SlideShare a Scribd company logo
1 of 6
Motor protection example

Assume you have a motor rated 500 HP, .95 power factor & 90 % efficiency energized from a 4.16 Kv
source, using a microprocessor motor protection relay, provide the typical settings.
The full load current can be taken from the motor nameplate as well as the service factor. The motor
full load current can be calculated from the following: I = 500 (.746)/1.732 (4.16)(.85)(.9) =60 amps

                             Motor and Line Data Functions
Function Description    Adjustment / Display Range Setting                Increments      Setting
Motor Nameplate FLA    1 – 2000A, adjustable between
                       50-100% of Max Amp Rating.
FLA must be programmed Upper limit of range automatically adjusts            1              60
for relay to function  downward as Service factor is increased.

Motor Nameplate              1.00 - 1.30 SF                                   .05            1

Overload Class During Start NEMA / UL Class 5 – 20                               5        Class 20

Overload Class During Run      NEMA / UL Class 5 – 30                            5        Class 10

Overload Reset               0 = Manual,1 = Auto,2 = Disabled Overload            1             1

kV Voltage Input (nominal line, Medium Voltage)        .60 – 15kV                .01        4.16

Line Frequency                  50 or 60 Hz                                                     60

Acceleration Time               0-300 seconds [0=Disabled]                       1              30

Current Imbalance Trip %       0.1 - 30% of FLA [0=Disabled]                 1(%)            15

Current Imbalance Trip Delay           1 - 20 seconds                       1 (Second)          5

Over Current Trip %             0,.50 – 300% of FLA [0=Disabled]             1 (%)           200

Over Current Trip Delay         1 - 20 seconds                               1               8

Under Current %                 0, 10 – 90% of FLA [0=Disabled]              1 (%)          35

Under Current Trip Delay        1 - 60 seconds                               1              15

Stall Detection Trip Level       0.100 – 600% of FLA [0=Disabled]             5 (%)         600

Stall Detection Trip Delay       1 - 10 seconds                              1              4

Peak Current Trip %              0.800 – 1400% [0=Disabled]                  10(%)        1000 (%)

Peak Current Trip Delay           0..01 - .5 seconds                          .01          .05

13/11/10                                          1
Ground Fault Current Trip Value 0.5 – 90% of CT Value [0=Disabled]              1 (%)            50
Ground Fault Current Trip Delay         1 – 60 seconds                            1                     5

                                      Voltage Protection Settings
Voltage Imbalance Trip %                 0.1 – 30% [0=Disabled]                 1 (%)                20

Voltage Imbalance Trip Delay              1 – 20 seconds                            1                 10

Over Voltage Trip %                       0.1 – 10% [0=Disabled]                    1 (%)            5

Over Voltage Trip Delay                    1 – 20 seconds                               1            10

Under Voltage Trip on Start %             0.1 – 20% [0=Disabled]                    1 (%)        20

UV Trip on Start Delay                    1 – 180 seconds                               1        20

Under Voltage Trip on Run %                 0.1 – 20% [0=Disabled]                      1 (%)    20

UV Trip Delay during Run                   1 – 20 seconds                               1        10

                               Phase and Frequency Protection Settings
Phase Rotation Trip              0.1 or 2 0=Disabled, 1=ABC, 2=ACB]                     1       2

Phase Rotation Trip Delay          1 – 20 seconds                                       1        2

Phase Loss Trip and Delay          0.1-20 Seconds [0= Disabled]                         1        5

Over Frequency Trip Limit         0.1 – 10Hz   [0=Disabled]                             1           1

Over Frequency Trip Delay         1 – 20 seconds                                        1        5

Under Frequency Trip Limit        0.1 – 10Hz [0=Disabled]                               1        1

Under Frequency Trip Delay        1 – 20 seconds                                        1            5

Motor KW Trip         0-2.0 = Disabled,1 = Over KW Trip,2 = Under KW Trip           1            0

Motor KW Trip Point         20 – 100% of full load KW (disabled)                    1%          20(%)

Motor KW Trip Delay Time        1 – 999 minutes (disabled)                          1            1

Power Factor Trip Range          0.1 – 3 [0=Disabled, 1=lag, 2=lead, 3= lead/lag]       1        2

