SlideShare a Scribd company logo
1 of 127
Download to read offline
Recent advances in nuclear chemistry 
III Schoolof Energetic and Nuclear Chemistry 
Biological and Chemical Research Centre 
University of Warsaw, Poland 
Konstantin 
German 
Frumkin Institute of Physical Chemistry and Electrochemistry 
of Russian Academy of Sciences (IPCE RAS), Moscow, Russia 
Medical institute REAVIZ
First : THANKS to WARSAW UNIV. my lecture given herelast year leads with approx. 2000 readings = 3 times more popular than the best followers 
Visit of Russian Academy delegation to PolskaAcademia Naukin 1957 
Ac. TadeuszMarian Kotarbiński–President PAN 
Ac. Viktor Spitsyn –Director IPC ( the left)
Scope 
• 
Nuclear prospects in Russia 
• 
NMR for radioactive materials analyses 
• 
Sync Radiation 
• 
Actinide hypothesis verification
Homo sapience sp. was the most efficient one in applying technologies to improving its life 
Economist Kenneth Boulding(1956) : one who believes that exponential growth could be ethernalin the limited world is either mad or economist 
Neand.sp. sp. 
Cosmo sp. 
Coal ‐ 
Steam 
engin 
Oil – 
essengin 
T E C H N O L O G Y
Petroleum energeticswiki : 
• 
Themodern historyof petroleum began in the 19thcentury with the refining ofparaffinfrom crude oil. The Scottish chemistJames Youngin 1847 noticed a naturalpetroleumseepage in theRiddingscolliery‐Derbyshire. He distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a thicker oil suitable for lubricating machinery. • 
In 1848, Young set up a small business refining the crude oil. The new oils were successful, but the supply of oil from the coal mine soon began to fail (eventually being exhausted in 1851). 
• 
Great sceptisismto petroliumburning was shown by D. Mendeleev… • 
Once started it will once stop 
WHAT After… ?
World state and preferences in energetic development 
OilGas Coal Bio 
NuclearHydro/ThermalWind/Sun
Discovery of radioactivity and estimation of its importance 
Becquerel 
• 
In 1896 found out that Uranium ore is emitting some new kind of rays. 
Curie and Sklodowska 
• 
FrenchphysicistPierreCurieandhisyoungPoleassistant(radio)chemistMariaSklodowskain1898foundoutthatnewRadiumsamplesaremorehotcomparedtotheenvironmentsformanymonths.Theyconcluded:radioactivityisnewandveryimportantsourceofenergyandproposeditsusageformedical, pharmaceutical,…,purposes. 
• 
Vernadsky in Russia in 1920 predicted that Ra and allied matter could be a very important key for new energetic in the World scale.
2014 ‐60thanniversary of the First World NPP • 
The first NPP was constructed in Obninsk, Russia , the first grid connection on June 26, 1954 providing the new city of Obninsk with electricity. 
• 
The power plant remained active until April 29, 2002 when it was finally shut down. 
• 
The single reactor unit at the plant,AM‐1had a total electrical capacity of 6MW and a net capacity of around 5 MWe. Thermal output was 30MW. 
• 
It was a prototype design using a graphite moderator and water coolant. This reactor was a forerunner of the RBMK reactors.
Potential of nuclear 
• 
To use the full potential of U (and Pu bred from it) requires fast‐neutron reactors 
• 
The stock of depleted UO2in the world when used in fast reactors will provide the energy equivalent to 4X1011t oil 
http://www.world‐nuclear‐news.org
Fast neutron reactors• 
Fast neutron reactors are a technological step beyond conventional power reactors. 
• 
They offer the prospect of vastly more efficient use of uranium resources and the ability to burn actinides which are otherwise the long‐lived component of high‐level nuclear wastes. • 
Some 20 reactors were operated and 400 reactor‐years experience has been gained in operating them. 
• 
Generation IV reactor designs are largely FNRs, and international collaboration on FNR designs is proceeding with high priority.
Fast reactors with diff. coolants: LLMC (Na), HLMC (Pb, LBE = Pb‐Bi) 
• 
FN types: 
• 
BN‐60 
• 
Brest‐300 
• 
BN‐600 
• 
Shevchenko 
• 
Phoenix 
• 
Superphenix 
• 
BN‐800 
• 
BN‐1200 ‐project 
• 
FR = the key to really closed nuclear fuel cycle 
LBE = Lead‐Bismuth eutectic
Fast reactors in Russia and ChinaBeloyarskNPP CEFR ‐China 
• 
The single reactor now in operation was a BN‐600 fast breeder reactor, generating 600 MWe. (1980 –2014) 
• 
Liquid Sodium is a coolant. 
• 
Fuel: 369 assemblies, each consisting of 127 fuel rods with an enrichment of 17–26% U‐235. 
• 
It was the largest Fast reactorin service in the world. Three turbines are connected to the reactor. Reactor core ‐1.03 m tall , Diameter = 2.05 m. 
• 
China's experimental fast neutron reactor CEFR has been connected to the electricity grid in 2011 
•
FastBN‐800withmixedUO2‐PuO2fuelandsodium‐ sodiumcoolantstarted2014inRussia. 
Fast BN‐1200 reactor with breeding ratio of 1.2 to 1.35 for (U,Pu)O2fuel and 1.45 for UN (nitride) fuel, Mean burn‐up 120 MWtXdXkg. BN‐1200 is due for construction by 2020 with Heavy Liquid Metallic Coolant (Pb‐Bi) 
http://www.world‐nuclear‐news.org
Generation IVreactor design 
• 
The generation IVlead‐cooled fast reactorfeatures a fast neutron spectrum, molten Pbor Pb‐Bi eutectic coolant. 
• 
Options include a range of plant ratings, including a number of 50 to 150Mweunits featuring long‐life, pre‐ manufactured cores. 
• 
Modular arrangements rated at 300 to 400MWe, and a large monolithic plant rated at 1,200MWe. The fuel is metal ornitride‐based containing U andtransuranics. 
• 
A smaller capacity LFR such as SSTAR can be cooled by naturalconvection, larger proposals (ELSY) use forced circulation in normal power operation, but with natural circulation emergency cooling. 
• 
The reactor outlet coolant temperature is typically in the range of 500 to 600°C, possibly ranging over 800°C.
Some of 
China’s NPP are based on Fast Reactors
•Develop and demonstrate fast reactor technology that can be commercially deployed 
•Focus on sodium fast reactors because of technical maturity 
•Improve economics by using innovative design features, simplified safety systems, and improved system reliability 
•Advanced materials development 
•Nuclear data measurements and uncertainty reduction analyses for key fast reactor materials 
•Work at Los Alamos focuses on advanced materials development, nuclear data measurements, and safety analyses 
Fast Reactors Program in USA 
* ‐Gordon JarvinenVIII International Workshop ‐Fundamental Plutonium Properties . September 8‐12, 2008
Some of the concepts developed in the past or under development nowadays are the following: 
• 
—In the Russian Federation, the small 75–100 MW(e) LBE cooled power fast reactor SVBR˗75/100 
• 
—In Belgium, the 100 MW(th) multipurpose fast neutron spectrum MYRRHA facility, being designed to operate in both critical and subcritical mode 
• 
—In Japan, a small power reactor cooled by lead‐bismuth and fuelled with metallic and nitride fuel featuring extra long life time; a 150 MW(e) lead‐bismuth cooled fast reactor concept Pb‐Bi cooled direct boiling water fast reactor (PBWFR)) featuring direct contact steam generators (‘steam‐lift effect’ of lead‐bismuth coolants); and a medium sized lead‐ bismuth cooled fast reactor, lower breeding ratios in a Japanese scenario from 2030–2050 on 
• 
—In the USA, the modular lead‐bismuth cooled STAR‐LM concept featuring natural circulationand the lead or lead‐bismuth cooled Small, Sealed, Transportable, Autonomous Reactor(SSTAR) concept rated 10–100 MW(e) 
• 
—In Japan and the USA, the lead‐bismuth cooled encupsulatednuclear heat source (ENHS) concept, featuring natural circulation in both primary and intermediate circuits 
• 
—In China, a lead‐bismuth cooled and thorium fuelled fast reactor concept 
• 
—In the Republic of Korea, a lead cooled fast reactor dedicated to utilization and transmutation of long lived isotopes in the spent fuel
Small Modular Reactors (SMRs) 
• 
Small Modular Reactors (SMRs) are nuclear power plants that smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher). 
• 
These smaller, compact designs are factory‐ fabricated reactors that can be transported by truck or rail to where they are in need.
367613365 Reactors for NPPs Under Construction ‐by region: Asia ‐Far EastAsia ‐Middle East and SouthEU 27Other EuropeAmerica 
Sources: IAEA‐PRIS, MSC 2011
NMR ‐SR 
technics
Nuclear Magnetic 
Resonance 
Spectroscopy 
http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance 
Superconducting magnets 21.5 T 
Earth’s magnetic field 5 x 10‐5T 
NMR
Now we have both 600 and 300 MHzAvanceBruckerNMR spectrometersin disposition of my laboratory 
Avance‐300 Bruker 
Avance‐600 Bruker 
D3‐12 NMR‐600MHz (12.3 AV600_CHEM) 
OPERATED BY THE GROUP OF Prof. Valery P. TARASOV, Dr. G. KIRAKOSYAN AND V.A. IL’IN
Nuclei in operation 
Nucleus 
Spin 
Natural Abundance 
Relative Sensitivity 
1H 
1/2 
99.985 
100 
2H 
1 
0.015 
0.96 
3He 
1/2 
.00013 
44 
13C 
1/2 
1.108 
1.6 
17O 
3/2 
0.037 
2.9 
19F 
1/2 
100 
83.4 
23Na 
3/2 
100 
9.3 
31P 
1/2 
100 
6.6 
39K 
3/2 
93.08 
.05 
99Tc 
9/2 
0 ( = 99.8 !) 
high 
36Cl 
2 
0 (30) 
high 
!
• 
Number and type of NMR active atoms 
• 
Distances between nuclei 
• 
Angles between bonds 
• 
Motions in solution 
• 
Sternheimerconst 
• 
QQC 
• 
Etc… 
Information obtained by NMR 
• 
Organic substances 
• 
Radioactive materials 
• 
Ga‐complexes 
• 
Etc…
99gTc‐NMR (TcO4: O‐16, O‐17, O‐18) 
99Tc NMR (67.55MHz) spectrum of 0.2 M NaTcO4solution in recycled water containing ∼72% H218O at 298K. 
V. Tarasov, G.Kirakosyan, K.German, Phys.Chem.Russ, 2015.#1.2702802903003103203303400,400,410,420,430,44NH4Tc16O318O99Tc NMR H0=7.04TлТемпература, Т К Изотопный сдвиг ЯМР 99Тс, м.д.
O‐17 NMR 
• 
In water enriched in O‐17 
280300320340130,4130,8131,2131,6132,0 КССВ 17O-99Tc КССВ 99Tc-17ONH4TcO4H0=7.04ТлТемпература, Т К КССВ, Гц
Tc‐NMR 
ChemShifts in TcO4–“Puce hunting” 
• 
Solutions 
• 
Ionic pair formation 
• 
Receptor Complexes 
Others 
• 
TcO4 –TcO6 
• 
Tc metal 
• 
TcO2
Changes in the 1H NMR spectrum of an equimolarmixture 1 + 2 in CD3OD after addition of one equiv. of HCl(26% aqueous solution). 
The first spectrum represents the spectrum of dialdehyde1. Green signals belong to diamine2, violet signals belong to dialdehyde1 and red signals belong to complex L1∙2HCl. 
MEANS for RECEPTOR SYNTHESIS CONTROL
Macrocyclicreceptor for pertechnetate and perrhenate anions by NMR and crystal structureG. Kolesnikov,K. German, G. Kirakosyan, I. Tananaev, Yu. Ustynyuk, V. Khrustalevand E. Katayev 
DOI: 10.1039/c1ob05873h
99Tc NMR titration of (Bu4N+)(TcO4‐) with L1 (a) and 1H NMR titration of L1 with (Bu4N+)(ReO4‐) (b) in CDCl3at 25 ◦C. 
Macrocyclic receptor for pertechnetate and perrhenate anions by NMR and crystal structureG. Kolesnikov,K. German, G. Kirakosyan, I. Tananaev, Yu. Ustynyuk, V. Khrustalevand E. Katayev
99TcЯМР, CDCl3 
UV, dichloroethane 
Imine-amide macrocycle 
log(β11) = 3.2 
log(β11) = 5.1 
Cyclo[8]pyrrole·2(HCl) 
log(β12) = 3.8 
log(β12)= 6.0 
99Tc-NMRtitration, Bu4N+ 99TcO4–in CDCl3 
99Tc-NMR strengths 
• 
Clear signal 
• 
Good correlation withUV 
KolesnikovG.V., German K.E, KirakosyanG., TananaevI.G., UstynyukYu.A., KhrustalevV.N., KatayevE.A. // Org.Biomol.Chem. ‐2011.
Back titration with 99TcNMR detection for the receptorL1 ( HYPER NMR2006. О –experiment, lines–calculated, black–Kb, blue –TBA99TcO4concentration, red–complexconcentration ). 
L1 
UV‐vis
Back titration with 99TcЯМРdetection for the receptorL2( HYPER NMR2006. О –experiment, lines–calculated, black–Kb, blue –TBA99TcO4concentration, red–complexconcentration ). 
L2 
UV‐vis
Chemical shift 
http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/nmr/nmr1.htm
Intramolecularmode 
• 
The Berry pseudorotationis a classical mechanism for interchanging axial and equatorial ligands in molecules with trigonalbipyramidalgeometry 
• 
PF5 
• 
IF5 
Intermolecular mode 
• 
Tarasovexchange in TcO4‐ TcO6 exchange spectra 
Exchange spectra
Pseudorotationvia the Berry mechanism 
• 
Single‐crystal X‐ray studiesindicate that the PF5molecule has two disƟnct types of P−F bonds (axial and equatorial): the length of an axial P−F bond is 158.0 pm and the length of an equatorial P−F bond is 152.2 pm. Gas‐phaseelectron diffractionanalysis gives similar values: the axial P−F bonds are 158 pm long and the equatorial P−F bonds are 153 pm long. 
• 
Fluorine‐19 NMRspectroscopy, even at temperatures as low as −100 °C, fails to distinguish the axial from the equatorial fluorine environments. 
• 
The apparent equivalency arises from the low barrier for pseudorotationvia theBerry mechanism, by which the axial and equatorial fluorine atoms rapidly exchange positions.The apparent equivalency of the F centers in PF5was first noted by Gutowsky.[2]The explanation was first described byR. Stephen Berry. 
• 
Berry pseudorotationinfluences the19F NMR spectrum of PF5since NMR spectroscopy operates on amillisecondtimescale. Electron diffraction and X‐ray crystallography do not detect this effect as the solid state structures are, relative to a molecule in solution, static and can not undergo the necessary changes in atomic position.
Berry pseudorotation: NMR‐31P in PF5 
Yellow atoms are axial 
Blue atoms are axial 
http://fluorine.ch.man.ac.uk/pics/berry.gif 
