date": "2017/10/11 14:32:52",
"status": "error",
"source": "192.34.86.178",
"city": "Boston",
"state": "MA"
},
},
{
"recordId": "2",
"result": "Dropped"
}
json
Lambda function
Kinesis
Data Firehose
1
2
3
Pre-built Data Conversion
Data
Source
Kinesis
Data Firehose
JSON Data
schema
AWS Glue Data
Catalog
Amazon S3
• Convert the format of your input data from JSON to columnar data
format Apache Parquet or Apache ORC before storing the data in
Amazon S3
• Works in conjunction to the transform features to convert other format
to JSON before the data conversion
convert to
columnar format
/failed
• visit
• view
• cart
• buy
Web
Server
S3
Stream
Delivery
Users
Items
Interactions
Step Functions
Personalize
Runtime
API
Kinesis Data
Streams
Managed Streaming
for Kafka
Kinesis Data
Firehose
사용자 행동 로그 수집
Stream
Storage
• visit
• view
• cart
• buy
Web
Server
S3
Users
Items
Interactions
Step Functions
Kinesis Data
Streams
Personalize
Runtime
API
사용자 행동 로그 수집
• visit
• view
• cart
• buy
Web
Server
S3
Users
Items
Interactions
Step Functions
Kinesis Data
Streams
Kinesis Data
Firehose
Personalize
Runtime
API
사용자 행동 로그 수집
• visit
• view
• cart
• buy
Web
Server
S3
Users
Items
Interactions
Step Functions
Kinesis Data
Streams
Kinesis Data
Firehose
Event
Tracker
Lambda
Personalize
Runtime
API
사용자 행동 로그 수집
추천 성과 분석
• E-Commerce 주요 지표
• Retention Rate (체류 시간)
• Churn Rate (이탈률)
• Conversion Rate (전환률)
• 추천 알고리즘 지표 - A/B Test
• Coverage
• CTR (Click-through Rate)
≈ Relevance + Serendipity
If you can’t measure it, you can’t improve it.
– Peter Drucker
• visit
• view
• cart
• buy
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Event
Tracker
Lambda
Step Functions
Personalize
Runtime
API
추천 성과 분석
Kinesis Data
Streams
• visit
• view
• cart
• buy
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Amazon Personalize
사용자
행동 로그
추천 성과 분석
Kinesis Data
Streams
• visit
• view
• cart
• buy
ü click
ü impression
ü channel
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Amazon Personalize
사용자
행동 로그
추천 성과
지표
추천 성과 분석
Kinesis Data
Streams
• visit
• view
• cart
• buy
ü click
ü impression
ü channel
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Amazon Personalize
Marketer
Data Scientist
Business Analyst
사용자
행동 로그
추천 성과 분석
추천 성과
지표
Kinesis Data
Streams
• visit
• view
• cart
• buy
ü click
ü impression
ü channel
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Amazon Personalize
Marketer
Data Scientist
Business Analyst
QuickSight
사용자
행동 로그
추천 성과
지표
추천 성과 분석
Kinesis Data
Streams
DATA SOURCES
Relational
Databases
Flat Files
And Many Others!
DATA SETS
Retail Data
Ops Data
Marketing Data
ANALYSES DASHBOARDS &
STORIES
Amazon QuickSight
Fast BI Service with Pay-per-Session Pricing and ML Insights for everyone
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
?
QuickSight
Glue Athena
EMR Redshift
Batch Interactive
Amazon Personalize
• visit
• view
• cart
• buy
ü click
ü impression
ü channel
사용자
행동 로그
추천 성과
지표
추천 성과 분석
Kinesis Data
Streams
Comparison of SQL Processing engines
Data Structure Semi Semi Semi Full
Languages API/SQL SQL SQL SQL
Data Store
S3 (Glue),
S3/HDFS (Spark)
S3/HDFS S3 Local
Use case Transformation
SQL Queries
for S3/HDFS
Serverless SQL
Queries for S3
Fully Featured
SQL Database
Performance
AWS Glue Amazon Athena Amazon Redshift
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
QuickSight
Amazon Personalize
Athena
• visit
• view
• cart
• buy
ü click
ü impression
ü channel
사용자
행동 로그
추천 성과
지표
추천 성과 분석
Kinesis Data
Streams
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
QuickSight
Amazon Personalize
How to analyze data in real-time?
Athena
• visit
• view
• cart
• buy
ü click
ü impression
ü channel
추천 성과 분석
Kinesis Data
Streams
Kinesis
Data Streams
Amazon Elasticsearch
Service
Kibana
EMR
real-time
dashboard
ElastiCache
Kinesis
Data Analytics
Lambda function
QuickSight
Amazon RDS
Kinesis
Data Streams
DynamoDB
1
2
3
Kinesis
Data Firehose
Collect Store Consume
Process/Analyze
ETL
Kinesis
Data Streams
Amazon Elasticsearch
Service
Kibana
EMR
real-time
dashboard
ElastiCache
Kinesis
Data Analytics
Lambda function
QuickSight
Amazon RDS
Kinesis
Data Streams
DynamoDB
1
2
3
Kinesis
Data Firehose
Collect Store Consume
Process/Analyze
ETL
Amazon Kinesis
Data Analytics
for Flink
AWS Glue Amazon EMR
Serverless Serverless
Fully Managed
Amazon EMR
Applications
Framework
Process Layer
Data Layer
Infrastructure
S3
EMRFS
Amazon
S3
Instances Spot Instances
Amazon EMR
Easily run and scale Apache Spark, Hive, Presto, and other big data frameworks
• Interact with streaming data in real-time using SQL or integrated Apache Flink applications
• Build fully managed and elastic stream processing applications
Amazon Kinesis Data Analytics
A managed Apache Flink solution that enables building of sophisticated streaming
applications
Kinesis Data Analytics for SQL
Data
Source
Stream
Storage
Stream
Ingestion
Data
Sink
[("It's", 1),
("raining", 1),
("cats", 1),
("and", 1),
("dogs!", 1)]
“It's raining cats and dogs!” It’s 1
raining 1
cats 1
and 1
dogs! 1
Kinesis Data Analytics (SQL)
• STREAM (in-application): a continuously
updated entity that you can SELECT from and
INSERT into like a TABLE
• PUMP: an entity used to continuously
'SELECT ... FROM' a source STREAM, and
INSERT SQL results into an output STREAM
• Create output stream, which can be used to
send to a destination
SOURCE
STREAM
INSERT
& SELECT
(PUMP)
DESTIN.
STREAM
Destination
Source
[("It's", 1),
("raining", 1),
("cats", 1),
("and", 1),
("dogs!", 1)]
Kinesis
Data Streams
Amazon Elasticsearch
Service
Kibana
EMR
real-time
dashboard
ElastiCache
Kinesis
Data Analytics
Lambda function
QuickSight
Amazon RDS
Kinesis
Data Streams
DynamoDB
1
2
3
Kinesis
Data Firehose
Collect Store Consume
Process/analyze
ETL
Amazon Elasticsearch Service
Fully managed, scalable, and secure Elasticsearch service
Kinesis
Data Streams
Amazon Elasticsearch
Service
Kibana
EMR
real-time
dashboard
ElastiCache
Kinesis
Data Analytics
Lambda function
QuickSight
Amazon RDS
Kinesis
Data Streams
DynamoDB
1
2
3
Kinesis
Data Firehose
3 ways to build Real-time Analytics
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
QuickSight