Power Factor Trip Point         .01 – 1                                                 .01     .10

Power Factor Trip Delay Time 1 – 20 seconds                                                 1   10

13/11/10                                            2
Power Factor Current Direction                 0 - 1, [0=Normal, 1= Reversed]                                  1            1


                                  Lockout / Inhibit Settings
Coast Down (Back Spin) Lockout Timer 0 = Disabled, or 1 - 60 minutes                                 1 minute          1

Maximum Starts per Hour                        0 = Disabled, or 1 – 10 starts                        1                  5

Minimum Time Between Starts Inhibit 0 = Disabled, or 1 - 60 minutes                                  1 minute          12

Note: NEMA Class trip curves are based on a common tripping point of 600% of motor Full Load
Amps (FLA). Curves vary by the amount of time before the unit trips. As an example, a Class 20 curve
will trip in 20 seconds at 600% of FLA. Another example, Class 10 will trip in 10 seconds at 600% of
FLA.

PT Value:1-200 (: 1) 1:1 = direct voltage input, 2-200: 1 = kV Voltage Input 1                              40 (4160/104) V

CT Value: 5-2000 (:5)                                               5                                              60

Number of Turns through CT:                                       1 – 5 (in 1 increments)                          1


                                               Generator protection example

Ratings of generators:
Rated output (eg. 1,120 MVA), Maximum output (1230 MVA), Rated rotation speed (300 rpm), Power
factor (0.9), Number of poles (2), Terminal voltage (27), Rated Armature current (23949), Maximum
Armature current (26302), Short-circuit ratio (> or = 0.5), Hydrogen gas pressure (0.52 Mpa G),
Insulation type (F), Temperature rise class (B), Cooling method (Stator: direct water), Efficiency
(99 %), Hydrogen consumption (12 m3/day).

Functional Specifications of generator protective relay
NOMINAL SYSTEM FREQUENCY SETTING RANGE.............................................50 or 60 Hz
RATED PRIMARY INPUT CURRENT OF PHASE AND NEUTRAL CTS .........1 - 9999A in 1A steps
RATED PRIMARY SYSTEM PHASE-TO-PHASE VOLTAGE OF PTS......2 – 655 kV in .0.1 kV steps
RATED PT SECONDARY LINE-TO-LINE VOLTAGE ...............................50 – 125 V in 1 V steps
LOW SET OVERCURRENT ELEMENT
Characteristic: .......................................................................................Definite time or inverse
Pickup: ...........................................................................................1.0 – 2.5 pu of rated generator current
Time delay: ...........................................................................................0.05 – 30.0 seconds (at 5pu Igen)
HIGH SET OVERCURRENT ELEMENT
Characteristic: .......................................................................................Definite time
Pickup: ............................................................................................1.0 – 9.9pu of rated generator current
Time delay: ...........................................................................................0.05 – 3.0 seconds (at 5pu Igen)
CURRENT UNBALANCE ELEMENT
Maximum negative sequence current rating;.................................0.05 – 0.5pu of rated generator current