http://pubs.acs.org/doi/pdf/10.1021/ed083p336.2 
Mechanisms that interchange axial and equatorial atoms in fluxional processes: 
Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via 
Animation of Transition State Normal VibrationalModes
TcO4 ‐‐‐TcO6 Intermolecular spectra
NMR‐99Tc in 3 –18 M H2SO4[Tc] = 0.001M
99Tc‐NMR Tc(VII) in HClO4 
разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
99Tc‐NMR Tc(VII) in HClO4разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
Solid State NMR 
Characterization of the Structure of solidPertechnicAcid HTcO4 
Solid state 99Tc‐NMR of HTcO4(solid) 
Provide some similarity to Re2O7*2H2O 
Gives evidence for the absence of TcO4 ! 
Charge separated structure favorable
Solid‐State NMR Characterization of Electronic Structure in DitechnetiumHeptoxide 
• 
Herman Cho, W.A. de Jong, A.P. Sattelberger, F. Poineau, K. R. Czerwinski ‐J. AM. CHEM. SOC. 
•NMR parameters were computed for the central molecule of a (Tc2O7)17 cluster using standard ZORA‐optimized all‐electron QZ4P basis sets for the central molecule and DZ basis sets for the surrounding atoms. 
•The magnitudes of the predicted tensor principal values appear to be uniformly largerthan those observed experimentally, but the discrepancies were within the accuracy of the approximation methods used. 
•The convergence of the calculated and measured NMR data suggests that the theoretical analysis has validity for the quantitative understanding of structural, magnetic, and chemical properties of Tc(VII) oxides in condensed phases.
EFG at anionic(Х) and cationic (М) positions in МХО4 crystals as a = f ( 1/V(cell) )
LINE SHAPE FOR 99Tc‐and 133Cs‐ NMR = f(T)inCsTcO4
Temperature dependencies of assimetryparameter QCC Tc- 99, tensor components EFG; qyy; qxxCsTcO4
Temperature dependencies of chemical shifts and QCC Cs-133 at the positions Cs(1) and Cs(2) inCsTcO4Scheme of the potential in Cs region at different temperature
• 
NMR spectrum of Tc metal powder obtained by FT of free induction decay accumulated after excitation of the spin system was recorded and used as a reference for analyses of technetium states supported onto the surfaces and formed in Tc‐Ru alloys/intermetalics. 
• 
Knight shift of technetium metal is a linear function of temperature, K(ppm) = 7305 ‐1.52 x T. nQ(99Tc) = 230 kHz at 293 K, CQ(99Tc) = 5.52 MHz. 
Typical NMR‐99Tc spectra of 
a ‐metal powder ( Ф80‐150 μm) 
b –nano‐dimensional Tc metal Ф = 50 nm
• 
99Tc NMR study of bimetallic Ru‐Tc samples supported at different supports i.e.: g‐Al2O3 , SiO2, MgO, TiO2has shown that for all the supports (except for TiO2), there is an intense signal at –30 –40 ppm arising from the TcO2
Temperature dependence of Knight shift forbulk (b)and nano‐dimensial(a) metallic Tc 
S Kn
Численная оценка сдвигов Найтадля качественной слоевой модели. 
• 
NTotal= NT(m) + NS(m+1) 
NT(m)=10/3m3‐5m2+11/3 m‐1. 
NS= 10m2+2 
Kn‐K∞ = (K0 ‐K∞) exp ((‐n/m) 
K∞ =7350 м.д. –предельный сдвиг технеция для объёмного образца. 
K0 =7430 м.д. –сдвиг для технеция на поверхности частицы данного диаметра
Спектр ЯМР Тс‐99 катализатора 2%Тс/γ‐Al2O3 
Результаты расчета для 5‐ти слоевой частицы составили при m=5 
K1= 7417 м.д. 
K2 = 7410 м.д. 
K3 = 7397 м.д. 
K4 = 7384м.д. 
K5 = 7365 м.д.
СпектрЯМР Тс‐99 бинарного катализатора 1%Ru‐3%Tc/TiO2
36Cl‐NMR study 
36Cl‐NMR Parameters for Molten Salt Reprocessing Analyses: QuadrupoleMoment, Spin‐Lattice Relaxation and SternheimerAntishieldingFactor for Chloride and PerchlorateIons. 
FROM: TarasovV., GuermanK., SimonoffG., KirakosyanG., SimonoffM. NRC5: 5‐th International Conference on Nuclear and Radiochemistry. Pontresina, Switzerland, September 3‐ 8, 2000. Extended Abstracts, Vol. 2, p. 641‐644. 
36Cl is one of long‐lived b‐active isotopes with a half‐life of 3.105 years and rare nuclear structure –its odd‐odd nuclei contain 19 neutrons and 17 protons. 
Being an artificial isotope, 36Cl is not today an environmental hazard because of its low abundance. 
. 
However, some of the scenarios for the development of atomic power, p.e. involving the use of molten chloride reactor systems for destruction of weapons plutonium and pyrochemicalreprocessing of spent nuclear fuel, may result in accumulation of 36Cl due to 35Cl(n,γ)36Cl reaction (s = 100 barn) in amounts that cannot be ignored as radioactive waste.
Nuclear characteristics of the isotope36Clwere reported: I = 2, μ= 1.31 μB, electric quadrupolemoment Q = ‐0.017 barn. 
36Clmagnetic moment μ(36Cl) = 1.2838 nm was determined from the ratio of the resonance frequencies ν(36Cl)/ν(2H) = 0.74873 ±3. The magnetic moment was assigned the positive sign. 
The Sternheimerantishieldingfactor (1 + γ∞) was known only for Cl‐ ions, but not for ClO4‐ions. 
36Cl‐NMR study 
NMR spectra (B = 4.6975 T) of an aqueous solution of KClO4+ KClat 300K: (a) 35Cl‐SI 8K, 0.24 Hz/pt, NS = 1070 (ClO4)and 2200 (Cl); (b) 36Cl—SI 32K, 0.03 Hz/pt, NS = 2800 (ClO4) and 2300 (Cl); (c) 37Cl‐‐SI 16K 0.06 Hz/pt, NS = 6400 (ClO4) and 15488 (Cl). 
TarasovV., GuermanK., SimonoffG., KirakosyanG., SimonoffM. NRC5: 5‐th International Conference on Nuclear and Radiochemistry. Pontresina, Switzerland, September 3‐8, 2000. Extended Abstracts, Vol. 2, p. 641‐644.
36Cl‐NMR study 
TarasovV., GuermanK., SimonoffG., KirakosyanG., SimonoffM. NRC5: 5‐th International Conference on Nuclear and Radiochemistry. Pontresina, Switzerland, September 3‐8, 2000. Extended Abstracts, Vol. 2, p. 641‐644. 
3.3 M Bu4NClO4in CH3CN of at 300 K: 
(a) 
35Cl—SI 4K, SW = 300 Hz, and NS = 8; 
(b)37Cl‐‐SI 16K, SW = 300 Hz, and NS = 16; 
(c) 
36Cl—SI 16K, SW = 100 Hz, and NS = 8. 
With the parameters determined in this study, the low level detectable for 36Cl is 0.5 ppm for 
concentrated samples, 15 ppm in 0.1 M chloride solutions; LLD for 36Cl could be decreased by a factor of approx. 10 by addition of microamountsof paramagnetic ions (Cu2+, Ni2+).
36Cl‐NMR study
14N‐,77Se,187Re‐, NMR study applied to radioeco& biotechnology tests control 
Nitrogen 
N‐14 
Selenium 
Se‐77 
Rhenium 
Re‐187 
… and also 
U, Mn, Cs, etc… 
etc…
Synchrotron Radiation as a Tool 
ISTR 2011 Moscow 
Electromagnetic radiation generated by ultrarelativisticelectrons/positrons traveling along circular orbits in light charged particles accelerators
Advantages compared to standard X‐ray sources 
• 
Intensity/Brightness higher by 6‐10 orders of magnitude 
• 
Continuum spectrum from IR to hard X‐rays 
• 
High natural collimation 
• 
Tunable polarization 
• 
Partial coherence
EUROPEAN SR
EUROPEAN SYNCHROTRONS incl. MOSCOW
European 
synchrotron 
Radiation 
Facility, 
Grenoble, 
France 
Production 
of X-rays in synchrotron
European synchrotron 
ESRF 
Electron energy: 
6 Gev
Bending magnets 
Undulators
• 
Siberian Center for Synchrotron Radiation(BINP, Novosibirsk) since 1970‐ies: Storage ringsVEPP‐3 (2 GeV, 120 mA), VEPP‐4(5 GeV, 40 mA) –both1stgeneration(ε~300 nm∙rad)11 beamlines. 
• 
Kurchatov Synchrotron Radiation Source(Moscow) in operatiionsince early 2000‐ies Siberia‐1 (booster, 450 MeV) –3 VUV beamlines, Siberia‐ 2 –dedicated2ndgeneration source(2.5 GeV, 300 mA, ε~75 nm∙rad), 16beamlines. 
• 
ZelenogradSynchrotron Rad. Facility (LukinIPP)–under construction• 
DubnaElectron SynchrotronDELSI (JINR) –project development 
• 
International collaboration: 
• 
Russian‐German beamlineat BESSY II and Russian involvement in ESRF consortium, 
• 
Russian part in EuropeanXFEL project (X‐ray free‐electron lasers ‐M. Kovalchuk(NRC "Kurchatov Institute", Moscow), A. Svinarenko(OJSC RUSNANO,Moscow)(4thgenerationsource) 
Synchrotron sources in Russia
• 
Basics and typical applications of 
‐EXAFS/XANES‐SAXS‐XRD 
• 
Combined application of X‐ray techniques to structural diagnostics of nano/materials 
SR sources in Russia
SYNCHROTRON DIAGNOSTICS OF Radioactive and Functional Materialsin National Research Center “Kurchatov Institute” Department Head ‐Yan Zubavichus 
10 years in user mode
ISTR 2011 Moscow 
Kurchatov Synchrotron Source 
Linac 
Booster 
Main storage 
ring 
Control room
10.5010.7511.0011.2511.5011.7512.00Pt L3Re L2 Fluorescence Yield Photon Energy, keVRe L3 
2. Diffraction 
1. Spectroscopy 
3. Imaging 
Synchrotron techniques include 
Especially protein 
structure solutions 
Unique : 
Structures in solutions 
and polymers
KSRC X-ray stations 
1 
ProteinCrystallography 
2 
PrecisionX-rayOptics 
3 
X-rayCrystallographyandPhysicalMaterialsScience 
4 
MedicalImaging 
6 
Energy-DispersiveEXAFS 
7 
StructuralMaterialsScience(SMS) 
8 
X-raySmallAngleDiffractionCinema(bioobjects) 
9 
RefractionOptics&X-rayFluorescenceAnalysis 
10 
X-rayTopography&Microtomography 
VUV stations 
11 
X-rayPhotoelectronSpectroscopy 
12 
OpticalspectroscopyforCondensedMatter 
13 
Luminescence&OpticalInvestigations 
Technological stations 
14 
X-rayStandingWavesforLangmuir-BlodgettFilms 
15 
MolecularBeamEpitaxy 
16 
LIGA
Characteristics of the beamline 
TypeEnergy interval, keVΔE/E 
Si(111)5‐1910‐4 
Si(220)8‐3510‐4 
Monochromator is driven by stepper motors(1‘‘ discrete steps) 
• 
Ionization chambers+ KEITHLEY 6487 
• 
Scintillation counter withNaI(Tl) crystals 
•Linear gas‐filled detectorCOMBI‐1(“Burevestnik”, St. Petersburg) 
• 
2D‐detectorImagingPlate (FujiFilmBAS2025) 
• 
Semiconducting detector(pureGe) 
Maximum3×3 мм2 
Minimum10×10 μm2 
Step of translations~4 μm 
~ 0.5×108 photons/mm2with energy bandwidth Δλ/λ=10‐4 
Monochromators: 
Detectors: 
Beam dimensions: 
Photon flux:
In‐situcell for functional materials 
3‐component gas mixtures 
• 
Inerts: He, N2, Ar 
• 
Oxidation and reduction:O2, H2 
• 
Catalytic substrate: CO, CH4, etc. 
• 
Vacuum 10 Pa 
20‐550oC 
Thermostabilization through the heating current & thermocouple feedback±1oC 
4 ×350 W 
Cooling down to ‐130oC with a flow of cold N2 gas
He closed‐cycle refrigerator (SHI, Japan) 
Minimum temperature achieved10.0К + precise termostabilization up to room temperature
Combined use ofXAFS, XRD and SAXS• 
XANES‐oxidation state of heavy atoms + coordination symmetry 
• 
EXAFS‐local neighborhoodof a given heavy atom• 
XRD‐long‐range order, phase composition, size of crystallites 
• 
SAXS‐size and shape of nanoparticlesor pores in a range of 1‐100 nm
X‐ray absorption spectroscopy: basics 
ISTR 2011 Moscow
Fermi 
level 
HOMO 
LUMO 
XANES: origin 
Vacuumlevel 
Core electronlevel 
Valenceband 
Forbidden gap 
Conductionband 
XANESprobestheenergydistributionofcertainsymmetry- allowedMOsorDOSfeaturesabovetheFermilevel 
Fermi‘sgolden rule: 
μ ~ |<f | V | i>|2, f,i–wave functions of the final and initial states,V –dipole moment operator
Photoionized atom 
Neighbor atom 
Photoelectron wave 
Back-scattered photoelectronwave 
Single scattering 
Multiple scattering 
EXAFS: origin 
Local-structrureparametersofthecentralatom 
canberetrievedfromEXAFS 
Initial state: electron on the core level 
Final state: outgoing photoelectron wave 
Interference
)(/22222))(2sin(),( )( )(krkjjjjjjjjeekkrkfkrNkSkλσϕπχ−−+=Σ 
χ-normalized background-subtracted EXAFS-signal 
k–photoelectron vector modulus (≡2π/λ) 
S –Extrinsic loss coefficient(0.7-1.0) 
N–coordination number in thej-thcoordination sphere 
r–interatomic distance 
f–backscattering amplitude 
ϕ–phase shift 
σ 
–Debye-Waller factors 
λ 
−photoelectron mean-free path
EXAFS/XANES: implementation at SMS 
Detection modes:transmission(ion chambers) 
fluorescence yield( NaI(Tl) scintillation counter, detection limit down to0.005 mass.%) 
Data processing: IFEFFIT (Athena, Artemis, Hephaestus и др.) withab initiotheoretical phase and amplitude functions fromFEFF8, GNXAS 
Ab initioXANES spectra simulation withFEFF8 , FDMNES, FitIt, etc. 
Absorption edges measuredover 2004‐2014 
К‐edges: 
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Br, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Cd, In, Te 
L3‐edges: 
Ba, La, Ce, Nd, Pr, Sm, Eu, Gd, Hf, Ta, W, Re, Pt, Au, Hg, Pb, Bi, U, Pu
1152511550115751160011625116500.00.51.01.52.0 Normalized Absorbtion, a.u. Photon Energy, eV Pt Pt2+ Pt3+ Pt4+ Pt L36.536.546.556.566.576.586.596.606.61 Mn2+ (MnCl2 6H2O) Mn3+ (Mn2O3) Mn4+ (MnO2) Mn7+ (KMnO4) Photon Energy, keVMn K1635016400164500.00.61.2 Normalized Absorption, a.u. Photon Energy, eV Bi0 Bi3+ (Bi2O3) Bi3+ (Bi(NO3)3.2H2O) Bi5+ (NaBiO3) Bi L1 
XANES 
Information retrieved fromXANES: 
• 
Effective oxidation state 
• 
Coordination polyhedron symmetry 
Data analysis: “fingerpring” approach –comparison with reference spectra + theoretical simulations 
1s→3d,4p 
2p3/2→4d 
2s→6p
Application to Tc 
Tc K‐edge XANES
Application to Re 
Re L3‐edge XANES
01234561.4 Tc-C 1.76Å6.0 Tc-Tc 2.72Å TcCx |FT(k3χ(k))| R, ÅTc12 Tc-Tc 2.72Å 
Tc METAL & Tc CARBIDE
01234560.3 Re-C 2.14Å1.0 Re-C 2.46Å1.1 Re-Re 2.62Å 3.1 Re-Re 2.73Å ReCx |FT(k3χ(k))| R, ÅRe12 Re-Re 2.75Å 
Re METAL & Re CARBIDE
PYROMETALLURGY 
REPROCESSING OF SPENT FUEL
Structures of Tc halogenidesin solutions and melts1) fundamental studies of cluster Tc compounds2) Analyses of possible species in PRORYV technology (chloride melts) 
Tc K‐край k3‐weight EXAFS spectra and its Fourier transform for Tc (+4, +2,5, +2) halogenides 
(Cl, Br)
а 
б 
в 
а-МоноядерныйбромидныйкомплексTcK-крайk3-взвешенныйEXAFSспектрипреобразованиеФурьеспектра(Me4N)2TcBr6: 