Amazon Personalize
How to analyze data in real-time?
Athena
• visit
• view
• cart
• buy
ü click
ü impression
ü channel
추천 성과 분석
Kinesis Data
Streams
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Athena
QuickSight
Amazon Personalize
Kinesis Data
Firehose
Amazon ES Kibana
• visit
• view
• cart
• buy
ü click
ü impression
ü channel
추천 성과 분석
Kinesis Data
Streams
Web
Server
Kinesis
Firehose
Users
Items
Interactions
Kibana
Athena
QuickSight
Kinesis
Firehose
Amazon Personalize
Amazon
ES
S3
데이터 분석 시스템
Kinesis Data
Streams
Web
Server
Kinesis
Firehose
Users
Items
Interactions
Kibana
Athena
QuickSight
Data Lake
Kinesis
Firehose
Amazon Personalize
Amazon
ES
데이터 분석 시스템
Kinesis Data
Streams
Use Amazon S3 as your Data lake
• Natively supported by big data frameworks (Spark, Hive, Presto, etc.)
• Decouple storage and compute
• No need to run compute clusters for storage (unlike HDFS)
• Can run transient Amazon EMR clusters with Amazon EC2 Spot Instances
• Multiple & heterogeneous analysis clusters and services can use the same
data
• Designed for 99.999999999% durability
• No need to pay for data replication within a region
• Secure: SSL, client/server-side encryption at rest
• Low cost
Web
Server
Kinesis
Firehose
Users
Items
Interactions
Kibana
Athena
QuickSight
Data Lake
Kinesis
Firehose
Amazon Personalize
Amazon
ES
데이터 분석 시스템
Kinesis Data
Streams
Web
Server
S3
Users
Items
Interactions
Kibana
Athena
QuickSight
Data Lake
Stream Storage Stream Delivery
Kinesis Data
Firehose
Kinesis Data
Firehose
Kinesis Data
Streams
Amazon
ES
데이터 분석 시스템
Amazon Personalize
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Amazon Personalize
Amazon ES Kibana
Kinesis
Firehose
Athena QuickSight
Data Lake
Batch Layer
Speed Layer
Serving Layer
데이터 분석 시스템
Kinesis Data
Streams
Streaming
Data
Batch View
Stream Process
Real-time
View
Query
Query
Batch View
Real-time
View
Raw Data
Batch Process
Batch Layer Serving Layer
Speed Layer
Lambda Architecture
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Kibana
Athena
QuickSight
Event
Tracker
Lambda
Step Functions
Kinesis
Firehose
Dataset
Group
Dataset
Import
Recipe &
Solution
Campaign
Amazon
ES
Personalize
Runtime
API
추천 + 데이터 분석 시스템
Kinesis Data
Streams
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Kibana
Athena
QuickSight
Event
Tracker
Lambda
Step Functions
Kinesis
Firehose
Dataset
Group
Dataset
Import
Recipe &
Solution
Campaign
Amazon
ES
Amazon
Personalize
Personalize
Runtime
API
추천 시스템
Kinesis Data
Streams
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Kibana
Athena
QuickSight
Event
Tracker
Lambda
Step Functions
Kinesis
Firehose
Dataset
Group
Dataset
Import
Recipe &
Solution
Campaign
Amazon
ES
Analytics
Personalize
Runtime
API
데이터 분석 시스템
Kinesis Data
Streams
Web
Server
S3
Kinesis
Firehose
Users
Items
Interactions
Kibana
Athena
QuickSight
Event
Tracker
Lambda
Step Functions
Kinesis
Firehose
Dataset
Group
Dataset
Import
Recipe &
Solution
Campaign
Amazon
ES
Amazon
Personalize
Analytics
Personalize
Runtime
API
추천 + 데이터 분석
Kinesis Data
Streams
Web
Server
Kinesis
Firehose
Users
Items
Interactions
Kibana
Athena
QuickSight
Event
Tracker
Lambda
Step Functions
Kinesis
Firehose
Dataset
Group
Dataset
Import
Recipe &
Solution
Campaign
Amazon
ES
Amazon
Personalize
Kinesis Data
Streams
S3
Personalize
Runtime
API
Analytics
추천 + 데이터 분석
From Batch to Real-time:
Lambda Architecture
Data
Source
Stream
Storage
Speed Layer
Batch Layer
Batch
Process
Batch
View
Real-
time
View
Consumer
Query &
Merge Results
Service Layer
Stream
Ingestion
Raw Data
Storage
Streaming Data
Stream
Delivery
Stream
Process
Collect Consume
Store Process /
Analyze
Data
1 4
0 9
5 Answers &
Insights
Amazon Kinesis
Data Firehose
Amazon Kinesis
Data Streams
Amazon Managed
Streams for Kafka
Amazon S3
Amazon Kinesis
Data Analytics
AWS Glue
Amazon EMR
Amazon Athena Amazon QuickSight
Amazon Redshift
Amazon Elasticsearch
Service
Amazon Machine
Learning
AWS Lambda
ETL
Collect Consume
Store Process /
Analyze
Data
1 4
0 9
5 Answers &
Insights
Amazon Kinesis
Data Firehose
Amazon Kinesis
Data Streams
Amazon Managed
Streams for Kafka
Amazon S3
Amazon Kinesis
Data Analytics
AWS Glue
Amazon EMR
Amazon Athena Amazon QuickSight
Amazon Redshift
Amazon Elasticsearch
Service
Amazon Machine
Learning
AWS Lambda
ETL
Stream
Storage
Collect Consume
Store Process /
Analyze
Data
1 4
0 9
5 Answers &
Insights
Amazon Kinesis
Data Firehose
Amazon Kinesis
Data Streams
Amazon Managed
Streams for Kafka
Amazon S3
Amazon Kinesis
Data Analytics
AWS Glue
Amazon EMR
Amazon Athena Amazon QuickSight
Amazon Redshift
Amazon Elasticsearch
Service
Amazon Machine
Learning
AWS Lambda
ETL
Stream
Delivery
Collect Consume
Store Process /
Analyze
Data
1 4
0 9
5 Answers &
Insights
Amazon Kinesis
Data Firehose
Amazon Kinesis
Data Streams
Amazon Managed
Streams for Kafka
Amazon S3
Amazon Kinesis
Data Analytics
AWS Glue
Amazon EMR
Amazon Athena Amazon QuickSight
Amazon Redshift
Amazon Elasticsearch
Service
Amazon Machine
Learning
AWS Lambda
ETL
Data Lake
Collect Consume
Store Process /
Analyze
Data
1 4
0 9
5 Answers &
Insights
Amazon Kinesis
Data Firehose
Amazon Kinesis
Data Streams
Amazon Managed
Streams for Kafka
Amazon S3
Amazon Kinesis
Data Analytics
AWS Glue
Amazon EMR
Amazon Athena Amazon QuickSight
Amazon Redshift
Amazon Elasticsearch
Service
Amazon Machine
Learning
AWS Lambda
ETL
Stream/Batch
Process
(Batch,
Speed Layer)
Collect Consume
Store Process /
Analyze
Data
1 4
0 9
5 Answers &
Insights
Amazon Kinesis
Data Firehose
Amazon Kinesis
Data Streams
Amazon Managed
Streams for Kafka
Amazon S3
Amazon Kinesis
Data Analytics
AWS Glue
Amazon EMR
Amazon Athena Amazon QuickSight
Amazon Redshift
Amazon Elasticsearch
Service
Amazon Machine
Learning
AWS Lambda
ETL
Serving Layer
Lessons Learned: Architectural Principles
• Build decoupled systems
- Data → Store → Process → Store → Analyze → Answers
• Use the right tool for the job
- Data structure, latency, throughput, access patterns
• Leverage managed and serverless services
- Scalable/elastic, available, reliable, secure, no/low admin
• Use log-centric design patterns
- Immutable logs (data lake), materialized views
• Be cost-conscious