13/11/10                                                           3
Time multiplier of I2 t curve ...................................................................5 – 80 seconds
Cooling time to rated.............................................................................10 – 1800 seconds
Alarm level pickup.................................................................................0.03 – 0.5pu generator current
Alarm level time delay...........................................................................1 – 100 seconds
REVERSE POWER ELEMENT PICKUP ......................................0.02 to 0.2pu rated generator current
Time delay ...........................................................................................1 – 100 seconds
LOSS OF FIELD ELEMENT
Mho circle size ..........................................................................50 – 300% of rated generator impedance
Mho offset .................................................................................5 – 50% of rated generator impedance
Time delay ............................................................................................0.2 – 60 seconds
Integration time .....................................................................................0 – 10 seconds
VOLTAGE ELEMENTS
Characteristic ........................................................................................Over, Under or Over+Under
Pick-up level.......................................................................................1 – 50% change from rated voltage
Time delay ............................................................................................0.1 – 60.0 seconds
FREQUENCY ELEMENTS
Characteristic ........................................................................................Over, Under or Over+Under
Pick-up level..........................................................................................0.05 – 9.99Hz from nominal
Time delay ............................................................................................0.1 – 60.0 seconds
THERMAL IMAGE ELEMENT
Trip level ...............................................................................................Fixed at 110% rated
Thermal time constant of alternator ......................................................1 – 400 minutes
Pre-alarm level......................................................................................50 – 110% of rated
UNDERPOWER ELEMENT PICKUP LEVEL ..........................................................0.05 – 1.00 of
rated power output
Time delay ............................................................................................0.1 – 60.0 seconds
UNDERIMPEDANCE ELEMENTS
Pickup level...........................................................................................01 – 1.0 pu rated impedance
Time delay ............................................................................................0.02 – 9.99 seconds
FIRST LEVEL OVEREXCITATION ELEMENT
Characteristic ........................................................................................Inverse
Pickup level...........................................................................................1.0 - 2.0 pu
Time multiplier.......................................................................................0.5 – 5.0
SECOND LEVEL OVEREXCITATION ELEMENT
Characteristic ........................................................................................Definite time
Pickup level...........................................................................................1.0 - 2.0 pu
Time multiplier.......................................................................................0.1 – 60.0 seconds
95% STATOR GROUND FAULT ELEMENTS
Pickup level.....................................................................................5 – 99% Rated zero sequence voltage
Time delay ............................................................................................0.05 – 99.0 seconds
100% STATOR GROUND FAULT ELEMENT
3rd Harmonic Pickup level ..............................................................1 – 30% Rated zero sequence voltage
Time delay ............................................................................................0.05 – 99.0 seconds

                                                  Typical Settings
 IEEE No. Function                                      Typical Settings and Remarks
24        Overexcitation                 PU: 1.1*VNOM/60; TD: 0.3; reset TD: 5 alarm P.U.: 1.18*VNOM/60

13/11/10                                                        4
alarm delay: 2.5s

25      Synchronism Check Max Slip: 6RPM; Max phase angle error: 10° Max VMAG error:
                          2.5% VNOM

32      Reverse Power (one stage) PU: turbine 1% of rated; 15 s . PU: Reciprocating engine:
                                  10% of rated; 5 s

32-1       Reverse Power (non-electrical, trip supervision)         PU: same as 32; 3 s

40         Loss-of-field (VAR Flow approach)        Level 1 PU: 60% VA rating; Delay: 0.2s; Level 2
                                                    PU: 100% VA rating: 0.1s

46         Negative Sequence overcurrent            I2 PU: 10% Irated; K=10

49         Stator Temperature (RTD)                 Lower: 95°C; upper: 105°C

50/87      Differential via flux summation Cts          PU:10% INOM or less if 1A relay may be used

50/27 IE       Inadvertent Energization Overcurrent with 27, 81        50: 0.5A (10% INOM) 27: 85%
               Supervision                                             VNOM (81: Similar)

51N     Stator Ground Over- current (Low, Med Z Gnd, PU: 10% INOM; curve: EI; TD: 4. Inst:
        Phase CT Residual)                           none. Higher PU required to coordinate
                                                     with load. No higher than 25% INOM.

50/51N Stator Ground Over- current (Low, Med Z Gnd, P.U.: 10% INOM; Curve EI**, TD4; Inst
       Neutral CT or Flux Summation CT)             100% INOM. Higher PU if required to
                                                    coordinate with load. No higher than
                                                    25% INOM.

51GN, 51N       Stator Ground Over- current (High Z Gnd) PU: 10% IFAULT at HV Term.; Curve:
                                                         VI***; TD:4.

51VC           Voltage Controlled overcurrent                   PU: 50% INOM; Curve: VI***; TD: 4.
                                                                Control voltage: 80%VNOM.