Tc-Br:N=5,8(4),R=2,51(2)Å,σ2=0,004Å2,ΔE0=-16,9(5)eV, 
б-Биядерныйкластер Tc K-край k3- взвешенный EXAFS и соответствующее преобразование Фурье спектра K3Tc2Cl8 EXAFS структурные параметры K3Tc2Cl8(лучшая из полученных предварительных аппроксимаций): 
Tc-TcN=1,66(3), R=2.20(2) Åσ2=0,0069 Å2ΔE0= -1.1(9) eV 
Tc-ClN=2,2(4), R=2,46(2) Åσ2=0,0107 Å2, 
в-Спектр и Tc K-край k3-взвешенный EXAFS для полиядерногохлоридного кластера (Me4N)3[Tc6(μ-Cl)6Cl6]Cl2, для которого не удалось получить удовлетворительного преобразования Фурье в рамках FEFF-5 приближения 
Spectra EXAFSof complex Tc halogenides
Proryv= Breakthrough http://www.atomvestnik.ru/content‐log/104‐redkomonopolnyj‐element.html 
• 
Since 2011, at SCC Rosatomimplements one of its most ambitious projects “PRORYV (Breakthrough)". Until 2020, it is planned to send 100 billion rubles. Its main goal ‐the development of fourth generation reactors, high power fast neutron, creating a closed nuclear fuel cycle technology, new types of nuclear fuel. 
• 
... Is the fuel carries the dream of mankind in a closed fuel cycle 
• 
The current generation of reactors 3 and 3+ does not work closed cycle, that is, the fuel is fulfilled, then it is stored. There is a partially closed loop when after unloading fuel processed, but not entirely ‐a significant portion enters the storage of radioactive waste. "Breakthrough" is to open the technology of the future ‐a vicious cycle: the production of fuel, energy recovery, recycling and re‐loading into the reactor. 
• 
Closed cycle, it is important to be near‐station, that is for fuel processing does not need to be transported. In general, the "Breakthrough" must solve several important problems for the nuclear industry. 
• 
According to the doctor of technical sciences, professor, chairman of the technical committee of the project "Breakthrough" EvgenyAdamov, “ is security, which does not lead to such accidents that require evacuation and resettlement of the population even more so, is to use the full potential of raw materials, not only uranium‐235 this final urgent solution to the problems of spent nuclear fuel.
UN fuelhttp://www.atomvestnik.ru/content‐log/104‐redkomonopolnyj‐element.html 
• 
The Siberian Chemical Combine is already running process chain to create the newest nitride fuel, the first assembly designed to be loaded into the reactor BN‐600 at Beloyarsknuclear power plant. 
• 
Scientists and Energy see how they manifest themselves in action, on this basis, it is decided whether to use nitride fuel in the reactors of the 4th generation. 
• 
DmitriyZozulya, project manager for the industrial production of dense fuel: "Two full assembly, filling nitride fuel: TVS‐4 prototype fuel assembly BN‐1200 and TVS‐5 ‐a prototype reactor" Brest ". This fuel carries the dream of mankind's closed fuel cycle with reprocessing of spent fuel, there is a need supplements only 238 uranium, plutonium in it remains almost the same with respect to the primary boot. "
XAFS analysis of electrode surface after corrosion 
Æ 
Determination of eventual Tc oxide: ‐In 1 M HCl(E= 800 mV) 
‐In 1 M NaCl, pH= 2.5 (E= 700 mV) 
XAFS measurement of: NH4TcO4, TcO2, Tc metal for comparison 
Layer carefully removed 
and analyzed by XAFS. 
SEM x 50 
Before 
After 
pH =2.5, 1 M NaCl, E = 700 mV during 1 hour 
M. Ferrier, F. Poineau,G.W. ChinthakaSilva, E. Mausolfand K. Czerwinski “Electrochemical Behavior of Metallic Technetium in Aqueous Media” : ISTR-2008. Port Elizabeth, South Africa.
XANES 
No pre‐edge : No TcO4‐sorbed on electrode. 
No shift of edge for 1M HCl , shifted (~1 eV) at pH = 2.5 
Æ 
Product on electrode after corrosion : mainly Tc metal. 
1 M NaCl, pH = 2.5 
1M HCl 
First deriv.
ÆEXAFS analysis also confirm presence of Tc metal on surface electrode after corrosion . 
Æ 
No oxide detected. 
EXAFS after corrosion 
XRD [5] 
C.N 
R (Å) 
C.N 
R( Å) 
Tc0-Tc1 
10 
2.72 
12 
<2.71> 
Tc0-Tc2 
6 
3.83 
6 
3.85 
Tc0-Tc3 
8 
4.76 
8 
4.73 
pH =2.5 
EXAFS
NEXT : • 
SAXS
X‐ray detector (0D,1D, 2D) I(s) 
Scattering vector s = k1 ‐k0 
s = 4πsin θ/ λ= 2π/ d 
Sample in the transmission geometry 
2θ 
k0 
k1 
s 
Point/Linear collimation 
Monochro‐ matic X‐ray source 
SAXS: Basics
ISTR 2011 Moscow 
Indirect FT 
I(s) –experimentalscattering 
curve 
P(r) –volumedistributionof hard spheres
ISTR 2011 Moscow 
SAXS: implementation at SMS 
Sample-to-detectordistance,mm 
2θmin-2θmax,° 
qmin-qmax,nm-1 
E=25keV 
qmin-qmax,nm-1 
E=6keV 
120 
0.95-45.00 
4.2–179 
1–43 
500 
0.23-13.50 
1–59 
0.24–14.2 
1000 
0.11-6.84 
0.5–30 
0.12–7,1 
2390 
0.05-2.87 
0.2–12.7 
0.05-3 
Only transmission geometry (no GISAXS for the moment) 
Scattering vectoris oriented vertically; 
sample‐to‐detector distance up to 2.5 m; 
Photon energy5‐30 keV(the possibility to employ anomalous scattering) 
Treatment of experimental data: GNOM, MIXTURE, DAMMIN, SAXSFIT, IsGISAXS, Fit2D (for preliminary data processing of 2D images) 
Simulation: 
Single size distribution of spherical particlesR=20±4 Å 
IsGISAXS 
GNOM
1 . Small‐angle diffraction on mesostructured materials 
2 . SAXS application: aqueous colloids 
p.e. ‐of Tc sulfide nanoparticles 
3 . Quantitative interpretation of the SAXS curve for not‐interacting particles and aggregates (DAMMIN)
V.F. Peretrukhin, G.T. Seaborg, N..N. Krot 
LNL, Berkley, 1998
Periodic Table and heptavalent state of elements 
‰ 
Period is variable :2, 8, 8, 18, 18, 32…? 
‰ 
Zones of implacability exist 
‰ 
For huge part ‐It works ! ! ! 
VII
• 
Interatomic distances in metals/simple matter A.Wells “Struct.Inorg.Chem.” 
• 
Lost :P,S, Br, I, Po, At, Fr, Ra, Ac, Np, Pu, Am, Cm, Bk, Cf 
TRU 
5 
Detailed fig 
In: Jarvinen et all 
Plutonium
Synthesis and the types of An(VII) 
• 
CrystallinecompoundsofAn(VII)canbepreparedbydeepoxidationofactinidesinstronglyalkalineconditions. 
• 
Bothinteractionofsolidcomponentsandalsoconductingtheoxidationinalkalinesolutions. 
• 
CompoundsofAn(VII)arestableonlyinstrongalkali,andrapidlydecomposeinneutraloracidicconditions. 
• 
An(VII)arequitevariableincomposition:formallytheycouldbeconsideredtocontainanionsAnO65-,AnO53-,[AnO4(OH)2]3- ,[An2O8(OH)2]4-andAnO4-butthelatterisnotsupportedbyX-rayanalyses. 
• 
AshortnumberofthesolidcompoundscontainingAnO65-, andAnO53-anionswereisostructuraltocorrespondingortho- andmeso-rhenatesReO65-,ReO53-(butnoanalogyinsolutions). 
6
MAnO4(·nH2O) (M–alkali metal) 
• 
It was estimated by N.N. Krot and the followers that the transuranium(VII) compounds like MAnO4(·nH2O) (M–alkali metal) have the structures similar to uranates(VI) of alkali earth metals. 
• 
They contain shortened linear groupsAnO23+and O– bridges collecting all into anionic layers. 
Structural type of BaUO4. 
(Reis A.H. et al. JINC, 1976). 
7
BaUO4structural type compounds 
• 
Lattice parameters for different U(VI), Np(VI) (lit. data) and Np(VII) compounds (IPCE data) 
• 
1 –U compounds 
• 
2 –Np compounds 
• 
Chemical properties of Np(VI) and Np(VII) compounds are different 
• 
LiReO4*1.5H2O contra LiTcO4*3H2O 
8
IR spectral data indicates Np‐O and Np=O difference 
Evident splitting at the CsNpO4spectrum indicates/supports the presence of two types of Np‐O bonds: 
• 
O=Np=O 
• 
Np‐O‐Np 
In Li5NpO6all the Np‐O bonds are of the same nature 
9
Mossbauer spectra of Np(VII) compounds 
• 
1 –CsNpO4 
• 
2 –Na3NpO4(OH)2*nH2O 
• 
3 –Li5 NpO6 
• 
4 –frozen solution of Np(VII) in 10M NaOH 
• 
Dots ‐experiment, curve – squared plotting
Inthisway: 
Transuranic(VII) MAnO4(·nH2O) compounds are completely different : 
from 
MXO4xnH2O(X–elementsofthe7thGroupfromPeriodicTable,Mn,Tc,Re,n=0,1,1.5,3) 
fromTc(VII)acid 
German,Peretrukhin2003 
Poineau,German2010 
fromRe(VII)acid 
BeyerH.etall. 
Angew.Chem.,1968 
fromI(VII)acid 
fromCl(VII)acid 
Структурный тип BaUO4. 
(Reis A.H. et al. JINC, 1976). 
(Maruk A.Ya. et al. Russ. Coord. Chem.2011) 
and from TcO3+ 
Pertechnetyl Fluorosulfate, [TcO3][SO3F] –ZAAC, 2007 
J.Supeł, U. Abram et all. 
Berlin, Freie Universität. 
11
111 
Isostructural: 
LiBrO4∙3H2O 
LiClO4∙ 3H2O 
LiMnO4∙ 3H2O 
LiTcO4∙6/2H2O6/2=3 
LiReO4∙1.5H2O 
LiReO4∙ H2O 
‐ 
Analogous are absent 
More diffused 4d electrons in Re compared to 3d electrons in Tc
112 
Isostructural pertechnetate salts withcation : anion = 1:1 
Cation 
Anion 
ClO4- 
MnO4- 
ReO4- 
[Li · 6/2Н2O]+ 
+ 
+ 
* 
Na+ 
– 
* 
+ 
K+ 
– 
– 
+ 
Rb+ 
– 
– 
+ 
Cs+ 
– 
– 
+ 
NH4+ 
– 
– 
+ 
Ag+ 
– 
– 
+ 
[(CH3)4N]+ 
+ 
– 
+ 
[(C3H7)4N]+ 
– 
* 
+ 
[(C4H9)4N]+ 
* 
* 
* 
[(C6H5)3PNH2]+ 
* 
* 
+ 
[C7H14N3]+ 
* 
* 
+ 
[C7H10N3(C3H5)4]+ 
* 
* 
+ 
[C7H10N3(C6H5)4]+ 
* 
* 
* 
[C6H8N]+ 
– 
* 
+ 
[C4H10NO]+ 
– 
* 
+ 
[CN3H6]+ 
+ 
* 
+ 
*Notdetermined.doesn’texists 
–NosimilaritytoTc 
+Isostructural
Anionic chain [(Np2O8)(OH)2]n4n‐in the structure 
of Li[Co(NH3)6][(Np2O8)(OH)2]∙2H2O 
(Burns J., Baldwin W., Stokely J. Inorg. Chem., 1973). 
12 
Np(VII) & I(VII) 
• 
Two types of Np in Np(VII) compound while only one Iin I(VII) 
• 
One bridging O in Np(VII) while two bridging O in I(VII) 
• 
Np(VII) is stable in alkali while I(VII) –in acids 
Neutral chains in HIO4. 
( Smith, T. et all. Inorg.Chem., 1968)
The first Pu(VII) single crystal 
13
14
Na4[AnO4(OH)2](OH)∙2H2O 
Np1‐O1 1.891(2)Pu1‐O1 1.8824(15) 
Np1‐O2 1.888(2) Pu1‐O2 1.8805(18) 
Np1‐O3 1.917(2) Pu1‐O3 1.9109(15) 
Np1‐O4 1.880(2)Pu1‐O4 1.8811(19) 
Np1‐O5 2.315(2) Pu1‐O5 2.2952(19) 
Np1‐O6 2.362(2)Pu1‐O6 2.339(2) 
An‐OH distances are more sensible to actinide contraction than An=O distances 
15
Several mixed cation compounds of Np(VII) and Pu(VII) 
NaRb2[NpO4(OH)2]∙4H2O(I):a=8.2323(2),b=13.4846(3),c=9.9539(2)Å,β=102.6161(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0179. 
NaRb2[NpO4(OH)2]∙4H2O(II):a=5.4558(2),b=12.4478(3),c=7.9251(2)Å,β=103.6310(13)°, sp.gr.P21/n,Z=2,R1[I>2σ(I)]=0.0218. 
NaCs2[NpO4(OH)2]∙4H2O(III):a=15.0048(4),b=9.1361(2),c=10.6747(3)Å,β=129.7361(9)°, sp.gr.C2/c,Z=4,R1[I>2σ(I)]=0.0148. 
NaRb5[PuO4(OH)2]2∙6H2O(IV):a=6.4571(1),b=8.2960(1),c=10.8404(2)Å,α=105.528(1),β=97.852(1),γ=110.949(1)°,sp.gr.P‐1,Z=2,R1[I>2σ(I)]=0.0189. 
NaRb2[PuO4(OH)2]∙4H2O(V):a=8.2168(2),b=13.4645(3),c=9.9238(2)Ǻ,β=102.6626(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0142. 
NaCs2[PuO4(OH)2]∙4H2O (VI):a= 11.1137(2), b=9.9004(2), c = 10.5390(2) Ǻ, β = 101.0946(11)°, sp. gr. C2/c, Z= 4, R1 [I > 2σ(I)] = 0.0138. 
Anion of [PuO4(OH)2]3‐ 
in the structure of IV 
16
Selected interatomic distances and torsion angles 
in the structures I –VI : 
IIIIIIIVVVI 
Bond(Å) 
An=O 1.8790(12)2×1.8690(9) 2×1.8884(9)1.8695(15)1.8685(12)2×1.8868(15) 
1.8855(13) 2×1.9138(9)2×1.8944(9)1.8724(15)1.8761(12)2×1.8876(14) 
1.8955(13)1.8919(15) 1.8897(12) 1.9223(13)1.8985(16)1.9144(12) 
An‐O(OH)2.3259(13)2×2.3750(9)2×2.3643(9)2.3197(16)2.3083(13)2×2.3236(15) 
2.3382(13)2.3556(15)2.3229(13) 
Angle(º)IIIIIIIVVVI 
H‐O…O‐H145(4)180133(4)39(4)140(3)48(5) 
17
RecentlyanewwayforNp(VII)compoundpreparationwasproposedbyFedosseevandco-workers[(2008)]: electrochemicaloxidationinacetatesolutions. 
Thenewcompoundsof 
МNpO4·nH2Otype,whereМ–unichargedcationofalkalimetal,ammonium,silver,guanidiniumortetraalkylammonium 
and 
Np(VII)withbichargedcationsofalkalineearthmetals,andalsoCu,CdandZn. 
Allthesecompoundshavebeenthoroughlycharacterizedbymeansofchemicalanalyses,IRandUV-visspectroscopy.Thestudyconfirmed,that… 
18
Pu(VII) compounds 
are close structural and chemical analogues 
of Np(VII) ones 
19
Tc(VII) & Pu(VII), Np(VII) 
Pu(VII) and Tc(VII) are very different in (cryst, electr)‐structure, 
ligand arrangement, stability and chemical properties ! 
1000 ppm 
Poineau, German, Czerwinski
Periodic Table and heptavalent state of elements 
‰ 
Period is variable :2, 8, 8, 18, 18, 32…? 
‰ 
Zones of implacability exist 
‰ 
For huge part ‐It works ! ! ! 
VII 
4
An(VII) ‐Tc&Re(VII) 
• 
Structural and chemical data obtained in recent years by X‐ray‐s‐ c, IR and EXAFS investigations of the new compounds of 
• 
heptavalent neptunium and plutonium, 
• 
heptavalent technetium and rhenium 
• 
confirmtheearlierprevailingopinionabouttheabsenceofadeepsimilarityinphysico‐chemicalpropertiesbetweentheheptavalenttransuranicelementsandtheelementsofGroupVIIoftheshortformofthePeriodictableandtheformalnatureofsomeofthestructuralsimilaritiesamongtheconsideredheptavalentcompounds. 
• 
PrincipallyonecanattendtheformationofPu(VIII)butitisnottheaqueousmediathatcouldstanditsoxidizingpower. 
20
8th International Symposium on Technetium and Rhenium: Science and Utilization. September 29th to October 3rd 2014. Proceedings and selected lectures. La Baule‐Pornichet, France. Eds. K.German, F.Poineau, M. Fattahi., Ya. Obruchnikova, A. Safonov. Nantes – Moscow –Las Vegas : GranicaPublishing Group, 2014. 561 p. 
WHAT SHOULD WE KNOW ABOUT TECHNETIUM AND RHENIUM :
BessonovPerminovKrot, GrigorievPeretrukhinGermanCzerwinskiPoineau 
Thank you for your Attention!
PAN ‐RAN 
• 
Россия‐Русская академия наук (РАН)12.07.2002 р.‐ Русская академия сельскохозяйственных наук (RANR)12.07.2002 р.‐Русская академия медицинских наук (Ранма)12.07.2002 р.‐Русская академия наук (соглашение награды)16.10.2001.‐ Русская академия наук (соглашение о научном сотрудничестве в области фундаментальных исследований космоса)14.03.2005 р. 
ТадеушКотарбинский,
Thank you for your attention !