- Big data ≠ Big cost
• Working backwards
- Design from consume to collect
Data
Pipeline
Data
Amazon
Personalize
Retention
Rate
Churn
Rate
Conversion
Rate
E-Commerce를 위한 AWS 서비스
Reference
• Build BI System From Scratch
• Hands-on-Lab: https://serverless-bi-system-from-scratch.workshop.aws/ko/
• Sample Code: https://tinyurl.com/37d9kd76
• Video: https://tinyurl.com/y2r6kljp
• Real-time Analytics on AWS
• Slide: https://tinyurl.com/tpacz9w3
• Video: https://tinyurl.com/s5d83982
• Choose Right Stream Storage: Amazon Kinesis Data Streams vs. MSK(Kafka)
• Slide: https://tinyurl.com/3eetzek5
• Video: https://tinyurl.com/yfzttdbm
• AWS 리소스 허브 – 데이터베이스 및 데이터 분석AI
• https://kr-resources.awscloud.com/data-databases-and-analytics
© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved | 148
© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved
Sungmin Kim
AWS Solutions Architect
E-Commerce Site를
한 단계 더 Smart 하게 만들기
Agenda
• Amazon Comprehend – 텍스트 데이터 120% 활용하기
• Amazon Fraud Detector – 실시간 온라인 사기 거래 탐지
© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved | 150
© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.
Discover Insights and Relationships in Text
Amazon Comprehend
Data
The world’s most
valuable resource is
no longer oil, but data.*
*Copyright: The Economist, 2017, David Parkins
“
”
사이트를 방문하는 수 많은 사용자들의 행동 로그
사이트 내의 많은 Text 데이터
사이트 내의 많은 Text 데이터
Text 데이터 분석의 어려움
단어 출현 빈도수
검색 52
추천 30
서비스 27
상품 25
고객 23
가치 20
탐색 17
광고 14
경험 9
Text 데이터의 구조화
Amazon Comprehend
Deep Learning 기반의 NLP 엔진이 탑재된 완전 관리형 자연 언어
처리 서비스
Entities 추출 언어 자동 감지 핵심 문구 Topic 모델링
POWERED BY
DEEP LEARNING
감정 분석
!
Amazon Comprehend: 한글 텍스트 분석 예제
Demo
https://ai-service-demos.go-aws.com/
Customer Review 분석
https://aws.amazon.com/ko/blogs/machine-learning/detect-sentiment-from-customer-reviews-using-amazon-comprehend/
실시간 Text 분석
https://aws.amazon.com/ko/blogs/machine-learning/enable-
smart-text-analytics-using-amazon-elasticsearch-search-and-
amazon-comprehend/
AI Driven Social Media Dashboard
https://aws.amazon.com/ko/solutions/implementations/ai-
driven-social-media-dashboard/
Reference
• Detect sentiment from customer reviews using Amazon Comprehend
• Enable smart text analytics using Amazon Elasticsearch Service and
Amazon Comprehend
• Build a social media dashboard using machine learning and BI services
• Building a custom classifier using Amazon Comprehend
• Build a custom entity recognizer using Amazon Comprehend
© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved | 165
© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved
Detect more online fraud faster
Amazon Fraud Detector
온라인 사기 거래
Hand Designed Rule Automated Rule learning from Data
사기 탐지(Fraud Detection) 어떻게 할 수 있을까?
ü 확장성(Scalability)
ü 새로운 유형의 사기 탐지
ü Domain 전문가
사람이 직접 Fraud Detection Rules을 개발한다면,
Hand Designed Rules
ü ML(기계 학습) 전문가의 부재
ü 반복적인 학습과 모델 평가
ü Time-consuming 작업
Automated Rule learning from Data
Fraud Detection은 ML 역시 어렵다
Amazon Fraud Detector
기계 학습을 사용하여 온라인 사기를 대규모로 실시간으로 쉽게
감지 할 수 있는 사기 탐지 서비스
사전 구축 된 사기
탐지 모델 템플릿
맞춤형 사기 탐지
모델 자동 생성
아마존 내부 경험을
통한 다양한 패턴
Amazon
SageMaker와의
통합
과거 평가 및 탐지
로직 검토 통합
Generating Fraud Predictions
Guest Checkout: Purchase
IP: 1.23.123.123
email: joe@example.com
Payment: Bank123
…
Fraud Detector returns:
Outcome: Approved
ML Score: 160
Purchase Approved
Call service with:
IP: 1.23.123.123
email: joe@example.com
Payment: Bank123
…
ML template: Online Fraud Insights
• Detect risky events based on an event’s attributes
• Best for detecting potential fraud when historical account/user data is
limited
• Inspired by models and techniques used to protect Amazon.com/AWS
account registration
• Use cases: new account, first transaction, guest checkout
• Inputs: 3 required data elements and 50+ optional
Data requirements (for Online Fraud Insights template)
EVENT_TIMESTAMP Variable 1 Variable 2 Variable N EVENT_LABEL
4/10/2019 11:05 … … … Legit / 0
4/10/2019 19:34 … … … Legit / 0
4/10/2019 20:29 … … ... Fraud / 1
… … … … …
Required Required
At least 2 variables required (max 100)
At least 10K total examples
At least 500 fraud examples
• Data must reside in S3 (same region with AFD)
• Data should be in CSV format
• First line of CSV file should have headers
• 2 required headers: EVENT_TIMESTAMP and
EVENT_LABEL (they should not have any NULL or missing
values)
• Maximum file size of 5GB
• Minimum 6 weeks of data
• Recommended: 3-6 months of data
• AFD can handle NULL and missing
values (for variables)
Minimum dataset example
Typical dataset example
• You will need to map all the event variables to a variable type
• Amazon Fraud Detector can also do this automatically, when you
import the dataset
• For more information see Variable types .
EVENT_TIMESTAMP Variable 1 Variable 2 Variable N EVENT_LABEL
4/10/2019 11:05 … … … Legit / 0
4/10/2019 19:34 … … … Legit / 0
4/10/2019 20:29 … … ... Fraud / 1
… … … … …
Variable type
EMAIL_ADDRESS
IP_ADDRESS
PHONE_NUMBER
USERAGENT
FINGERPRINT
PAYMENT_TYPE
CARD_BIN
AUTH_CODE
AVS
BILLING_NAME
BILLING_PHONE
BILLING_ADDRESS_L1
BILLING_ADDRESS_L2
BILLING_CITY
BILLING_STATE
BILLING_COUNTRY
BILLING_ZIP
SHIPPING_NAME
SHIPPING_PHONE
SHIPPING_ADDRESS_L1
SHIPPING_ADDRESS_L2
SHIPPING_CITY
SHIPPING_STATE
SHIPPING_COUNTRY
SHIPPING_ZIP
ORDER_ID
PRODUCT_CATEGORY
CURRENCY_CODE
PRICE
NUMERIC
CATEGORICAL
FREE_FORM_TEXT
Variables
ML Template: Automated model building
Data
Validation
1
Data Enrichment
&Transformation
2
Model Training
& Selection
4
Performance
Metrics
5
Training data in
Amazon S3
Deployment
& Hosting
6
Feature
Engineering
3
Interactive ML performance metrics
• GUI for defining the
optimal decision threshold
for the best separation
between fraud and legits
• Confusion matrix
• Easily control the trade-
off between FP and FN
Part of Fraud Detector UI
Detector – Associated Rules
Summary
Reference
• Catching fraud faster by building a proof of concept in
Amazon Fraud Detector
• Reviewing online fraud using Amazon Fraud Detector and
Amazon A2I
• AWS Fraud Detector Samples
Data
Pipeline
Data
Amazon
Personalize
Retention
Rate
Churn
Rate
Conversion
Rate
E-Commerce를 위한 AWS 서비스
Amazon
Comprehend
Amazon
Fraud Detector
1 de 169