51VR           Voltage Restrained overcurrent             PU: 175% INOM; Curve: VI***; TD: 4. Zero
                                                          Restraint Voltage: 100% VNOM L-L

59N, 27-3N, 59P       Ground Overvoltage         59N: 5% VNEU during HV terminal fault; 27-3N:
                                                 25% V3rd during normal operation; TD: 10s 59P:
                                                 80% VNOM

67IE       Directional O/C for Inadvertent Energization PU: 75-100% INOM GEN; Definite Time (0.1-
                                                        0.25 sec.) ; Inst: 200% INOM GEN


13/11/10                                            5
81         Over/under frequency           For Generator protection: 57, 62Hz, 0.5s; For
                                          Island detection condition: 59, 61Hz, 0.1s
87G        Generator Phase Differential   Fixed: 0.4A; or Variable: Min P.U.: 0.1 * Tap;
                                          Tap: INOM; Slope: 15%

87N        Generator Ground               Variable: Min P.U.: 0.1 times tap; Slope 15%;
                                          Differential Time delay: 0.1s; choose low tap
                                          67N: current polarization; time: 0.25A; Curve:
                                          VI***; TD: 2; Instantaneous: disconnect

87UD 13     Unit Differential             Min PU: 0.35*Tap; Tap: INOM; Slope 30%

**: EI: extremely inverse.
***: VI: very inverse.




13/11/10                                  6

More Related Content

What's hot

Transformer design and protection
Transformer design and protectionTransformer design and protection
Transformer design and protection
ashwin fcc
 
Blackout Avoidance & Undervoltage Load Shedding
Blackout Avoidance & Undervoltage Load SheddingBlackout Avoidance & Undervoltage Load Shedding
Blackout Avoidance & Undervoltage Load Shedding
michaeljmack
 
Genrator Relay Protection & Logics
Genrator Relay Protection & LogicsGenrator Relay Protection & Logics
Genrator Relay Protection & Logics
Mahadev Kovalli
 
Digital transformer protection systems
Digital transformer protection systemsDigital transformer protection systems
Digital transformer protection systems
michaeljmack
 

What's hot (20)

Transformer overcurrent
Transformer overcurrentTransformer overcurrent
Transformer overcurrent
 
Power Transformer Differential protection
Power Transformer Differential protectionPower Transformer Differential protection
Power Transformer Differential protection
 
Stability test of transformer
Stability test of transformerStability test of transformer
Stability test of transformer
 
Sample calculation-for-differential-relays
Sample calculation-for-differential-relaysSample calculation-for-differential-relays
Sample calculation-for-differential-relays
 
Transformer design and protection
Transformer design and protectionTransformer design and protection
Transformer design and protection
 
Blackout Avoidance & Undervoltage Load Shedding
Blackout Avoidance & Undervoltage Load SheddingBlackout Avoidance & Undervoltage Load Shedding
Blackout Avoidance & Undervoltage Load Shedding
 
Lecture 7 Relay Coordination.pptx
Lecture 7 Relay Coordination.pptxLecture 7 Relay Coordination.pptx
Lecture 7 Relay Coordination.pptx
 
Genrator Relay Protection & Logics
Genrator Relay Protection & LogicsGenrator Relay Protection & Logics
Genrator Relay Protection & Logics
 
Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersPractical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineers
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
 
Motor Protection
Motor ProtectionMotor Protection
Motor Protection
 
Relays and its types - complete guide
Relays and its types - complete guideRelays and its types - complete guide
Relays and its types - complete guide
 
Protection of transformer
Protection of transformerProtection of transformer
Protection of transformer
 
Relay coordination
Relay coordinationRelay coordination
Relay coordination
 
Line Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relayLine Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relay
 
Digital transformer protection systems
Digital transformer protection systemsDigital transformer protection systems
Digital transformer protection systems
 
2.components in a substation breaker
2.components in a substation   breaker2.components in a substation   breaker
2.components in a substation breaker
 
Power System Protection course - Part I
Power System Protection course - Part IPower System Protection course - Part I
Power System Protection course - Part I
 
ECNG 3015 - Overcurrent Protection
ECNG 3015 - Overcurrent ProtectionECNG 3015 - Overcurrent Protection
ECNG 3015 - Overcurrent Protection
 
Basic protection and relaying
Basic protection and relayingBasic protection and relaying
Basic protection and relaying
 

Viewers also liked

Comprehensive Motor Testing Technique
Comprehensive Motor Testing TechniqueComprehensive Motor Testing Technique
Comprehensive Motor Testing Technique
Avinash Sista
 
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
Living Online
 

Viewers also liked (20)