More Related Content

What's hot

Nuclear energy
Nuclear energyNuclear energy
Nuclear energySuni Nair
 
Nuclear energy1
Nuclear energy1Nuclear energy1
Nuclear energy1Suni Nair
 
Lattice Energy LLC- LENR Transmutation Networks Can Produce Gold-Dec 7 2012
Lattice Energy LLC- LENR Transmutation Networks Can Produce Gold-Dec 7 2012Lattice Energy LLC- LENR Transmutation Networks Can Produce Gold-Dec 7 2012
Lattice Energy LLC- LENR Transmutation Networks Can Produce Gold-Dec 7 2012Lewis Larsen
 
Power station practice (NEE-702) unit-5
Power station practice (NEE-702) unit-5Power station practice (NEE-702) unit-5
Power station practice (NEE-702) unit-5Md Irshad Ahmad
 
17 09-2013 peaceful usage of nuclear energy
17 09-2013 peaceful usage of nuclear energy17 09-2013 peaceful usage of nuclear energy
17 09-2013 peaceful usage of nuclear energyKonstantin German
 
international thermo nuclear reactor
international thermo nuclear reactorinternational thermo nuclear reactor
international thermo nuclear reactorpushpeswar reddy
 
95066866 types-of-nuclear-reactors
95066866 types-of-nuclear-reactors95066866 types-of-nuclear-reactors
95066866 types-of-nuclear-reactorsmanojg1990
 
thorium based nuclear power
thorium based nuclear powerthorium based nuclear power
thorium based nuclear powerpreetam92
 
Nuclear power plant mmm
Nuclear power plant mmmNuclear power plant mmm
Nuclear power plant mmmMukund Makwana
 
Unit iii nuclear power plants
Unit iii nuclear power plantsUnit iii nuclear power plants
Unit iii nuclear power plantsElangoV7
 

What's hot (16)

Nuclear energy
Nuclear energyNuclear energy
Nuclear energy
 
Arc reactor
Arc reactorArc reactor
Arc reactor
 
Nuclear energy1
Nuclear energy1Nuclear energy1
Nuclear energy1
 
15ee17 (Group)
15ee17 (Group)15ee17 (Group)
15ee17 (Group)
 
Nuclear Energy
Nuclear EnergyNuclear Energy
Nuclear Energy
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
Lattice Energy LLC- LENR Transmutation Networks Can Produce Gold-Dec 7 2012
Lattice Energy LLC- LENR Transmutation Networks Can Produce Gold-Dec 7 2012Lattice Energy LLC- LENR Transmutation Networks Can Produce Gold-Dec 7 2012
Lattice Energy LLC- LENR Transmutation Networks Can Produce Gold-Dec 7 2012
 
Power station practice (NEE-702) unit-5
Power station practice (NEE-702) unit-5Power station practice (NEE-702) unit-5
Power station practice (NEE-702) unit-5
 
17 09-2013 peaceful usage of nuclear energy
17 09-2013 peaceful usage of nuclear energy17 09-2013 peaceful usage of nuclear energy
17 09-2013 peaceful usage of nuclear energy
 
international thermo nuclear reactor
international thermo nuclear reactorinternational thermo nuclear reactor
international thermo nuclear reactor
 
95066866 types-of-nuclear-reactors
95066866 types-of-nuclear-reactors95066866 types-of-nuclear-reactors
95066866 types-of-nuclear-reactors
 
thorium based nuclear power
thorium based nuclear powerthorium based nuclear power
thorium based nuclear power
 
Nuclear power plant mmm
Nuclear power plant mmmNuclear power plant mmm
Nuclear power plant mmm
 
Better and faster
Better and fasterBetter and faster
Better and faster
 
Rapp(manish kumar)
Rapp(manish kumar)Rapp(manish kumar)
Rapp(manish kumar)
 
Unit iii nuclear power plants
Unit iii nuclear power plantsUnit iii nuclear power plants
Unit iii nuclear power plants
 

Similar to 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs FictionNew New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs FictionEd Beardsworth
 
Ch 13 nuclear energy
Ch 13 nuclear energyCh 13 nuclear energy
Ch 13 nuclear energyTadviDevarshi
 
Nuclear materials BrijMhohan Mudotiya.pdf
Nuclear materials BrijMhohan Mudotiya.pdfNuclear materials BrijMhohan Mudotiya.pdf
Nuclear materials BrijMhohan Mudotiya.pdffinnleymatias
 
The Fukushima Daiichi Nuclear Plant
The Fukushima Daiichi Nuclear PlantThe Fukushima Daiichi Nuclear Plant
The Fukushima Daiichi Nuclear Plantsirdanielbilbruck
 
Nuclear Rockets (Thermal)
Nuclear Rockets (Thermal)Nuclear Rockets (Thermal)
Nuclear Rockets (Thermal)Sreechithra AS
 
SMR Presentation for 6222022.pdf
SMR Presentation for 6222022.pdfSMR Presentation for 6222022.pdf
SMR Presentation for 6222022.pdfcguptadae
 
Chernobyl nuclear accident
Chernobyl nuclear accidentChernobyl nuclear accident
Chernobyl nuclear accidentMOHD AMAAN HASAN
 
Nuclear thermal propulsion reactor
Nuclear thermal propulsion reactorNuclear thermal propulsion reactor
Nuclear thermal propulsion reactorJari Abbas
 
Chernobyl disaster
Chernobyl disasterChernobyl disaster
Chernobyl disasterLokeswar
 