Recomendados

Amazon Personalize 소개 (+ 실습 구성)::김영진, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나 por
Amazon Personalize 소개 (+ 실습 구성)::김영진, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나Amazon Personalize 소개 (+ 실습 구성)::김영진, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나
Amazon Personalize 소개 (+ 실습 구성)::김영진, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나Amazon Web Services Korea
974 visualizações42 slides
Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나 por
Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나
Amazon Personalize 개인화 추천 모델 만들기::김태수, 솔루션즈 아키텍트, AWS::AWS AIML 스페셜 웨비나Amazon Web Services Korea
458 visualizações11 slides
Amazon Personalize Event Tracker 실시간 고객 반응을 고려한 추천::김태수, 솔루션즈 아키텍트, AWS::AWS ... por
Amazon Personalize Event Tracker 실시간 고객 반응을 고려한 추천::김태수, 솔루션즈 아키텍트, AWS::AWS ...Amazon Personalize Event Tracker 실시간 고객 반응을 고려한 추천::김태수, 솔루션즈 아키텍트, AWS::AWS ...
Amazon Personalize Event Tracker 실시간 고객 반응을 고려한 추천::김태수, 솔루션즈 아키텍트, AWS::AWS ...Amazon Web Services Korea
1.8K visualizações6 slides
[AWS Hero 스페셜] Amazon Personalize를 통한 개인화/추천 서비스 개발 노하우 - 소성운(크로키닷컴) :: AWS C... por
[AWS Hero 스페셜] Amazon Personalize를 통한 개인화/추천 서비스 개발 노하우 - 소성운(크로키닷컴) :: AWS C...[AWS Hero 스페셜] Amazon Personalize를 통한 개인화/추천 서비스 개발 노하우 - 소성운(크로키닷컴) :: AWS C...
[AWS Hero 스페셜] Amazon Personalize를 통한 개인화/추천 서비스 개발 노하우 - 소성운(크로키닷컴) :: AWS C...AWSKRUG - AWS한국사용자모임
488 visualizações31 slides
Aws glue를 통한 손쉬운 데이터 전처리 작업하기 por
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Aws glue를 통한 손쉬운 데이터 전처리 작업하기
Aws glue를 통한 손쉬운 데이터 전처리 작업하기Amazon Web Services Korea
11.8K visualizações43 slides
대용량 데이터레이크 마이그레이션 사례 공유 [카카오게임즈 - 레벨 200] - 조은희, 팀장, 카카오게임즈 ::: Games on AWS ... por
대용량 데이터레이크 마이그레이션 사례 공유 [카카오게임즈 - 레벨 200] - 조은희, 팀장, 카카오게임즈 ::: Games on AWS ...대용량 데이터레이크 마이그레이션 사례 공유 [카카오게임즈 - 레벨 200] - 조은희, 팀장, 카카오게임즈 ::: Games on AWS ...
대용량 데이터레이크 마이그레이션 사례 공유 [카카오게임즈 - 레벨 200] - 조은희, 팀장, 카카오게임즈 ::: Games on AWS ...Amazon Web Services Korea
435 visualizações47 slides

Mais conteúdo relacionado

Mais procurados

AWS를 활용한 상품 추천 서비스 구축::김태현:: AWS Summit Seoul 2018 por
AWS를 활용한 상품 추천 서비스 구축::김태현:: AWS Summit Seoul 2018AWS를 활용한 상품 추천 서비스 구축::김태현:: AWS Summit Seoul 2018
AWS를 활용한 상품 추천 서비스 구축::김태현:: AWS Summit Seoul 2018Amazon Web Services Korea
7.6K visualizações67 slides
실시간 스트리밍 분석 Kinesis Data Analytics Deep Dive por
실시간 스트리밍 분석  Kinesis Data Analytics Deep Dive실시간 스트리밍 분석  Kinesis Data Analytics Deep Dive
실시간 스트리밍 분석 Kinesis Data Analytics Deep DiveAmazon Web Services Korea
735 visualizações44 slides
개인화 및 추천 기능의 맞춤형 AI 서비스 혁명: Amazon Personalize - 남궁영환 솔루션즈 아키텍트, AWS / 강성문 솔루... por
개인화 및 추천 기능의 맞춤형 AI 서비스 혁명: Amazon Personalize - 남궁영환 솔루션즈 아키텍트, AWS / 강성문 솔루...개인화 및 추천 기능의 맞춤형 AI 서비스 혁명: Amazon Personalize - 남궁영환 솔루션즈 아키텍트, AWS / 강성문 솔루...
개인화 및 추천 기능의 맞춤형 AI 서비스 혁명: Amazon Personalize - 남궁영환 솔루션즈 아키텍트, AWS / 강성문 솔루...Amazon Web Services Korea
10K visualizações53 slides
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기 por
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기Amazon Web Services Korea
786 visualizações29 slides
Amazon.com 의 개인화 추천 / 예측 기능을 우리도 써 봅시다. :: 심호진 - AWS Community Day 2019 por
Amazon.com 의 개인화 추천 / 예측 기능을 우리도 써 봅시다. :: 심호진 - AWS Community Day 2019Amazon.com 의 개인화 추천 / 예측 기능을 우리도 써 봅시다. :: 심호진 - AWS Community Day 2019
Amazon.com 의 개인화 추천 / 예측 기능을 우리도 써 봅시다. :: 심호진 - AWS Community Day 2019AWSKRUG - AWS한국사용자모임
5.1K visualizações50 slides
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링 por
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링Amazon Web Services Korea
2.2K visualizações69 slides

Mais procurados(20)