Resource
ResourceResource
Resource
 
Transformer oil dehydration importance & process
Transformer oil dehydration importance & processTransformer oil dehydration importance & process
Transformer oil dehydration importance & process
 
Transformer oil analysis
Transformer oil analysisTransformer oil analysis
Transformer oil analysis
 
Feasibility study bfp
Feasibility study   bfpFeasibility study   bfp
Feasibility study bfp
 
تعليم الاسيانيه بدون معلم المستوي المتوسط
تعليم الاسيانيه بدون معلم المستوي المتوسطتعليم الاسيانيه بدون معلم المستوي المتوسط
تعليم الاسيانيه بدون معلم المستوي المتوسط
 
Esp rectifier transformer
Esp rectifier transformerEsp rectifier transformer
Esp rectifier transformer
 
Motor Testing Results
Motor Testing ResultsMotor Testing Results
Motor Testing Results
 
Motor testing platform 1
Motor testing platform 1Motor testing platform 1
Motor testing platform 1
 
Comprehensive Motor Testing Technique
Comprehensive Motor Testing TechniqueComprehensive Motor Testing Technique
Comprehensive Motor Testing Technique
 
Practicing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGAPracticing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGA
 
Reactors
ReactorsReactors
Reactors
 
Indoor & outdoor substations, an overview
Indoor & outdoor substations, an overviewIndoor & outdoor substations, an overview
Indoor & outdoor substations, an overview
 
Motor selection
Motor selectionMotor selection
Motor selection
 
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
 
Condition monitoring part 2
Condition monitoring part 2Condition monitoring part 2
Condition monitoring part 2
 
ECNG 6503 #1
ECNG 6503 #1 ECNG 6503 #1
ECNG 6503 #1
 
A step-by-step approach to prepare fault studies of electrical power systems
A step-by-step approach to prepare fault studies of electrical power systemsA step-by-step approach to prepare fault studies of electrical power systems
A step-by-step approach to prepare fault studies of electrical power systems
 
Why dehydration of transformer oil is important?
Why dehydration of transformer oil is important?Why dehydration of transformer oil is important?
Why dehydration of transformer oil is important?
 
Transformer oil
Transformer oilTransformer oil
Transformer oil
 
Dissolve gas anylysis measurement and interpretation technique
Dissolve gas anylysis measurement and interpretation techniqueDissolve gas anylysis measurement and interpretation technique
Dissolve gas anylysis measurement and interpretation technique
 

Similar to Motor & generator protection example settings

Similar to Motor & generator protection example settings (20)

SPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKSPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARK
 
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARKSPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
 
EXCITATION SYSTEM.ppt
EXCITATION SYSTEM.pptEXCITATION SYSTEM.ppt
EXCITATION SYSTEM.ppt
 
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARKSPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
 
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARKSPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
 
Ls catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-eLs catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-e
 
Ls catalog thiet bi tu dong dpr 1000-e_dienhathe.vn
Ls catalog thiet bi tu dong dpr 1000-e_dienhathe.vnLs catalog thiet bi tu dong dpr 1000-e_dienhathe.vn
Ls catalog thiet bi tu dong dpr 1000-e_dienhathe.vn
 
Ls catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-eLs catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-e
 
SPICE MODEL of S60SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC4MT (Professional Model) in SPICE PARKSPICE MODEL of S60SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC4MT (Professional Model) in SPICE PARK
 
Earth Leakage Relay | Motor Protection Relay - GIC India
Earth Leakage Relay | Motor Protection Relay - GIC IndiaEarth Leakage Relay | Motor Protection Relay - GIC India
Earth Leakage Relay | Motor Protection Relay - GIC India
 
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARKSPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
 
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARKSPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
 
Mean well ad155
Mean well   ad155Mean well   ad155
Mean well ad155
 
SPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARKSPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARK
 
NF Corp Programmable AC/DC Power Source ec750 sa_1000sa
NF Corp Programmable AC/DC Power Source  ec750 sa_1000saNF Corp Programmable AC/DC Power Source  ec750 sa_1000sa
NF Corp Programmable AC/DC Power Source ec750 sa_1000sa
 
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARKSPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
 
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARKSPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
 