The glg slide deck as 1700 edt monday 2 may 2011
The glg slide deck as 1700 edt monday 2 may 2011 The glg slide deck as 1700 edt monday 2 may 2011
The glg slide deck as 1700 edt monday 2 may 2011 tdrolet
 
CHERNOBYL DISASTER, 1986
CHERNOBYL  DISASTER, 1986CHERNOBYL  DISASTER, 1986
CHERNOBYL DISASTER, 1986TaushifulHoque
 
Indian nuclear power programme
Indian nuclear power programmeIndian nuclear power programme
Indian nuclear power programmeNIT Puducherry
 

Similar to 2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture (20)

New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs FictionNew New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
New New Energy - LENR/Cold Fusion/"Free Energy", Fact vs Fiction
 
Ch 13 nuclear energy
Ch 13 nuclear energyCh 13 nuclear energy
Ch 13 nuclear energy
 
Nuclear materials BrijMhohan Mudotiya.pdf
Nuclear materials BrijMhohan Mudotiya.pdfNuclear materials BrijMhohan Mudotiya.pdf
Nuclear materials BrijMhohan Mudotiya.pdf
 
The Fukushima Daiichi Nuclear Plant
The Fukushima Daiichi Nuclear PlantThe Fukushima Daiichi Nuclear Plant
The Fukushima Daiichi Nuclear Plant
 
Nuclear Rockets (Thermal)
Nuclear Rockets (Thermal)Nuclear Rockets (Thermal)
Nuclear Rockets (Thermal)
 
SMR Presentation for 6222022.pdf
SMR Presentation for 6222022.pdfSMR Presentation for 6222022.pdf
SMR Presentation for 6222022.pdf
 
Nuclear rocket propulsion
Nuclear rocket propulsionNuclear rocket propulsion
Nuclear rocket propulsion
 
Linked in seminar
Linked in seminarLinked in seminar
Linked in seminar
 
Chernobyl nuclear accident
Chernobyl nuclear accidentChernobyl nuclear accident
Chernobyl nuclear accident
 
Nuclear thermal propulsion reactor
Nuclear thermal propulsion reactorNuclear thermal propulsion reactor
Nuclear thermal propulsion reactor
 
Sofc
SofcSofc
Sofc
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
Chernobyl disaster
Chernobyl disasterChernobyl disaster
Chernobyl disaster
 
Nuclear power plant
Nuclear power plantNuclear power plant
Nuclear power plant
 
The glg slide deck as 1700 edt monday 2 may 2011
The glg slide deck as 1700 edt monday 2 may 2011 The glg slide deck as 1700 edt monday 2 may 2011
The glg slide deck as 1700 edt monday 2 may 2011
 
CHERNOBYL DISASTER, 1986
CHERNOBYL  DISASTER, 1986CHERNOBYL  DISASTER, 1986
CHERNOBYL DISASTER, 1986
 
Nuclear power plant fundamentals
Nuclear power plant fundamentalsNuclear power plant fundamentals
Nuclear power plant fundamentals
 
Indian nuclear power programme
Indian nuclear power programmeIndian nuclear power programme
Indian nuclear power programme
 
Nuclear Power
Nuclear PowerNuclear Power
Nuclear Power
 
Nuclear energy
Nuclear energyNuclear energy
Nuclear energy
 

More from Konstantin German

2019 macromolecules and gels
2019 macromolecules and gels2019 macromolecules and gels
2019 macromolecules and gelsKonstantin German
 
2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna Kuzina2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna KuzinaKonstantin German
 
2018 istr book technetium rhenium content
2018 istr book technetium rhenium content2018 istr book technetium rhenium content
2018 istr book technetium rhenium contentKonstantin German
 
Proceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rheniumProceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rheniumKonstantin German
 
королева днк -фр-кам-2
королева   днк -фр-кам-2королева   днк -фр-кам-2
королева днк -фр-кам-2Konstantin German
 
структуры белков
структуры белковструктуры белков
структуры белковKonstantin German
 
основы биоорг.химии.
основы биоорг.химии.основы биоорг.химии.
основы биоорг.химии.Konstantin German
 
2016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 20162016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 2016Konstantin German
 
2016 физ-хим.методы граница
2016 физ-хим.методы  граница2016 физ-хим.методы  граница
2016 физ-хим.методы границаKonstantin German
 
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-162022016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202Konstantin German
 
Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Konstantin German
 
фосфор в биоорг соед реавиз
фосфор в биоорг соед реавизфосфор в биоорг соед реавиз
фосфор в биоорг соед реавизKonstantin German
 
вторичная структура днк
вторичная структура днквторичная структура днк
вторичная структура днкKonstantin German
 
0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днк0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днкKonstantin German
 
углеводы и гетерополисахариды
углеводы и гетерополисахаридыуглеводы и гетерополисахариды
углеводы и гетерополисахаридыKonstantin German
 
герман оксикислоты реавиз
герман оксикислоты реавизгерман оксикислоты реавиз
герман оксикислоты реавизKonstantin German
 
аминокислоты Reaviz2016
аминокислоты Reaviz2016аминокислоты Reaviz2016
аминокислоты Reaviz2016Konstantin German
 
German pres2-prostate membrane antigen
German pres2-prostate membrane antigenGerman pres2-prostate membrane antigen
German pres2-prostate membrane antigenKonstantin German
 

More from Konstantin German (20)

2019 macromolecules and gels
2019 macromolecules and gels2019 macromolecules and gels
2019 macromolecules and gels
 
03 1-panasyuk
03 1-panasyuk03 1-panasyuk
03 1-panasyuk
 
2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna Kuzina2018 History of technetium studies in Russia Anna Kuzina
2018 History of technetium studies in Russia Anna Kuzina
 
2018 istr book technetium rhenium content
2018 istr book technetium rhenium content2018 istr book technetium rhenium content
2018 istr book technetium rhenium content
 
Proceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rheniumProceedings and selected lectures 10th intern symp technetium rhenium
Proceedings and selected lectures 10th intern symp technetium rhenium
 
королева днк -фр-кам-2
королева   днк -фр-кам-2королева   днк -фр-кам-2
королева днк -фр-кам-2
 
структуры белков
структуры белковструктуры белков
структуры белков
 
основы биоорг.химии.
основы биоорг.химии.основы биоорг.химии.
основы биоорг.химии.
 
1987 na tco4-4h2o
1987 na tco4-4h2o1987 na tco4-4h2o
1987 na tco4-4h2o
 
2016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 20162016 общая химия гокжаев-белова-герман-афанасьев 2016
2016 общая химия гокжаев-белова-герман-афанасьев 2016
 
2016 физ-хим.методы граница
2016 физ-хим.методы  граница2016 физ-хим.методы  граница
2016 физ-хим.методы граница
 
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-162022016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
2016 rsc-advance-tc-c-qinggao wang - 6 pp 16197-16202
 
Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...Equation of state for technetium from x‐ray diffraction and first principle c...
Equation of state for technetium from x‐ray diffraction and first principle c...
 
фосфор в биоорг соед реавиз
фосфор в биоорг соед реавизфосфор в биоорг соед реавиз
фосфор в биоорг соед реавиз
 
вторичная структура днк
вторичная структура днквторичная структура днк
вторичная структура днк
 
0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днк0 6 член гетероциклы пиридин и днк
0 6 член гетероциклы пиридин и днк
 
углеводы и гетерополисахариды
углеводы и гетерополисахаридыуглеводы и гетерополисахариды
углеводы и гетерополисахариды
 
герман оксикислоты реавиз
герман оксикислоты реавизгерман оксикислоты реавиз
герман оксикислоты реавиз
 
аминокислоты Reaviz2016
аминокислоты Reaviz2016аминокислоты Reaviz2016
аминокислоты Reaviz2016
 
German pres2-prostate membrane antigen
German pres2-prostate membrane antigenGerman pres2-prostate membrane antigen
German pres2-prostate membrane antigen
 

Recently uploaded

SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsKarakKing
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 

Recently uploaded (20)

SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 

2014 warsaw uni-k-german-recent advances in nuclear chemistry - 4th lecture

  • 1. Recent advances in nuclear chemistry III Schoolof Energetic and Nuclear Chemistry Biological and Chemical Research Centre University of Warsaw, Poland Konstantin German Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences (IPCE RAS), Moscow, Russia Medical institute REAVIZ
  • 2. First : THANKS to WARSAW UNIV. my lecture given herelast year leads with approx. 2000 readings = 3 times more popular than the best followers Visit of Russian Academy delegation to PolskaAcademia Naukin 1957 Ac. TadeuszMarian Kotarbiński–President PAN Ac. Viktor Spitsyn –Director IPC ( the left)
  • 3. Scope • Nuclear prospects in Russia • NMR for radioactive materials analyses • Sync Radiation • Actinide hypothesis verification
  • 4. Homo sapience sp. was the most efficient one in applying technologies to improving its life Economist Kenneth Boulding(1956) : one who believes that exponential growth could be ethernalin the limited world is either mad or economist Neand.sp. sp. Cosmo sp. Coal ‐ Steam engin Oil – essengin T E C H N O L O G Y
  • 5. Petroleum energeticswiki : • Themodern historyof petroleum began in the 19thcentury with the refining ofparaffinfrom crude oil. The Scottish chemistJames Youngin 1847 noticed a naturalpetroleumseepage in theRiddingscolliery‐Derbyshire. He distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a thicker oil suitable for lubricating machinery. • In 1848, Young set up a small business refining the crude oil. The new oils were successful, but the supply of oil from the coal mine soon began to fail (eventually being exhausted in 1851). • Great sceptisismto petroliumburning was shown by D. Mendeleev… • Once started it will once stop WHAT After… ?
  • 6. World state and preferences in energetic development OilGas Coal Bio NuclearHydro/ThermalWind/Sun
  • 7. Discovery of radioactivity and estimation of its importance Becquerel • In 1896 found out that Uranium ore is emitting some new kind of rays. Curie and Sklodowska • FrenchphysicistPierreCurieandhisyoungPoleassistant(radio)chemistMariaSklodowskain1898foundoutthatnewRadiumsamplesaremorehotcomparedtotheenvironmentsformanymonths.Theyconcluded:radioactivityisnewandveryimportantsourceofenergyandproposeditsusageformedical, pharmaceutical,…,purposes. • Vernadsky in Russia in 1920 predicted that Ra and allied matter could be a very important key for new energetic in the World scale.
  • 8. 2014 ‐60thanniversary of the First World NPP • The first NPP was constructed in Obninsk, Russia , the first grid connection on June 26, 1954 providing the new city of Obninsk with electricity. • The power plant remained active until April 29, 2002 when it was finally shut down. • The single reactor unit at the plant,AM‐1had a total electrical capacity of 6MW and a net capacity of around 5 MWe. Thermal output was 30MW. • It was a prototype design using a graphite moderator and water coolant. This reactor was a forerunner of the RBMK reactors.
  • 9. Potential of nuclear • To use the full potential of U (and Pu bred from it) requires fast‐neutron reactors • The stock of depleted UO2in the world when used in fast reactors will provide the energy equivalent to 4X1011t oil http://www.world‐nuclear‐news.org
  • 10. Fast neutron reactors• Fast neutron reactors are a technological step beyond conventional power reactors. • They offer the prospect of vastly more efficient use of uranium resources and the ability to burn actinides which are otherwise the long‐lived component of high‐level nuclear wastes. • Some 20 reactors were operated and 400 reactor‐years experience has been gained in operating them. • Generation IV reactor designs are largely FNRs, and international collaboration on FNR designs is proceeding with high priority.
  • 11. Fast reactors with diff. coolants: LLMC (Na), HLMC (Pb, LBE = Pb‐Bi) • FN types: • BN‐60 • Brest‐300 • BN‐600 • Shevchenko • Phoenix • Superphenix • BN‐800 • BN‐1200 ‐project • FR = the key to really closed nuclear fuel cycle LBE = Lead‐Bismuth eutectic
  • 12. Fast reactors in Russia and ChinaBeloyarskNPP CEFR ‐China • The single reactor now in operation was a BN‐600 fast breeder reactor, generating 600 MWe. (1980 –2014) • Liquid Sodium is a coolant. • Fuel: 369 assemblies, each consisting of 127 fuel rods with an enrichment of 17–26% U‐235. • It was the largest Fast reactorin service in the world. Three turbines are connected to the reactor. Reactor core ‐1.03 m tall , Diameter = 2.05 m. • China's experimental fast neutron reactor CEFR has been connected to the electricity grid in 2011 •
  • 13. FastBN‐800withmixedUO2‐PuO2fuelandsodium‐ sodiumcoolantstarted2014inRussia. Fast BN‐1200 reactor with breeding ratio of 1.2 to 1.35 for (U,Pu)O2fuel and 1.45 for UN (nitride) fuel, Mean burn‐up 120 MWtXdXkg. BN‐1200 is due for construction by 2020 with Heavy Liquid Metallic Coolant (Pb‐Bi) http://www.world‐nuclear‐news.org
  • 14. Generation IVreactor design • The generation IVlead‐cooled fast reactorfeatures a fast neutron spectrum, molten Pbor Pb‐Bi eutectic coolant. • Options include a range of plant ratings, including a number of 50 to 150Mweunits featuring long‐life, pre‐ manufactured cores. • Modular arrangements rated at 300 to 400MWe, and a large monolithic plant rated at 1,200MWe. The fuel is metal ornitride‐based containing U andtransuranics. • A smaller capacity LFR such as SSTAR can be cooled by naturalconvection, larger proposals (ELSY) use forced circulation in normal power operation, but with natural circulation emergency cooling. • The reactor outlet coolant temperature is typically in the range of 500 to 600°C, possibly ranging over 800°C.
  • 15. Some of China’s NPP are based on Fast Reactors
  • 16. •Develop and demonstrate fast reactor technology that can be commercially deployed •Focus on sodium fast reactors because of technical maturity •Improve economics by using innovative design features, simplified safety systems, and improved system reliability •Advanced materials development •Nuclear data measurements and uncertainty reduction analyses for key fast reactor materials •Work at Los Alamos focuses on advanced materials development, nuclear data measurements, and safety analyses Fast Reactors Program in USA * ‐Gordon JarvinenVIII International Workshop ‐Fundamental Plutonium Properties . September 8‐12, 2008
  • 17. Some of the concepts developed in the past or under development nowadays are the following: • —In the Russian Federation, the small 75–100 MW(e) LBE cooled power fast reactor SVBR˗75/100 • —In Belgium, the 100 MW(th) multipurpose fast neutron spectrum MYRRHA facility, being designed to operate in both critical and subcritical mode • —In Japan, a small power reactor cooled by lead‐bismuth and fuelled with metallic and nitride fuel featuring extra long life time; a 150 MW(e) lead‐bismuth cooled fast reactor concept Pb‐Bi cooled direct boiling water fast reactor (PBWFR)) featuring direct contact steam generators (‘steam‐lift effect’ of lead‐bismuth coolants); and a medium sized lead‐ bismuth cooled fast reactor, lower breeding ratios in a Japanese scenario from 2030–2050 on • —In the USA, the modular lead‐bismuth cooled STAR‐LM concept featuring natural circulationand the lead or lead‐bismuth cooled Small, Sealed, Transportable, Autonomous Reactor(SSTAR) concept rated 10–100 MW(e) • —In Japan and the USA, the lead‐bismuth cooled encupsulatednuclear heat source (ENHS) concept, featuring natural circulation in both primary and intermediate circuits • —In China, a lead‐bismuth cooled and thorium fuelled fast reactor concept • —In the Republic of Korea, a lead cooled fast reactor dedicated to utilization and transmutation of long lived isotopes in the spent fuel
  • 18. Small Modular Reactors (SMRs) • Small Modular Reactors (SMRs) are nuclear power plants that smaller in size (300 MWe or less) than current generation base load plants (1,000 MWe or higher). • These smaller, compact designs are factory‐ fabricated reactors that can be transported by truck or rail to where they are in need.
  • 19. 367613365 Reactors for NPPs Under Construction ‐by region: Asia ‐Far EastAsia ‐Middle East and SouthEU 27Other EuropeAmerica Sources: IAEA‐PRIS, MSC 2011
  • 21. Nuclear Magnetic Resonance Spectroscopy http://en.wikipedia.org/wiki/Nuclear_magnetic_resonance Superconducting magnets 21.5 T Earth’s magnetic field 5 x 10‐5T NMR
  • 22.
  • 23. Now we have both 600 and 300 MHzAvanceBruckerNMR spectrometersin disposition of my laboratory Avance‐300 Bruker Avance‐600 Bruker D3‐12 NMR‐600MHz (12.3 AV600_CHEM) OPERATED BY THE GROUP OF Prof. Valery P. TARASOV, Dr. G. KIRAKOSYAN AND V.A. IL’IN
  • 24. Nuclei in operation Nucleus Spin Natural Abundance Relative Sensitivity 1H 1/2 99.985 100 2H 1 0.015 0.96 3He 1/2 .00013 44 13C 1/2 1.108 1.6 17O 3/2 0.037 2.9 19F 1/2 100 83.4 23Na 3/2 100 9.3 31P 1/2 100 6.6 39K 3/2 93.08 .05 99Tc 9/2 0 ( = 99.8 !) high 36Cl 2 0 (30) high !
  • 25. • Number and type of NMR active atoms • Distances between nuclei • Angles between bonds • Motions in solution • Sternheimerconst • QQC • Etc… Information obtained by NMR • Organic substances • Radioactive materials • Ga‐complexes • Etc…
  • 26. 99gTc‐NMR (TcO4: O‐16, O‐17, O‐18) 99Tc NMR (67.55MHz) spectrum of 0.2 M NaTcO4solution in recycled water containing ∼72% H218O at 298K. V. Tarasov, G.Kirakosyan, K.German, Phys.Chem.Russ, 2015.#1.2702802903003103203303400,400,410,420,430,44NH4Tc16O318O99Tc NMR H0=7.04TлТемпература, Т К Изотопный сдвиг ЯМР 99Тс, м.д.
  • 27. O‐17 NMR • In water enriched in O‐17 280300320340130,4130,8131,2131,6132,0 КССВ 17O-99Tc КССВ 99Tc-17ONH4TcO4H0=7.04ТлТемпература, Т К КССВ, Гц
  • 28. Tc‐NMR ChemShifts in TcO4–“Puce hunting” • Solutions • Ionic pair formation • Receptor Complexes Others • TcO4 –TcO6 • Tc metal • TcO2
  • 29. Changes in the 1H NMR spectrum of an equimolarmixture 1 + 2 in CD3OD after addition of one equiv. of HCl(26% aqueous solution). The first spectrum represents the spectrum of dialdehyde1. Green signals belong to diamine2, violet signals belong to dialdehyde1 and red signals belong to complex L1∙2HCl. MEANS for RECEPTOR SYNTHESIS CONTROL
  • 30. Macrocyclicreceptor for pertechnetate and perrhenate anions by NMR and crystal structureG. Kolesnikov,K. German, G. Kirakosyan, I. Tananaev, Yu. Ustynyuk, V. Khrustalevand E. Katayev DOI: 10.1039/c1ob05873h
  • 31. 99Tc NMR titration of (Bu4N+)(TcO4‐) with L1 (a) and 1H NMR titration of L1 with (Bu4N+)(ReO4‐) (b) in CDCl3at 25 ◦C. Macrocyclic receptor for pertechnetate and perrhenate anions by NMR and crystal structureG. Kolesnikov,K. German, G. Kirakosyan, I. Tananaev, Yu. Ustynyuk, V. Khrustalevand E. Katayev
  • 32. 99TcЯМР, CDCl3 UV, dichloroethane Imine-amide macrocycle log(β11) = 3.2 log(β11) = 5.1 Cyclo[8]pyrrole·2(HCl) log(β12) = 3.8 log(β12)= 6.0 99Tc-NMRtitration, Bu4N+ 99TcO4–in CDCl3 99Tc-NMR strengths • Clear signal • Good correlation withUV KolesnikovG.V., German K.E, KirakosyanG., TananaevI.G., UstynyukYu.A., KhrustalevV.N., KatayevE.A. // Org.Biomol.Chem. ‐2011.
  • 33. Back titration with 99TcNMR detection for the receptorL1 ( HYPER NMR2006. О –experiment, lines–calculated, black–Kb, blue –TBA99TcO4concentration, red–complexconcentration ). L1 UV‐vis
  • 34. Back titration with 99TcЯМРdetection for the receptorL2( HYPER NMR2006. О –experiment, lines–calculated, black–Kb, blue –TBA99TcO4concentration, red–complexconcentration ). L2 UV‐vis
  • 36. Intramolecularmode • The Berry pseudorotationis a classical mechanism for interchanging axial and equatorial ligands in molecules with trigonalbipyramidalgeometry • PF5 • IF5 Intermolecular mode • Tarasovexchange in TcO4‐ TcO6 exchange spectra Exchange spectra
  • 37. Pseudorotationvia the Berry mechanism • Single‐crystal X‐ray studiesindicate that the PF5molecule has two disƟnct types of P−F bonds (axial and equatorial): the length of an axial P−F bond is 158.0 pm and the length of an equatorial P−F bond is 152.2 pm. Gas‐phaseelectron diffractionanalysis gives similar values: the axial P−F bonds are 158 pm long and the equatorial P−F bonds are 153 pm long. • Fluorine‐19 NMRspectroscopy, even at temperatures as low as −100 °C, fails to distinguish the axial from the equatorial fluorine environments. • The apparent equivalency arises from the low barrier for pseudorotationvia theBerry mechanism, by which the axial and equatorial fluorine atoms rapidly exchange positions.The apparent equivalency of the F centers in PF5was first noted by Gutowsky.[2]The explanation was first described byR. Stephen Berry. • Berry pseudorotationinfluences the19F NMR spectrum of PF5since NMR spectroscopy operates on amillisecondtimescale. Electron diffraction and X‐ray crystallography do not detect this effect as the solid state structures are, relative to a molecule in solution, static and can not undergo the necessary changes in atomic position.