AWS를 활용한 상품 추천 서비스 구축::김태현:: AWS Summit Seoul 2018 por Amazon Web Services Korea
AWS를 활용한 상품 추천 서비스 구축::김태현:: AWS Summit Seoul 2018AWS를 활용한 상품 추천 서비스 구축::김태현:: AWS Summit Seoul 2018
AWS를 활용한 상품 추천 서비스 구축::김태현:: AWS Summit Seoul 2018
Amazon Web Services Korea7.6K visualizações
실시간 스트리밍 분석 Kinesis Data Analytics Deep Dive por Amazon Web Services Korea
실시간 스트리밍 분석  Kinesis Data Analytics Deep Dive실시간 스트리밍 분석  Kinesis Data Analytics Deep Dive
실시간 스트리밍 분석 Kinesis Data Analytics Deep Dive
Amazon Web Services Korea735 visualizações
개인화 및 추천 기능의 맞춤형 AI 서비스 혁명: Amazon Personalize - 남궁영환 솔루션즈 아키텍트, AWS / 강성문 솔루... por Amazon Web Services Korea
개인화 및 추천 기능의 맞춤형 AI 서비스 혁명: Amazon Personalize - 남궁영환 솔루션즈 아키텍트, AWS / 강성문 솔루...개인화 및 추천 기능의 맞춤형 AI 서비스 혁명: Amazon Personalize - 남궁영환 솔루션즈 아키텍트, AWS / 강성문 솔루...
개인화 및 추천 기능의 맞춤형 AI 서비스 혁명: Amazon Personalize - 남궁영환 솔루션즈 아키텍트, AWS / 강성문 솔루...
Amazon Web Services Korea10K visualizações
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기 por Amazon Web Services Korea
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기
Amazon EMR과 SageMaker를 이용하여 데이터를 준비하고 머신러닝 모델 개발 하기
Amazon Web Services Korea786 visualizações
Amazon.com 의 개인화 추천 / 예측 기능을 우리도 써 봅시다. :: 심호진 - AWS Community Day 2019 por AWSKRUG - AWS한국사용자모임
Amazon.com 의 개인화 추천 / 예측 기능을 우리도 써 봅시다. :: 심호진 - AWS Community Day 2019Amazon.com 의 개인화 추천 / 예측 기능을 우리도 써 봅시다. :: 심호진 - AWS Community Day 2019
Amazon.com 의 개인화 추천 / 예측 기능을 우리도 써 봅시다. :: 심호진 - AWS Community Day 2019
AWSKRUG - AWS한국사용자모임5.1K visualizações
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링 por Amazon Web Services Korea
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링
Amazon OpenSearch Deep dive - 내부구조, 성능최적화 그리고 스케일링
Amazon Web Services Korea2.2K visualizações
[AWS Innovate 온라인 컨퍼런스] Amazon Personalize를 통한 개인화 추천 기능 실전 구현하기 - 최원근, AWS 솔... por Amazon Web Services Korea
[AWS Innovate 온라인 컨퍼런스] Amazon Personalize를 통한 개인화 추천 기능 실전 구현하기 - 최원근, AWS 솔...[AWS Innovate 온라인 컨퍼런스] Amazon Personalize를 통한 개인화 추천 기능 실전 구현하기 - 최원근, AWS 솔...
[AWS Innovate 온라인 컨퍼런스] Amazon Personalize를 통한 개인화 추천 기능 실전 구현하기 - 최원근, AWS 솔...
Amazon Web Services Korea1.7K visualizações
Amazon SageMaker 모델 학습 방법 소개::최영준, 솔루션즈 아키텍트 AI/ML 엑스퍼트, AWS::AWS AIML 스페셜 웨비나 por Amazon Web Services Korea
Amazon SageMaker 모델 학습 방법 소개::최영준, 솔루션즈 아키텍트 AI/ML 엑스퍼트, AWS::AWS AIML 스페셜 웨비나Amazon SageMaker 모델 학습 방법 소개::최영준, 솔루션즈 아키텍트 AI/ML 엑스퍼트, AWS::AWS AIML 스페셜 웨비나
Amazon SageMaker 모델 학습 방법 소개::최영준, 솔루션즈 아키텍트 AI/ML 엑스퍼트, AWS::AWS AIML 스페셜 웨비나
Amazon Web Services Korea2.3K visualizações
게임서비스를 위한 ElastiCache 활용 전략 :: 구승모 솔루션즈 아키텍트 :: Gaming on AWS 2016 por Amazon Web Services Korea
게임서비스를 위한 ElastiCache 활용 전략 :: 구승모 솔루션즈 아키텍트 :: Gaming on AWS 2016게임서비스를 위한 ElastiCache 활용 전략 :: 구승모 솔루션즈 아키텍트 :: Gaming on AWS 2016
게임서비스를 위한 ElastiCache 활용 전략 :: 구승모 솔루션즈 아키텍트 :: Gaming on AWS 2016
Amazon Web Services Korea12.9K visualizações
고객의 플랫폼/서비스를 개선한 국내 사례 살펴보기 – 장준성 AWS 솔루션즈 아키텍트, 강산아 NDREAM 팀장, 송영호 야놀자 매니저, ... por Amazon Web Services Korea
고객의 플랫폼/서비스를 개선한 국내 사례 살펴보기 – 장준성 AWS 솔루션즈 아키텍트, 강산아 NDREAM 팀장, 송영호 야놀자 매니저, ...고객의 플랫폼/서비스를 개선한 국내 사례 살펴보기 – 장준성 AWS 솔루션즈 아키텍트, 강산아 NDREAM 팀장, 송영호 야놀자 매니저, ...
고객의 플랫폼/서비스를 개선한 국내 사례 살펴보기 – 장준성 AWS 솔루션즈 아키텍트, 강산아 NDREAM 팀장, 송영호 야놀자 매니저, ...
Amazon Web Services Korea292 visualizações
AWS Builders - Industry Edition: DevSecOps on AWS - 시작은 IAM 부터 por Amazon Web Services Korea
AWS Builders - Industry Edition: DevSecOps on AWS - 시작은 IAM 부터AWS Builders - Industry Edition: DevSecOps on AWS - 시작은 IAM 부터
AWS Builders - Industry Edition: DevSecOps on AWS - 시작은 IAM 부터
Amazon Web Services Korea998 visualizações
Amazon Timestream 시계열 데이터 전용 DB 소개 :: 변규현 - AWS Community Day 2019 por AWSKRUG - AWS한국사용자모임
Amazon Timestream 시계열 데이터 전용 DB 소개 :: 변규현 - AWS Community Day 2019Amazon Timestream 시계열 데이터 전용 DB 소개 :: 변규현 - AWS Community Day 2019
Amazon Timestream 시계열 데이터 전용 DB 소개 :: 변규현 - AWS Community Day 2019
AWSKRUG - AWS한국사용자모임5.1K visualizações
AWS SAM으로 서버리스 아키텍쳐 운영하기 - 이재면(마이뮤직테이스트) :: AWS Community Day 2020 por AWSKRUG - AWS한국사용자모임
AWS SAM으로 서버리스 아키텍쳐 운영하기 - 이재면(마이뮤직테이스트) :: AWS Community Day 2020 AWS SAM으로 서버리스 아키텍쳐 운영하기 - 이재면(마이뮤직테이스트) :: AWS Community Day 2020
AWS SAM으로 서버리스 아키텍쳐 운영하기 - 이재면(마이뮤직테이스트) :: AWS Community Day 2020
AWSKRUG - AWS한국사용자모임1.7K visualizações
금융 회사를 위한 클라우드 이용 가이드 – 신은수 AWS 솔루션즈 아키텍트, 김호영 AWS 정책협력 담당:: AWS Cloud Week ... por Amazon Web Services Korea
금융 회사를 위한 클라우드 이용 가이드 –  신은수 AWS 솔루션즈 아키텍트, 김호영 AWS 정책협력 담당:: AWS Cloud Week ...금융 회사를 위한 클라우드 이용 가이드 –  신은수 AWS 솔루션즈 아키텍트, 김호영 AWS 정책협력 담당:: AWS Cloud Week ...
금융 회사를 위한 클라우드 이용 가이드 – 신은수 AWS 솔루션즈 아키텍트, 김호영 AWS 정책협력 담당:: AWS Cloud Week ...
Amazon Web Services Korea1.7K visualizações
천만사용자를 위한 AWS 클라우드 아키텍처 진화하기 – 문종민, AWS솔루션즈 아키텍트:: AWS Summit Online Korea 2020 por Amazon Web Services Korea
천만사용자를 위한 AWS 클라우드 아키텍처 진화하기 – 문종민, AWS솔루션즈 아키텍트::  AWS Summit Online Korea 2020천만사용자를 위한 AWS 클라우드 아키텍처 진화하기 – 문종민, AWS솔루션즈 아키텍트::  AWS Summit Online Korea 2020
천만사용자를 위한 AWS 클라우드 아키텍처 진화하기 – 문종민, AWS솔루션즈 아키텍트:: AWS Summit Online Korea 2020
Amazon Web Services Korea808 visualizações
AWS CloudFront 가속 및 DDoS 방어 por Kyle(KY) Yang
AWS CloudFront 가속 및 DDoS 방어AWS CloudFront 가속 및 DDoS 방어
AWS CloudFront 가속 및 DDoS 방어
Kyle(KY) Yang1.7K visualizações
대용량 트래픽을 처리하는 최적의 서버리스 애플리케이션 - 안효빈, 구성완 AWS 솔루션즈 아키텍트 :: AWS Summit Seoul 2021 por Amazon Web Services Korea
대용량 트래픽을 처리하는 최적의 서버리스 애플리케이션  - 안효빈, 구성완 AWS 솔루션즈 아키텍트 :: AWS Summit Seoul 2021대용량 트래픽을 처리하는 최적의 서버리스 애플리케이션  - 안효빈, 구성완 AWS 솔루션즈 아키텍트 :: AWS Summit Seoul 2021
대용량 트래픽을 처리하는 최적의 서버리스 애플리케이션 - 안효빈, 구성완 AWS 솔루션즈 아키텍트 :: AWS Summit Seoul 2021
Amazon Web Services Korea812 visualizações
더욱 진화하는 AWS 네트워크 보안 - 신은수 AWS 시큐리티 스페셜리스트 솔루션즈 아키텍트 :: AWS Summit Seoul 2021 por Amazon Web Services Korea
더욱 진화하는 AWS 네트워크 보안 - 신은수 AWS 시큐리티 스페셜리스트 솔루션즈 아키텍트 :: AWS Summit Seoul 2021더욱 진화하는 AWS 네트워크 보안 - 신은수 AWS 시큐리티 스페셜리스트 솔루션즈 아키텍트 :: AWS Summit Seoul 2021
더욱 진화하는 AWS 네트워크 보안 - 신은수 AWS 시큐리티 스페셜리스트 솔루션즈 아키텍트 :: AWS Summit Seoul 2021
Amazon Web Services Korea897 visualizações
KB국민은행은 시작했다 -  쉽고 빠른 클라우드 거버넌스 적용 전략 - 강병억 AWS 솔루션즈 아키텍트 / 장강홍 클라우드플랫폼단 차장, ... por Amazon Web Services Korea
KB국민은행은 시작했다 -  쉽고 빠른 클라우드 거버넌스 적용 전략 - 강병억 AWS 솔루션즈 아키텍트 / 장강홍 클라우드플랫폼단 차장, ...KB국민은행은 시작했다 -  쉽고 빠른 클라우드 거버넌스 적용 전략 - 강병억 AWS 솔루션즈 아키텍트 / 장강홍 클라우드플랫폼단 차장, ...
KB국민은행은 시작했다 -  쉽고 빠른 클라우드 거버넌스 적용 전략 - 강병억 AWS 솔루션즈 아키텍트 / 장강홍 클라우드플랫폼단 차장, ...
Amazon Web Services Korea1.1K visualizações
마이크로 서비스를 위한 AWS Cloud Map & App Mesh - Saeho Kim (AWS Solutions Architect) por Amazon Web Services Korea
마이크로 서비스를 위한 AWS Cloud Map & App Mesh - Saeho Kim (AWS Solutions Architect)마이크로 서비스를 위한 AWS Cloud Map & App Mesh - Saeho Kim (AWS Solutions Architect)
마이크로 서비스를 위한 AWS Cloud Map & App Mesh - Saeho Kim (AWS Solutions Architect)
Amazon Web Services Korea3.6K visualizações