Invertronic 110V englisch
Invertronic 110V englischInvertronic 110V englisch
Invertronic 110V englisch
 
SPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARK
SPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARKSPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARK
SPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARK
 
SPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARKSPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=110degree (Professional Model) in SPICE PARK
 

More from H. Kheir

More from H. Kheir (17)

Motor protection
Motor protectionMotor protection
Motor protection
 
تعليم الاسيانيه بدون معلم الاساسيات
تعليم الاسيانيه بدون معلم الاساسياتتعليم الاسيانيه بدون معلم الاساسيات
تعليم الاسيانيه بدون معلم الاساسيات
 
تعليم الاسيانيه بدون معلم المستوي: المبادىء
تعليم الاسيانيه بدون معلم المستوي: المبادىء  تعليم الاسيانيه بدون معلم المستوي: المبادىء
تعليم الاسيانيه بدون معلم المستوي: المبادىء
 
تعليم الايطاليه بدون معلم المستوى المتوسط
تعليم الايطاليه بدون معلم  المستوى المتوسطتعليم الايطاليه بدون معلم  المستوى المتوسط
تعليم الايطاليه بدون معلم المستوى المتوسط
 
تعليم الانجليزية بدون معلم المستوي المتوسط
تعليم الانجليزية بدون معلم المستوي المتوسطتعليم الانجليزية بدون معلم المستوي المتوسط
تعليم الانجليزية بدون معلم المستوي المتوسط
 
تعليم الإنجليزية بدون معلم الاساسيات
تعليم الإنجليزية بدون معلم الاساسياتتعليم الإنجليزية بدون معلم الاساسيات
تعليم الإنجليزية بدون معلم الاساسيات
 
تعليم الإنجليزية بدون معلم المستوي: المبادىء
تعليم الإنجليزية بدون معلم المستوي: المبادىءتعليم الإنجليزية بدون معلم المستوي: المبادىء
تعليم الإنجليزية بدون معلم المستوي: المبادىء
 
تعليم الفرنسية بدون معلم
تعليم الفرنسية بدون معلم  تعليم الفرنسية بدون معلم
تعليم الفرنسية بدون معلم
 
Learn french language
Learn french languageLearn french language
Learn french language
 
Learn italian language
Learn italian languageLearn italian language
Learn italian language
 
Protection and control, part 1
Protection and control, part 1Protection and control, part 1
Protection and control, part 1
 
Switchyards (outdoor substations), part 1
Switchyards (outdoor substations), part 1Switchyards (outdoor substations), part 1
Switchyards (outdoor substations), part 1
 
Computer Programming For Power Systems Analysts.
Computer Programming For Power Systems Analysts.Computer Programming For Power Systems Analysts.
Computer Programming For Power Systems Analysts.
 
How-to use off-the-shelf software packages to perform power systems analysis
How-to use off-the-shelf software packages to perform power systems analysisHow-to use off-the-shelf software packages to perform power systems analysis
How-to use off-the-shelf software packages to perform power systems analysis
 
Learning spanish language
Learning spanish languageLearning spanish language
Learning spanish language
 
Linux tips
Linux tipsLinux tips
Linux tips
 
Transformers protection, an introduction
Transformers protection, an introductionTransformers protection, an introduction
Transformers protection, an introduction
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 

Recently uploaded (20)