  • 38. Berry pseudorotation: NMR‐31P in PF5 Yellow atoms are axial Blue atoms are axial http://fluorine.ch.man.ac.uk/pics/berry.gif http://pubs.acs.org/doi/pdf/10.1021/ed083p336.2 Mechanisms that interchange axial and equatorial atoms in fluxional processes: Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via Animation of Transition State Normal VibrationalModes
  • 40. NMR‐99Tc in 3 –18 M H2SO4[Tc] = 0.001M
  • 41. 99Tc‐NMR Tc(VII) in HClO4 разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
  • 42. 99Tc‐NMR Tc(VII) in HClO4разбавление водойC(HClO4)δ, ppm11,37124,0551188,810,666010,3336,2410,039,99,743,39,47-1,449,22-4,38,97-6,28,74-7,38,22-8,457,33-8,454,13-3,463,07-2,242,07-1,1300
  • 43. Solid State NMR Characterization of the Structure of solidPertechnicAcid HTcO4 Solid state 99Tc‐NMR of HTcO4(solid) Provide some similarity to Re2O7*2H2O Gives evidence for the absence of TcO4 ! Charge separated structure favorable
  • 44. Solid‐State NMR Characterization of Electronic Structure in DitechnetiumHeptoxide • Herman Cho, W.A. de Jong, A.P. Sattelberger, F. Poineau, K. R. Czerwinski ‐J. AM. CHEM. SOC. •NMR parameters were computed for the central molecule of a (Tc2O7)17 cluster using standard ZORA‐optimized all‐electron QZ4P basis sets for the central molecule and DZ basis sets for the surrounding atoms. •The magnitudes of the predicted tensor principal values appear to be uniformly largerthan those observed experimentally, but the discrepancies were within the accuracy of the approximation methods used. •The convergence of the calculated and measured NMR data suggests that the theoretical analysis has validity for the quantitative understanding of structural, magnetic, and chemical properties of Tc(VII) oxides in condensed phases.
  • 45. EFG at anionic(Х) and cationic (М) positions in МХО4 crystals as a = f ( 1/V(cell) )
  • 46. LINE SHAPE FOR 99Tc‐and 133Cs‐ NMR = f(T)inCsTcO4
  • 47. Temperature dependencies of assimetryparameter QCC Tc- 99, tensor components EFG; qyy; qxxCsTcO4
  • 48. Temperature dependencies of chemical shifts and QCC Cs-133 at the positions Cs(1) and Cs(2) inCsTcO4Scheme of the potential in Cs region at different temperature
  • 49. • NMR spectrum of Tc metal powder obtained by FT of free induction decay accumulated after excitation of the spin system was recorded and used as a reference for analyses of technetium states supported onto the surfaces and formed in Tc‐Ru alloys/intermetalics. • Knight shift of technetium metal is a linear function of temperature, K(ppm) = 7305 ‐1.52 x T. nQ(99Tc) = 230 kHz at 293 K, CQ(99Tc) = 5.52 MHz. Typical NMR‐99Tc spectra of a ‐metal powder ( Ф80‐150 μm) b –nano‐dimensional Tc metal Ф = 50 nm
  • 50. • 99Tc NMR study of bimetallic Ru‐Tc samples supported at different supports i.e.: g‐Al2O3 , SiO2, MgO, TiO2has shown that for all the supports (except for TiO2), there is an intense signal at –30 –40 ppm arising from the TcO2
  • 51. Temperature dependence of Knight shift forbulk (b)and nano‐dimensial(a) metallic Tc S Kn
  • 52. Численная оценка сдвигов Найтадля качественной слоевой модели. • NTotal= NT(m) + NS(m+1) NT(m)=10/3m3‐5m2+11/3 m‐1. NS= 10m2+2 Kn‐K∞ = (K0 ‐K∞) exp ((‐n/m) K∞ =7350 м.д. –предельный сдвиг технеция для объёмного образца. K0 =7430 м.д. –сдвиг для технеция на поверхности частицы данного диаметра
  • 53. Спектр ЯМР Тс‐99 катализатора 2%Тс/γ‐Al2O3 Результаты расчета для 5‐ти слоевой частицы составили при m=5 K1= 7417 м.д. K2 = 7410 м.д. K3 = 7397 м.д. K4 = 7384м.д. K5 = 7365 м.д.
  • 54. СпектрЯМР Тс‐99 бинарного катализатора 1%Ru‐3%Tc/TiO2
  • 55. 36Cl‐NMR study 36Cl‐NMR Parameters for Molten Salt Reprocessing Analyses: QuadrupoleMoment, Spin‐Lattice Relaxation and SternheimerAntishieldingFactor for Chloride and PerchlorateIons. FROM: TarasovV., GuermanK., SimonoffG., KirakosyanG., SimonoffM. NRC5: 5‐th International Conference on Nuclear and Radiochemistry. Pontresina, Switzerland, September 3‐ 8, 2000. Extended Abstracts, Vol. 2, p. 641‐644. 36Cl is one of long‐lived b‐active isotopes with a half‐life of 3.105 years and rare nuclear structure –its odd‐odd nuclei contain 19 neutrons and 17 protons. Being an artificial isotope, 36Cl is not today an environmental hazard because of its low abundance. . However, some of the scenarios for the development of atomic power, p.e. involving the use of molten chloride reactor systems for destruction of weapons plutonium and pyrochemicalreprocessing of spent nuclear fuel, may result in accumulation of 36Cl due to 35Cl(n,γ)36Cl reaction (s = 100 barn) in amounts that cannot be ignored as radioactive waste.
  • 56. Nuclear characteristics of the isotope36Clwere reported: I = 2, μ= 1.31 μB, electric quadrupolemoment Q = ‐0.017 barn. 36Clmagnetic moment μ(36Cl) = 1.2838 nm was determined from the ratio of the resonance frequencies ν(36Cl)/ν(2H) = 0.74873 ±3. The magnetic moment was assigned the positive sign. The Sternheimerantishieldingfactor (1 + γ∞) was known only for Cl‐ ions, but not for ClO4‐ions. 36Cl‐NMR study NMR spectra (B = 4.6975 T) of an aqueous solution of KClO4+ KClat 300K: (a) 35Cl‐SI 8K, 0.24 Hz/pt, NS = 1070 (ClO4)and 2200 (Cl); (b) 36Cl—SI 32K, 0.03 Hz/pt, NS = 2800 (ClO4) and 2300 (Cl); (c) 37Cl‐‐SI 16K 0.06 Hz/pt, NS = 6400 (ClO4) and 15488 (Cl). TarasovV., GuermanK., SimonoffG., KirakosyanG., SimonoffM. NRC5: 5‐th International Conference on Nuclear and Radiochemistry. Pontresina, Switzerland, September 3‐8, 2000. Extended Abstracts, Vol. 2, p. 641‐644.
  • 57. 36Cl‐NMR study TarasovV., GuermanK., SimonoffG., KirakosyanG., SimonoffM. NRC5: 5‐th International Conference on Nuclear and Radiochemistry. Pontresina, Switzerland, September 3‐8, 2000. Extended Abstracts, Vol. 2, p. 641‐644. 3.3 M Bu4NClO4in CH3CN of at 300 K: (a) 35Cl—SI 4K, SW = 300 Hz, and NS = 8; (b)37Cl‐‐SI 16K, SW = 300 Hz, and NS = 16; (c) 36Cl—SI 16K, SW = 100 Hz, and NS = 8. With the parameters determined in this study, the low level detectable for 36Cl is 0.5 ppm for concentrated samples, 15 ppm in 0.1 M chloride solutions; LLD for 36Cl could be decreased by a factor of approx. 10 by addition of microamountsof paramagnetic ions (Cu2+, Ni2+).
  • 59. 14N‐,77Se,187Re‐, NMR study applied to radioeco& biotechnology tests control Nitrogen N‐14 Selenium Se‐77 Rhenium Re‐187 … and also U, Mn, Cs, etc… etc…
  • 60. Synchrotron Radiation as a Tool ISTR 2011 Moscow Electromagnetic radiation generated by ultrarelativisticelectrons/positrons traveling along circular orbits in light charged particles accelerators
  • 61. Advantages compared to standard X‐ray sources • Intensity/Brightness higher by 6‐10 orders of magnitude • Continuum spectrum from IR to hard X‐rays • High natural collimation • Tunable polarization • Partial coherence
  • 62.
  • 65. European synchrotron Radiation Facility, Grenoble, France Production of X-rays in synchrotron
  • 66.
  • 67. European synchrotron ESRF Electron energy: 6 Gev
  • 69. • Siberian Center for Synchrotron Radiation(BINP, Novosibirsk) since 1970‐ies: Storage ringsVEPP‐3 (2 GeV, 120 mA), VEPP‐4(5 GeV, 40 mA) –both1stgeneration(ε~300 nm∙rad)11 beamlines. • Kurchatov Synchrotron Radiation Source(Moscow) in operatiionsince early 2000‐ies Siberia‐1 (booster, 450 MeV) –3 VUV beamlines, Siberia‐ 2 –dedicated2ndgeneration source(2.5 GeV, 300 mA, ε~75 nm∙rad), 16beamlines. • ZelenogradSynchrotron Rad. Facility (LukinIPP)–under construction• DubnaElectron SynchrotronDELSI (JINR) –project development • International collaboration: • Russian‐German beamlineat BESSY II and Russian involvement in ESRF consortium, • Russian part in EuropeanXFEL project (X‐ray free‐electron lasers ‐M. Kovalchuk(NRC "Kurchatov Institute", Moscow), A. Svinarenko(OJSC RUSNANO,Moscow)(4thgenerationsource) Synchrotron sources in Russia
  • 70. • Basics and typical applications of ‐EXAFS/XANES‐SAXS‐XRD • Combined application of X‐ray techniques to structural diagnostics of nano/materials SR sources in Russia
  • 71. SYNCHROTRON DIAGNOSTICS OF Radioactive and Functional Materialsin National Research Center “Kurchatov Institute” Department Head ‐Yan Zubavichus 10 years in user mode
  • 72. ISTR 2011 Moscow Kurchatov Synchrotron Source Linac Booster Main storage ring Control room
  • 73. 10.5010.7511.0011.2511.5011.7512.00Pt L3Re L2 Fluorescence Yield Photon Energy, keVRe L3 2. Diffraction 1. Spectroscopy 3. Imaging Synchrotron techniques include Especially protein structure solutions Unique : Structures in solutions and polymers
  • 74. KSRC X-ray stations 1 ProteinCrystallography 2 PrecisionX-rayOptics 3 X-rayCrystallographyandPhysicalMaterialsScience 4 MedicalImaging 6 Energy-DispersiveEXAFS 7 StructuralMaterialsScience(SMS) 8 X-raySmallAngleDiffractionCinema(bioobjects) 9 RefractionOptics&X-rayFluorescenceAnalysis 10 X-rayTopography&Microtomography VUV stations 11 X-rayPhotoelectronSpectroscopy 12 OpticalspectroscopyforCondensedMatter 13 Luminescence&OpticalInvestigations Technological stations 14 X-rayStandingWavesforLangmuir-BlodgettFilms 15 MolecularBeamEpitaxy 16 LIGA
  • 75. Characteristics of the beamline TypeEnergy interval, keVΔE/E Si(111)5‐1910‐4 Si(220)8‐3510‐4 Monochromator is driven by stepper motors(1‘‘ discrete steps) • Ionization chambers+ KEITHLEY 6487 • Scintillation counter withNaI(Tl) crystals •Linear gas‐filled detectorCOMBI‐1(“Burevestnik”, St. Petersburg) • 2D‐detectorImagingPlate (FujiFilmBAS2025) • Semiconducting detector(pureGe) Maximum3×3 мм2 Minimum10×10 μm2 Step of translations~4 μm ~ 0.5×108 photons/mm2with energy bandwidth Δλ/λ=10‐4 Monochromators: Detectors: Beam dimensions: Photon flux:
  • 76. In‐situcell for functional materials 3‐component gas mixtures • Inerts: He, N2, Ar • Oxidation and reduction:O2, H2 • Catalytic substrate: CO, CH4, etc. • Vacuum 10 Pa 20‐550oC Thermostabilization through the heating current & thermocouple feedback±1oC 4 ×350 W Cooling down to ‐130oC with a flow of cold N2 gas
  • 77. He closed‐cycle refrigerator (SHI, Japan) Minimum temperature achieved10.0К + precise termostabilization up to room temperature
  • 78. Combined use ofXAFS, XRD and SAXS• XANES‐oxidation state of heavy atoms + coordination symmetry • EXAFS‐local neighborhoodof a given heavy atom• XRD‐long‐range order, phase composition, size of crystallites • SAXS‐size and shape of nanoparticlesor pores in a range of 1‐100 nm
  • 79. X‐ray absorption spectroscopy: basics ISTR 2011 Moscow
  • 80. Fermi level HOMO LUMO XANES: origin Vacuumlevel Core electronlevel Valenceband Forbidden gap Conductionband XANESprobestheenergydistributionofcertainsymmetry- allowedMOsorDOSfeaturesabovetheFermilevel Fermi‘sgolden rule: μ ~ |<f | V | i>|2, f,i–wave functions of the final and initial states,V –dipole moment operator
  • 81. Photoionized atom Neighbor atom Photoelectron wave Back-scattered photoelectronwave Single scattering Multiple scattering EXAFS: origin Local-structrureparametersofthecentralatom canberetrievedfromEXAFS Initial state: electron on the core level Final state: outgoing photoelectron wave Interference
  • 82. )(/22222))(2sin(),( )( )(krkjjjjjjjjeekkrkfkrNkSkλσϕπχ−−+=Σ χ-normalized background-subtracted EXAFS-signal k–photoelectron vector modulus (≡2π/λ) S –Extrinsic loss coefficient(0.7-1.0) N–coordination number in thej-thcoordination sphere r–interatomic distance f–backscattering amplitude ϕ–phase shift σ –Debye-Waller factors λ −photoelectron mean-free path
  • 83. EXAFS/XANES: implementation at SMS Detection modes:transmission(ion chambers) fluorescence yield( NaI(Tl) scintillation counter, detection limit down to0.005 mass.%) Data processing: IFEFFIT (Athena, Artemis, Hephaestus и др.) withab initiotheoretical phase and amplitude functions fromFEFF8, GNXAS Ab initioXANES spectra simulation withFEFF8 , FDMNES, FitIt, etc. Absorption edges measuredover 2004‐2014 К‐edges: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Br, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Cd, In, Te L3‐edges: Ba, La, Ce, Nd, Pr, Sm, Eu, Gd, Hf, Ta, W, Re, Pt, Au, Hg, Pb, Bi, U, Pu
  • 84. 1152511550115751160011625116500.00.51.01.52.0 Normalized Absorbtion, a.u. Photon Energy, eV Pt Pt2+ Pt3+ Pt4+ Pt L36.536.546.556.566.576.586.596.606.61 Mn2+ (MnCl2 6H2O) Mn3+ (Mn2O3) Mn4+ (MnO2) Mn7+ (KMnO4) Photon Energy, keVMn K1635016400164500.00.61.2 Normalized Absorption, a.u. Photon Energy, eV Bi0 Bi3+ (Bi2O3) Bi3+ (Bi(NO3)3.2H2O) Bi5+ (NaBiO3) Bi L1 XANES Information retrieved fromXANES: • Effective oxidation state • Coordination polyhedron symmetry Data analysis: “fingerpring” approach –comparison with reference spectra + theoretical simulations 1s→3d,4p 2p3/2→4d 2s→6p
  • 85. Application to Tc Tc K‐edge XANES
  • 86. Application to Re Re L3‐edge XANES
  • 87. 01234561.4 Tc-C 1.76Å6.0 Tc-Tc 2.72Å TcCx |FT(k3χ(k))| R, ÅTc12 Tc-Tc 2.72Å Tc METAL & Tc CARBIDE
  • 88. 01234560.3 Re-C 2.14Å1.0 Re-C 2.46Å1.1 Re-Re 2.62Å 3.1 Re-Re 2.73Å ReCx |FT(k3χ(k))| R, ÅRe12 Re-Re 2.75Å Re METAL & Re CARBIDE
  • 90. Structures of Tc halogenidesin solutions and melts1) fundamental studies of cluster Tc compounds2) Analyses of possible species in PRORYV technology (chloride melts) Tc K‐край k3‐weight EXAFS spectra and its Fourier transform for Tc (+4, +2,5, +2) halogenides (Cl, Br)