Similar a AWS Personalize 중심으로 살펴본 추천 시스템 원리와 구축

SEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS Organizations por
SEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS OrganizationsSEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS Organizations
SEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS OrganizationsAmazon Web Services
862 visualizações51 slides
Webinar: Increase Conversion With Better Search por
Webinar: Increase Conversion With Better SearchWebinar: Increase Conversion With Better Search
Webinar: Increase Conversion With Better SearchLucidworks
764 visualizações40 slides
Digital Attribution Modeling Using Apache Spark-(Anny Chen and William Yan, A... por
Digital Attribution Modeling Using Apache Spark-(Anny Chen and William Yan, A...Digital Attribution Modeling Using Apache Spark-(Anny Chen and William Yan, A...
Digital Attribution Modeling Using Apache Spark-(Anny Chen and William Yan, A...Spark Summit
6.3K visualizações24 slides
Preparing for Data Residency and Custom Domains por
Preparing for Data Residency and Custom DomainsPreparing for Data Residency and Custom Domains
Preparing for Data Residency and Custom DomainsAtlassian
16.7K visualizações63 slides
Webanalytics with Microsoft BI por
Webanalytics with Microsoft BIWebanalytics with Microsoft BI
Webanalytics with Microsoft BITillmann Eitelberg
7.8K visualizações60 slides
Automated Compliance and Governance with AWS Config and AWS CloudTrail por
Automated Compliance and Governance with AWS Config and AWS CloudTrailAutomated Compliance and Governance with AWS Config and AWS CloudTrail
Automated Compliance and Governance with AWS Config and AWS CloudTrailAmazon Web Services
454 visualizações38 slides

Similar a AWS Personalize 중심으로 살펴본 추천 시스템 원리와 구축(20)

SEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS Organizations por Amazon Web Services
SEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS OrganizationsSEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS Organizations
SEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS Organizations
Amazon Web Services862 visualizações
Webinar: Increase Conversion With Better Search por Lucidworks
Webinar: Increase Conversion With Better SearchWebinar: Increase Conversion With Better Search
Webinar: Increase Conversion With Better Search
Lucidworks764 visualizações
Digital Attribution Modeling Using Apache Spark-(Anny Chen and William Yan, A... por Spark Summit
Digital Attribution Modeling Using Apache Spark-(Anny Chen and William Yan, A...Digital Attribution Modeling Using Apache Spark-(Anny Chen and William Yan, A...
Digital Attribution Modeling Using Apache Spark-(Anny Chen and William Yan, A...
Spark Summit6.3K visualizações
Preparing for Data Residency and Custom Domains por Atlassian
Preparing for Data Residency and Custom DomainsPreparing for Data Residency and Custom Domains
Preparing for Data Residency and Custom Domains
Atlassian16.7K visualizações
Webanalytics with Microsoft BI por Tillmann Eitelberg
Webanalytics with Microsoft BIWebanalytics with Microsoft BI
Webanalytics with Microsoft BI
Tillmann Eitelberg7.8K visualizações
Automated Compliance and Governance with AWS Config and AWS CloudTrail por Amazon Web Services
Automated Compliance and Governance with AWS Config and AWS CloudTrailAutomated Compliance and Governance with AWS Config and AWS CloudTrail
Automated Compliance and Governance with AWS Config and AWS CloudTrail
Amazon Web Services454 visualizações
Real-time Machine Learning with Hopsworks por AlbaTorrado
Real-time Machine Learning with Hopsworks Real-time Machine Learning with Hopsworks
Real-time Machine Learning with Hopsworks
AlbaTorrado44 visualizações
(SEC402) Intrusion Detection in the Cloud | AWS re:Invent 2014 por Amazon Web Services
(SEC402) Intrusion Detection in the Cloud | AWS re:Invent 2014(SEC402) Intrusion Detection in the Cloud | AWS re:Invent 2014
(SEC402) Intrusion Detection in the Cloud | AWS re:Invent 2014
Amazon Web Services10.9K visualizações
Automating Business Insights on AWS, por Amazon Web Services
Automating Business Insights on AWS, Automating Business Insights on AWS,
Automating Business Insights on AWS,
Amazon Web Services176 visualizações
How to Use Amazon Personalize with Your WooCommerce Site in Just a Few Clicks... por WP Engine
How to Use Amazon Personalize with Your WooCommerce Site in Just a Few Clicks...How to Use Amazon Personalize with Your WooCommerce Site in Just a Few Clicks...
How to Use Amazon Personalize with Your WooCommerce Site in Just a Few Clicks...
WP Engine129 visualizações
Use Amazon.com personalization on your WooCommerce store. por WP Engine
Use Amazon.com personalization on your WooCommerce store.Use Amazon.com personalization on your WooCommerce store.
Use Amazon.com personalization on your WooCommerce store.
WP Engine1K visualizações
SEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS Organizations por Amazon Web Services
SEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS OrganizationsSEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS Organizations
SEC302 Becoming an AWS Policy Ninja using AWS IAM and AWS Organizations
Amazon Web Services1K visualizações
使用Amazon Machine Learning 建立即時推薦引擎 por Amazon Web Services
使用Amazon Machine Learning 建立即時推薦引擎使用Amazon Machine Learning 建立即時推薦引擎
使用Amazon Machine Learning 建立即時推薦引擎
Amazon Web Services2.2K visualizações
Build a Recommendation Engine using Amazon Machine Learning in Real-time por Amazon Web Services
Build a Recommendation Engine using Amazon Machine Learning in Real-timeBuild a Recommendation Engine using Amazon Machine Learning in Real-time
Build a Recommendation Engine using Amazon Machine Learning in Real-time
Amazon Web Services21.8K visualizações
Fried toronto sps14 91 wcm intranet por Jeff Fried
Fried toronto sps14 91 wcm intranetFried toronto sps14 91 wcm intranet
Fried toronto sps14 91 wcm intranet
Jeff Fried543 visualizações
(ARC303) Panning for Gold: Analyzing Unstructured Data | AWS re:Invent 2014 por Amazon Web Services
(ARC303) Panning for Gold: Analyzing Unstructured Data | AWS re:Invent 2014(ARC303) Panning for Gold: Analyzing Unstructured Data | AWS re:Invent 2014
(ARC303) Panning for Gold: Analyzing Unstructured Data | AWS re:Invent 2014
Amazon Web Services6.4K visualizações
How to Become an IAM Policy Ninja por Amazon Web Services
How to Become an IAM Policy NinjaHow to Become an IAM Policy Ninja
How to Become an IAM Policy Ninja
Amazon Web Services2.6K visualizações
Amazon Machine Learning: Empowering Developers to Build Smart Applications por Amazon Web Services
Amazon Machine Learning: Empowering Developers to Build Smart ApplicationsAmazon Machine Learning: Empowering Developers to Build Smart Applications
Amazon Machine Learning: Empowering Developers to Build Smart Applications
Amazon Web Services6.5K visualizações
Amazon Machine Learning: Empowering Developers to Build Smart Applications por Amazon Web Services
Amazon Machine Learning: Empowering Developers to Build Smart ApplicationsAmazon Machine Learning: Empowering Developers to Build Smart Applications
Amazon Machine Learning: Empowering Developers to Build Smart Applications
Amazon Web Services874 visualizações
Data Science for Digital Commerce por Manish Gupta, Ph.D.
Data Science for Digital CommerceData Science for Digital Commerce
Data Science for Digital Commerce
Manish Gupta, Ph.D.354 visualizações

Mais de Sungmin Kim

Build Computer Vision Applications with Amazon Rekognition and SageMaker por
Build Computer Vision Applications with Amazon Rekognition and SageMakerBuild Computer Vision Applications with Amazon Rekognition and SageMaker
Build Computer Vision Applications with Amazon Rekognition and SageMakerSungmin Kim
113 visualizações78 slides
Introduction to Amazon Athena por
Introduction to Amazon AthenaIntroduction to Amazon Athena
Introduction to Amazon AthenaSungmin Kim
122 visualizações74 slides
End-to-End Machine Learning with Amazon SageMaker por
End-to-End Machine Learning with Amazon SageMakerEnd-to-End Machine Learning with Amazon SageMaker
End-to-End Machine Learning with Amazon SageMakerSungmin Kim
334 visualizações76 slides
1시간만에 머신러닝 개념 따라 잡기 por
1시간만에 머신러닝 개념 따라 잡기1시간만에 머신러닝 개념 따라 잡기
1시간만에 머신러닝 개념 따라 잡기Sungmin Kim
230 visualizações58 slides
AWS re:Invent 2020 Awesome AI/ML Services por
AWS re:Invent 2020 Awesome AI/ML ServicesAWS re:Invent 2020 Awesome AI/ML Services
AWS re:Invent 2020 Awesome AI/ML ServicesSungmin Kim
81 visualizações50 slides
Starup을 위한 AWS AI/ML 서비스 활용 방법 por
Starup을 위한 AWS AI/ML 서비스 활용 방법Starup을 위한 AWS AI/ML 서비스 활용 방법
Starup을 위한 AWS AI/ML 서비스 활용 방법Sungmin Kim
141 visualizações104 slides

Mais de Sungmin Kim(14)

Build Computer Vision Applications with Amazon Rekognition and SageMaker por Sungmin Kim
Build Computer Vision Applications with Amazon Rekognition and SageMakerBuild Computer Vision Applications with Amazon Rekognition and SageMaker
Build Computer Vision Applications with Amazon Rekognition and SageMaker
Sungmin Kim113 visualizações
Introduction to Amazon Athena por Sungmin Kim
Introduction to Amazon AthenaIntroduction to Amazon Athena
Introduction to Amazon Athena
Sungmin Kim122 visualizações
End-to-End Machine Learning with Amazon SageMaker por Sungmin Kim
End-to-End Machine Learning with Amazon SageMakerEnd-to-End Machine Learning with Amazon SageMaker
End-to-End Machine Learning with Amazon SageMaker
Sungmin Kim334 visualizações
1시간만에 머신러닝 개념 따라 잡기 por Sungmin Kim
1시간만에 머신러닝 개념 따라 잡기1시간만에 머신러닝 개념 따라 잡기
1시간만에 머신러닝 개념 따라 잡기
Sungmin Kim230 visualizações
AWS re:Invent 2020 Awesome AI/ML Services por Sungmin Kim
AWS re:Invent 2020 Awesome AI/ML ServicesAWS re:Invent 2020 Awesome AI/ML Services
AWS re:Invent 2020 Awesome AI/ML Services
Sungmin Kim81 visualizações
Starup을 위한 AWS AI/ML 서비스 활용 방법 por Sungmin Kim
Starup을 위한 AWS AI/ML 서비스 활용 방법Starup을 위한 AWS AI/ML 서비스 활용 방법
Starup을 위한 AWS AI/ML 서비스 활용 방법
Sungmin Kim141 visualizações
Choose Right Stream Storage: Amazon Kinesis Data Streams vs MSK por Sungmin Kim
Choose Right Stream Storage: Amazon Kinesis Data Streams vs MSKChoose Right Stream Storage: Amazon Kinesis Data Streams vs MSK
Choose Right Stream Storage: Amazon Kinesis Data Streams vs MSK
Sungmin Kim826 visualizações
Octember on AWS (Revised Edition) por Sungmin Kim
Octember on AWS (Revised Edition)Octember on AWS (Revised Edition)
Octember on AWS (Revised Edition)
Sungmin Kim296 visualizações
Realtime Analytics on AWS por Sungmin Kim
Realtime Analytics on AWSRealtime Analytics on AWS
Realtime Analytics on AWS
Sungmin Kim503 visualizações
Amazon Athena 사용 팁 por Sungmin Kim
Amazon Athena 사용 팁Amazon Athena 사용 팁
Amazon Athena 사용 팁
Sungmin Kim269 visualizações
AWS Analytics Immersion Day - Build BI System from Scratch (Day1, Day2 Full V... por Sungmin Kim
AWS Analytics Immersion Day - Build BI System from Scratch (Day1, Day2 Full V...AWS Analytics Immersion Day - Build BI System from Scratch (Day1, Day2 Full V...
AWS Analytics Immersion Day - Build BI System from Scratch (Day1, Day2 Full V...
Sungmin Kim1K visualizações
Databases & Analytics AWS re:invent 2019 Recap por Sungmin Kim
Databases & Analytics AWS re:invent 2019 RecapDatabases & Analytics AWS re:invent 2019 Recap
Databases & Analytics AWS re:invent 2019 Recap
Sungmin Kim155 visualizações
Octember on AWS por Sungmin Kim
Octember on AWSOctember on AWS
Octember on AWS
Sungmin Kim86 visualizações
AI/ML re:invent 2019 recap at Delivery Hero Korea por Sungmin Kim
AI/ML re:invent 2019 recap at Delivery Hero KoreaAI/ML re:invent 2019 recap at Delivery Hero Korea
AI/ML re:invent 2019 recap at Delivery Hero Korea
Sungmin Kim114 visualizações

Último

Custom Tag Manager Templates por
Custom Tag Manager TemplatesCustom Tag Manager Templates
Custom Tag Manager TemplatesMarkus Baersch
30 visualizações17 slides
Underfunded.pptx por
Underfunded.pptxUnderfunded.pptx
Underfunded.pptxvgarcia19
15 visualizações7 slides
Best Home Security Systems.pptx por
Best Home Security Systems.pptxBest Home Security Systems.pptx
Best Home Security Systems.pptxmogalang
9 visualizações16 slides
apple.pptx por
apple.pptxapple.pptx
apple.pptxhoneybeeqwe
6 visualizações15 slides
shivam tiwari.pptx por
shivam tiwari.pptxshivam tiwari.pptx
shivam tiwari.pptxAanyaMishra4
9 visualizações14 slides
Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language... por
Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language...Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language...
Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language...patiladiti752
8 visualizações15 slides

Último(20)

Custom Tag Manager Templates por Markus Baersch
Custom Tag Manager TemplatesCustom Tag Manager Templates
Custom Tag Manager Templates
Markus Baersch30 visualizações
Underfunded.pptx por vgarcia19
Underfunded.pptxUnderfunded.pptx
Underfunded.pptx
vgarcia1915 visualizações
Best Home Security Systems.pptx por mogalang
Best Home Security Systems.pptxBest Home Security Systems.pptx
Best Home Security Systems.pptx
mogalang9 visualizações
apple.pptx por honeybeeqwe
apple.pptxapple.pptx
apple.pptx
honeybeeqwe6 visualizações
shivam tiwari.pptx por AanyaMishra4
shivam tiwari.pptxshivam tiwari.pptx
shivam tiwari.pptx
AanyaMishra49 visualizações
Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language... por patiladiti752
Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language...Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language...
Enhancing Financial Sentiment Analysis via Retrieval Augmented Large Language...
patiladiti7528 visualizações
Lack of communication among family.pptx por ahmed164023
Lack of communication among family.pptxLack of communication among family.pptx
Lack of communication among family.pptx
ahmed16402316 visualizações
LIVE OAK MEMORIAL PARK.pptx por ms2332always
LIVE OAK MEMORIAL PARK.pptxLIVE OAK MEMORIAL PARK.pptx
LIVE OAK MEMORIAL PARK.pptx
ms2332always8 visualizações
Inawisdom Quick Sight por PhilipBasford
Inawisdom Quick SightInawisdom Quick Sight
Inawisdom Quick Sight
PhilipBasford8 visualizações
Infomatica-MDM.pptx por Kapil Rangwani
Infomatica-MDM.pptxInfomatica-MDM.pptx
Infomatica-MDM.pptx
Kapil Rangwani12 visualizações
Pydata Global 2023 - How can a learnt model unlearn something por SARADINDU SENGUPTA
Pydata Global 2023 - How can a learnt model unlearn somethingPydata Global 2023 - How can a learnt model unlearn something
Pydata Global 2023 - How can a learnt model unlearn something
SARADINDU SENGUPTA8 visualizações
Running PostgreSQL in a Kubernetes cluster: CloudNativePG por Nick Ivanov
Running PostgreSQL in a Kubernetes cluster: CloudNativePGRunning PostgreSQL in a Kubernetes cluster: CloudNativePG
Running PostgreSQL in a Kubernetes cluster: CloudNativePG
Nick Ivanov7 visualizações
Analytics Center of Excellence | Data CoE |Analytics CoE| WNS Triange por RNayak3
Analytics Center of Excellence | Data CoE |Analytics CoE| WNS TriangeAnalytics Center of Excellence | Data CoE |Analytics CoE| WNS Triange
Analytics Center of Excellence | Data CoE |Analytics CoE| WNS Triange
RNayak35 visualizações
DGIQ East 2023 AI Ethics SIG por Karen Lopez
DGIQ East 2023 AI Ethics SIGDGIQ East 2023 AI Ethics SIG
DGIQ East 2023 AI Ethics SIG
Karen Lopez5 visualizações
CRM stick or twist workshop por info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info82821714 visualizações
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf por Oppotus
OPPOTUS - Malaysians on Malaysia 3Q2023.pdfOPPOTUS - Malaysians on Malaysia 3Q2023.pdf
OPPOTUS - Malaysians on Malaysia 3Q2023.pdf
Oppotus34 visualizações
Penetration testing by Burpsuite por AyonDebnathCertified
Penetration testing by  BurpsuitePenetration testing by  Burpsuite
Penetration testing by Burpsuite
AyonDebnathCertified5 visualizações
Data about the sector workshop por info828217
Data about the sector workshopData about the sector workshop
Data about the sector workshop
info82821729 visualizações

AWS Personalize 중심으로 살펴본 추천 시스템 원리와 구축