  • 91. а б в а-МоноядерныйбромидныйкомплексTcK-крайk3-взвешенныйEXAFSспектрипреобразованиеФурьеспектра(Me4N)2TcBr6: Tc-Br:N=5,8(4),R=2,51(2)Å,σ2=0,004Å2,ΔE0=-16,9(5)eV, б-Биядерныйкластер Tc K-край k3- взвешенный EXAFS и соответствующее преобразование Фурье спектра K3Tc2Cl8 EXAFS структурные параметры K3Tc2Cl8(лучшая из полученных предварительных аппроксимаций): Tc-TcN=1,66(3), R=2.20(2) Åσ2=0,0069 Å2ΔE0= -1.1(9) eV Tc-ClN=2,2(4), R=2,46(2) Åσ2=0,0107 Å2, в-Спектр и Tc K-край k3-взвешенный EXAFS для полиядерногохлоридного кластера (Me4N)3[Tc6(μ-Cl)6Cl6]Cl2, для которого не удалось получить удовлетворительного преобразования Фурье в рамках FEFF-5 приближения Spectra EXAFSof complex Tc halogenides
  • 92. Proryv= Breakthrough http://www.atomvestnik.ru/content‐log/104‐redkomonopolnyj‐element.html • Since 2011, at SCC Rosatomimplements one of its most ambitious projects “PRORYV (Breakthrough)". Until 2020, it is planned to send 100 billion rubles. Its main goal ‐the development of fourth generation reactors, high power fast neutron, creating a closed nuclear fuel cycle technology, new types of nuclear fuel. • ... Is the fuel carries the dream of mankind in a closed fuel cycle • The current generation of reactors 3 and 3+ does not work closed cycle, that is, the fuel is fulfilled, then it is stored. There is a partially closed loop when after unloading fuel processed, but not entirely ‐a significant portion enters the storage of radioactive waste. "Breakthrough" is to open the technology of the future ‐a vicious cycle: the production of fuel, energy recovery, recycling and re‐loading into the reactor. • Closed cycle, it is important to be near‐station, that is for fuel processing does not need to be transported. In general, the "Breakthrough" must solve several important problems for the nuclear industry. • According to the doctor of technical sciences, professor, chairman of the technical committee of the project "Breakthrough" EvgenyAdamov, “ is security, which does not lead to such accidents that require evacuation and resettlement of the population even more so, is to use the full potential of raw materials, not only uranium‐235 this final urgent solution to the problems of spent nuclear fuel.
  • 93. UN fuelhttp://www.atomvestnik.ru/content‐log/104‐redkomonopolnyj‐element.html • The Siberian Chemical Combine is already running process chain to create the newest nitride fuel, the first assembly designed to be loaded into the reactor BN‐600 at Beloyarsknuclear power plant. • Scientists and Energy see how they manifest themselves in action, on this basis, it is decided whether to use nitride fuel in the reactors of the 4th generation. • DmitriyZozulya, project manager for the industrial production of dense fuel: "Two full assembly, filling nitride fuel: TVS‐4 prototype fuel assembly BN‐1200 and TVS‐5 ‐a prototype reactor" Brest ". This fuel carries the dream of mankind's closed fuel cycle with reprocessing of spent fuel, there is a need supplements only 238 uranium, plutonium in it remains almost the same with respect to the primary boot. "
  • 94. XAFS analysis of electrode surface after corrosion Æ Determination of eventual Tc oxide: ‐In 1 M HCl(E= 800 mV) ‐In 1 M NaCl, pH= 2.5 (E= 700 mV) XAFS measurement of: NH4TcO4, TcO2, Tc metal for comparison Layer carefully removed and analyzed by XAFS. SEM x 50 Before After pH =2.5, 1 M NaCl, E = 700 mV during 1 hour M. Ferrier, F. Poineau,G.W. ChinthakaSilva, E. Mausolfand K. Czerwinski “Electrochemical Behavior of Metallic Technetium in Aqueous Media” : ISTR-2008. Port Elizabeth, South Africa.
  • 95. XANES No pre‐edge : No TcO4‐sorbed on electrode. No shift of edge for 1M HCl , shifted (~1 eV) at pH = 2.5 Æ Product on electrode after corrosion : mainly Tc metal. 1 M NaCl, pH = 2.5 1M HCl First deriv.
  • 96. ÆEXAFS analysis also confirm presence of Tc metal on surface electrode after corrosion . Æ No oxide detected. EXAFS after corrosion XRD [5] C.N R (Å) C.N R( Å) Tc0-Tc1 10 2.72 12 <2.71> Tc0-Tc2 6 3.83 6 3.85 Tc0-Tc3 8 4.76 8 4.73 pH =2.5 EXAFS
  • 97. NEXT : • SAXS
  • 98. X‐ray detector (0D,1D, 2D) I(s) Scattering vector s = k1 ‐k0 s = 4πsin θ/ λ= 2π/ d Sample in the transmission geometry 2θ k0 k1 s Point/Linear collimation Monochro‐ matic X‐ray source SAXS: Basics
  • 99. ISTR 2011 Moscow Indirect FT I(s) –experimentalscattering curve P(r) –volumedistributionof hard spheres
  • 100. ISTR 2011 Moscow SAXS: implementation at SMS Sample-to-detectordistance,mm 2θmin-2θmax,° qmin-qmax,nm-1 E=25keV qmin-qmax,nm-1 E=6keV 120 0.95-45.00 4.2–179 1–43 500 0.23-13.50 1–59 0.24–14.2 1000 0.11-6.84 0.5–30 0.12–7,1 2390 0.05-2.87 0.2–12.7 0.05-3 Only transmission geometry (no GISAXS for the moment) Scattering vectoris oriented vertically; sample‐to‐detector distance up to 2.5 m; Photon energy5‐30 keV(the possibility to employ anomalous scattering) Treatment of experimental data: GNOM, MIXTURE, DAMMIN, SAXSFIT, IsGISAXS, Fit2D (for preliminary data processing of 2D images) Simulation: Single size distribution of spherical particlesR=20±4 Å IsGISAXS GNOM
  • 101. 1 . Small‐angle diffraction on mesostructured materials 2 . SAXS application: aqueous colloids p.e. ‐of Tc sulfide nanoparticles 3 . Quantitative interpretation of the SAXS curve for not‐interacting particles and aggregates (DAMMIN)
  • 102. V.F. Peretrukhin, G.T. Seaborg, N..N. Krot LNL, Berkley, 1998
  • 103. Periodic Table and heptavalent state of elements ‰ Period is variable :2, 8, 8, 18, 18, 32…? ‰ Zones of implacability exist ‰ For huge part ‐It works ! ! ! VII
  • 104. • Interatomic distances in metals/simple matter A.Wells “Struct.Inorg.Chem.” • Lost :P,S, Br, I, Po, At, Fr, Ra, Ac, Np, Pu, Am, Cm, Bk, Cf TRU 5 Detailed fig In: Jarvinen et all Plutonium
  • 105. Synthesis and the types of An(VII) • CrystallinecompoundsofAn(VII)canbepreparedbydeepoxidationofactinidesinstronglyalkalineconditions. • Bothinteractionofsolidcomponentsandalsoconductingtheoxidationinalkalinesolutions. • CompoundsofAn(VII)arestableonlyinstrongalkali,andrapidlydecomposeinneutraloracidicconditions. • An(VII)arequitevariableincomposition:formallytheycouldbeconsideredtocontainanionsAnO65-,AnO53-,[AnO4(OH)2]3- ,[An2O8(OH)2]4-andAnO4-butthelatterisnotsupportedbyX-rayanalyses. • AshortnumberofthesolidcompoundscontainingAnO65-, andAnO53-anionswereisostructuraltocorrespondingortho- andmeso-rhenatesReO65-,ReO53-(butnoanalogyinsolutions). 6
  • 106. MAnO4(·nH2O) (M–alkali metal) • It was estimated by N.N. Krot and the followers that the transuranium(VII) compounds like MAnO4(·nH2O) (M–alkali metal) have the structures similar to uranates(VI) of alkali earth metals. • They contain shortened linear groupsAnO23+and O– bridges collecting all into anionic layers. Structural type of BaUO4. (Reis A.H. et al. JINC, 1976). 7
  • 107. BaUO4structural type compounds • Lattice parameters for different U(VI), Np(VI) (lit. data) and Np(VII) compounds (IPCE data) • 1 –U compounds • 2 –Np compounds • Chemical properties of Np(VI) and Np(VII) compounds are different • LiReO4*1.5H2O contra LiTcO4*3H2O 8
  • 108. IR spectral data indicates Np‐O and Np=O difference Evident splitting at the CsNpO4spectrum indicates/supports the presence of two types of Np‐O bonds: • O=Np=O • Np‐O‐Np In Li5NpO6all the Np‐O bonds are of the same nature 9
  • 109. Mossbauer spectra of Np(VII) compounds • 1 –CsNpO4 • 2 –Na3NpO4(OH)2*nH2O • 3 –Li5 NpO6 • 4 –frozen solution of Np(VII) in 10M NaOH • Dots ‐experiment, curve – squared plotting
  • 110. Inthisway: Transuranic(VII) MAnO4(·nH2O) compounds are completely different : from MXO4xnH2O(X–elementsofthe7thGroupfromPeriodicTable,Mn,Tc,Re,n=0,1,1.5,3) fromTc(VII)acid German,Peretrukhin2003 Poineau,German2010 fromRe(VII)acid BeyerH.etall. Angew.Chem.,1968 fromI(VII)acid fromCl(VII)acid Структурный тип BaUO4. (Reis A.H. et al. JINC, 1976). (Maruk A.Ya. et al. Russ. Coord. Chem.2011) and from TcO3+ Pertechnetyl Fluorosulfate, [TcO3][SO3F] –ZAAC, 2007 J.Supeł, U. Abram et all. Berlin, Freie Universität. 11
  • 111. 111 Isostructural: LiBrO4∙3H2O LiClO4∙ 3H2O LiMnO4∙ 3H2O LiTcO4∙6/2H2O6/2=3 LiReO4∙1.5H2O LiReO4∙ H2O ‐ Analogous are absent More diffused 4d electrons in Re compared to 3d electrons in Tc
  • 112. 112 Isostructural pertechnetate salts withcation : anion = 1:1 Cation Anion ClO4- MnO4- ReO4- [Li · 6/2Н2O]+ + + * Na+ – * + K+ – – + Rb+ – – + Cs+ – – + NH4+ – – + Ag+ – – + [(CH3)4N]+ + – + [(C3H7)4N]+ – * + [(C4H9)4N]+ * * * [(C6H5)3PNH2]+ * * + [C7H14N3]+ * * + [C7H10N3(C3H5)4]+ * * + [C7H10N3(C6H5)4]+ * * * [C6H8N]+ – * + [C4H10NO]+ – * + [CN3H6]+ + * + *Notdetermined.doesn’texists –NosimilaritytoTc +Isostructural
  • 113. Anionic chain [(Np2O8)(OH)2]n4n‐in the structure of Li[Co(NH3)6][(Np2O8)(OH)2]∙2H2O (Burns J., Baldwin W., Stokely J. Inorg. Chem., 1973). 12 Np(VII) & I(VII) • Two types of Np in Np(VII) compound while only one Iin I(VII) • One bridging O in Np(VII) while two bridging O in I(VII) • Np(VII) is stable in alkali while I(VII) –in acids Neutral chains in HIO4. ( Smith, T. et all. Inorg.Chem., 1968)
  • 114. The first Pu(VII) single crystal 13
  • 115. 14
  • 116. Na4[AnO4(OH)2](OH)∙2H2O Np1‐O1 1.891(2)Pu1‐O1 1.8824(15) Np1‐O2 1.888(2) Pu1‐O2 1.8805(18) Np1‐O3 1.917(2) Pu1‐O3 1.9109(15) Np1‐O4 1.880(2)Pu1‐O4 1.8811(19) Np1‐O5 2.315(2) Pu1‐O5 2.2952(19) Np1‐O6 2.362(2)Pu1‐O6 2.339(2) An‐OH distances are more sensible to actinide contraction than An=O distances 15
  • 117. Several mixed cation compounds of Np(VII) and Pu(VII) NaRb2[NpO4(OH)2]∙4H2O(I):a=8.2323(2),b=13.4846(3),c=9.9539(2)Å,β=102.6161(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0179. NaRb2[NpO4(OH)2]∙4H2O(II):a=5.4558(2),b=12.4478(3),c=7.9251(2)Å,β=103.6310(13)°, sp.gr.P21/n,Z=2,R1[I>2σ(I)]=0.0218. NaCs2[NpO4(OH)2]∙4H2O(III):a=15.0048(4),b=9.1361(2),c=10.6747(3)Å,β=129.7361(9)°, sp.gr.C2/c,Z=4,R1[I>2σ(I)]=0.0148. NaRb5[PuO4(OH)2]2∙6H2O(IV):a=6.4571(1),b=8.2960(1),c=10.8404(2)Å,α=105.528(1),β=97.852(1),γ=110.949(1)°,sp.gr.P‐1,Z=2,R1[I>2σ(I)]=0.0189. NaRb2[PuO4(OH)2]∙4H2O(V):a=8.2168(2),b=13.4645(3),c=9.9238(2)Ǻ,β=102.6626(12)°, sp.gr.P21/n,Z=4,R1[I>2σ(I)]=0.0142. NaCs2[PuO4(OH)2]∙4H2O (VI):a= 11.1137(2), b=9.9004(2), c = 10.5390(2) Ǻ, β = 101.0946(11)°, sp. gr. C2/c, Z= 4, R1 [I > 2σ(I)] = 0.0138. Anion of [PuO4(OH)2]3‐ in the structure of IV 16
  • 118. Selected interatomic distances and torsion angles in the structures I –VI : IIIIIIIVVVI Bond(Å) An=O 1.8790(12)2×1.8690(9) 2×1.8884(9)1.8695(15)1.8685(12)2×1.8868(15) 1.8855(13) 2×1.9138(9)2×1.8944(9)1.8724(15)1.8761(12)2×1.8876(14) 1.8955(13)1.8919(15) 1.8897(12) 1.9223(13)1.8985(16)1.9144(12) An‐O(OH)2.3259(13)2×2.3750(9)2×2.3643(9)2.3197(16)2.3083(13)2×2.3236(15) 2.3382(13)2.3556(15)2.3229(13) Angle(º)IIIIIIIVVVI H‐O…O‐H145(4)180133(4)39(4)140(3)48(5) 17
  • 119. RecentlyanewwayforNp(VII)compoundpreparationwasproposedbyFedosseevandco-workers[(2008)]: electrochemicaloxidationinacetatesolutions. Thenewcompoundsof МNpO4·nH2Otype,whereМ–unichargedcationofalkalimetal,ammonium,silver,guanidiniumortetraalkylammonium and Np(VII)withbichargedcationsofalkalineearthmetals,andalsoCu,CdandZn. Allthesecompoundshavebeenthoroughlycharacterizedbymeansofchemicalanalyses,IRandUV-visspectroscopy.Thestudyconfirmed,that… 18
  • 120. Pu(VII) compounds are close structural and chemical analogues of Np(VII) ones 19
  • 121. Tc(VII) & Pu(VII), Np(VII) Pu(VII) and Tc(VII) are very different in (cryst, electr)‐structure, ligand arrangement, stability and chemical properties ! 1000 ppm Poineau, German, Czerwinski
  • 122. Periodic Table and heptavalent state of elements ‰ Period is variable :2, 8, 8, 18, 18, 32…? ‰ Zones of implacability exist ‰ For huge part ‐It works ! ! ! VII 4
  • 123. An(VII) ‐Tc&Re(VII) • Structural and chemical data obtained in recent years by X‐ray‐s‐ c, IR and EXAFS investigations of the new compounds of • heptavalent neptunium and plutonium, • heptavalent technetium and rhenium • confirmtheearlierprevailingopinionabouttheabsenceofadeepsimilarityinphysico‐chemicalpropertiesbetweentheheptavalenttransuranicelementsandtheelementsofGroupVIIoftheshortformofthePeriodictableandtheformalnatureofsomeofthestructuralsimilaritiesamongtheconsideredheptavalentcompounds. • PrincipallyonecanattendtheformationofPu(VIII)butitisnottheaqueousmediathatcouldstanditsoxidizingpower. 20
  • 124. 8th International Symposium on Technetium and Rhenium: Science and Utilization. September 29th to October 3rd 2014. Proceedings and selected lectures. La Baule‐Pornichet, France. Eds. K.German, F.Poineau, M. Fattahi., Ya. Obruchnikova, A. Safonov. Nantes – Moscow –Las Vegas : GranicaPublishing Group, 2014. 561 p. WHAT SHOULD WE KNOW ABOUT TECHNETIUM AND RHENIUM :
  • 126. PAN ‐RAN • Россия‐Русская академия наук (РАН)12.07.2002 р.‐ Русская академия сельскохозяйственных наук (RANR)12.07.2002 р.‐Русская академия медицинских наук (Ранма)12.07.2002 р.‐Русская академия наук (соглашение награды)16.10.2001.‐ Русская академия наук (соглашение о научном сотрудничестве в области фундаментальных исследований космоса)14.03.2005 р. ТадеушКотарбинский,
  • 127. Thank you for your attention !