How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 

Motor & generator protection example settings

  • 1. Motor protection example Assume you have a motor rated 500 HP, .95 power factor & 90 % efficiency energized from a 4.16 Kv source, using a microprocessor motor protection relay, provide the typical settings. The full load current can be taken from the motor nameplate as well as the service factor. The motor full load current can be calculated from the following: I = 500 (.746)/1.732 (4.16)(.85)(.9) =60 amps Motor and Line Data Functions Function Description Adjustment / Display Range Setting Increments Setting Motor Nameplate FLA 1 – 2000A, adjustable between 50-100% of Max Amp Rating. FLA must be programmed Upper limit of range automatically adjusts 1 60 for relay to function downward as Service factor is increased. Motor Nameplate 1.00 - 1.30 SF .05 1 Overload Class During Start NEMA / UL Class 5 – 20 5 Class 20 Overload Class During Run NEMA / UL Class 5 – 30 5 Class 10 Overload Reset 0 = Manual,1 = Auto,2 = Disabled Overload 1 1 kV Voltage Input (nominal line, Medium Voltage) .60 – 15kV .01 4.16 Line Frequency 50 or 60 Hz 60 Acceleration Time 0-300 seconds [0=Disabled] 1 30 Current Imbalance Trip % 0.1 - 30% of FLA [0=Disabled] 1(%) 15 Current Imbalance Trip Delay 1 - 20 seconds 1 (Second) 5 Over Current Trip % 0,.50 – 300% of FLA [0=Disabled] 1 (%) 200 Over Current Trip Delay 1 - 20 seconds 1 8 Under Current % 0, 10 – 90% of FLA [0=Disabled] 1 (%) 35 Under Current Trip Delay 1 - 60 seconds 1 15 Stall Detection Trip Level 0.100 – 600% of FLA [0=Disabled] 5 (%) 600 Stall Detection Trip Delay 1 - 10 seconds 1 4 Peak Current Trip % 0.800 – 1400% [0=Disabled] 10(%) 1000 (%) Peak Current Trip Delay 0..01 - .5 seconds .01 .05 13/11/10 1
  • 2. Ground Fault Current Trip Value 0.5 – 90% of CT Value [0=Disabled] 1 (%) 50 Ground Fault Current Trip Delay 1 – 60 seconds 1 5 Voltage Protection Settings Voltage Imbalance Trip % 0.1 – 30% [0=Disabled] 1 (%) 20 Voltage Imbalance Trip Delay 1 – 20 seconds 1 10 Over Voltage Trip % 0.1 – 10% [0=Disabled] 1 (%) 5 Over Voltage Trip Delay 1 – 20 seconds 1 10 Under Voltage Trip on Start % 0.1 – 20% [0=Disabled] 1 (%) 20 UV Trip on Start Delay 1 – 180 seconds 1 20 Under Voltage Trip on Run % 0.1 – 20% [0=Disabled] 1 (%) 20 UV Trip Delay during Run 1 – 20 seconds 1 10 Phase and Frequency Protection Settings Phase Rotation Trip 0.1 or 2 0=Disabled, 1=ABC, 2=ACB] 1 2 Phase Rotation Trip Delay 1 – 20 seconds 1 2 Phase Loss Trip and Delay 0.1-20 Seconds [0= Disabled] 1 5 Over Frequency Trip Limit 0.1 – 10Hz [0=Disabled] 1 1 Over Frequency Trip Delay 1 – 20 seconds 1 5 Under Frequency Trip Limit 0.1 – 10Hz [0=Disabled] 1 1 Under Frequency Trip Delay 1 – 20 seconds 1 5 Motor KW Trip 0-2.0 = Disabled,1 = Over KW Trip,2 = Under KW Trip 1 0 Motor KW Trip Point 20 – 100% of full load KW (disabled) 1% 20(%) Motor KW Trip Delay Time 1 – 999 minutes (disabled) 1 1 Power Factor Trip Range 0.1 – 3 [0=Disabled, 1=lag, 2=lead, 3= lead/lag] 1 2 Power Factor Trip Point .01 – 1 .01 .10 Power Factor Trip Delay Time 1 – 20 seconds 1 10 13/11/10 2
  • 3. Power Factor Current Direction 0 - 1, [0=Normal, 1= Reversed] 1 1 Lockout / Inhibit Settings Coast Down (Back Spin) Lockout Timer 0 = Disabled, or 1 - 60 minutes 1 minute 1 Maximum Starts per Hour 0 = Disabled, or 1 – 10 starts 1 5 Minimum Time Between Starts Inhibit 0 = Disabled, or 1 - 60 minutes 1 minute 12 Note: NEMA Class trip curves are based on a common tripping point of 600% of motor Full Load Amps (FLA). Curves vary by the amount of time before the unit trips. As an example, a Class 20 curve will trip in 20 seconds at 600% of FLA. Another example, Class 10 will trip in 10 seconds at 600% of FLA. PT Value:1-200 (: 1) 1:1 = direct voltage input, 2-200: 1 = kV Voltage Input 1 40 (4160/104) V CT Value: 5-2000 (:5) 5 60 Number of Turns through CT: 1 – 5 (in 1 increments) 1 Generator protection example Ratings of generators: Rated output (eg. 1,120 MVA), Maximum output (1230 MVA), Rated rotation speed (300 rpm), Power factor (0.9), Number of poles (2), Terminal voltage (27), Rated Armature current (23949), Maximum Armature current (26302), Short-circuit ratio (> or = 0.5), Hydrogen gas pressure (0.52 Mpa G), Insulation type (F), Temperature rise class (B), Cooling method (Stator: direct water), Efficiency (99 %), Hydrogen consumption (12 m3/day). Functional Specifications of generator protective relay NOMINAL SYSTEM FREQUENCY SETTING RANGE.............................................50 or 60 Hz RATED PRIMARY INPUT CURRENT OF PHASE AND NEUTRAL CTS .........1 - 9999A in 1A steps RATED PRIMARY SYSTEM PHASE-TO-PHASE VOLTAGE OF PTS......2 – 655 kV in .0.1 kV steps RATED PT SECONDARY LINE-TO-LINE VOLTAGE ...............................50 – 125 V in 1 V steps LOW SET OVERCURRENT ELEMENT Characteristic: .......................................................................................Definite time or inverse Pickup: ...........................................................................................1.0 – 2.5 pu of rated generator current Time delay: ...........................................................................................0.05 – 30.0 seconds (at 5pu Igen) HIGH SET OVERCURRENT ELEMENT Characteristic: .......................................................................................Definite time Pickup: ............................................................................................1.0 – 9.9pu of rated generator current Time delay: ...........................................................................................0.05 – 3.0 seconds (at 5pu Igen) CURRENT UNBALANCE ELEMENT Maximum negative sequence current rating;.................................0.05 – 0.5pu of rated generator current 13/11/10 3
  • 4. Time multiplier of I2 t curve ...................................................................5 – 80 seconds Cooling time to rated.............................................................................10 – 1800 seconds Alarm level pickup.................................................................................0.03 – 0.5pu generator current Alarm level time delay...........................................................................1 – 100 seconds REVERSE POWER ELEMENT PICKUP ......................................0.02 to 0.2pu rated generator current Time delay ...........................................................................................1 – 100 seconds LOSS OF FIELD ELEMENT Mho circle size ..........................................................................50 – 300% of rated generator impedance Mho offset .................................................................................5 – 50% of rated generator impedance Time delay ............................................................................................0.2 – 60 seconds Integration time .....................................................................................0 – 10 seconds VOLTAGE ELEMENTS Characteristic ........................................................................................Over, Under or Over+Under Pick-up level.......................................................................................1 – 50% change from rated voltage Time delay ............................................................................................0.1 – 60.0 seconds FREQUENCY ELEMENTS Characteristic ........................................................................................Over, Under or Over+Under Pick-up level..........................................................................................0.05 – 9.99Hz from nominal Time delay ............................................................................................0.1 – 60.0 seconds THERMAL IMAGE ELEMENT Trip level ...............................................................................................Fixed at 110% rated Thermal time constant of alternator ......................................................1 – 400 minutes Pre-alarm level......................................................................................50 – 110% of rated UNDERPOWER ELEMENT PICKUP LEVEL ..........................................................0.05 – 1.00 of rated power output Time delay ............................................................................................0.1 – 60.0 seconds UNDERIMPEDANCE ELEMENTS Pickup level...........................................................................................01 – 1.0 pu rated impedance Time delay ............................................................................................0.02 – 9.99 seconds FIRST LEVEL OVEREXCITATION ELEMENT Characteristic ........................................................................................Inverse Pickup level...........................................................................................1.0 - 2.0 pu Time multiplier.......................................................................................0.5 – 5.0 SECOND LEVEL OVEREXCITATION ELEMENT Characteristic ........................................................................................Definite time Pickup level...........................................................................................1.0 - 2.0 pu Time multiplier.......................................................................................0.1 – 60.0 seconds 95% STATOR GROUND FAULT ELEMENTS Pickup level.....................................................................................5 – 99% Rated zero sequence voltage Time delay ............................................................................................0.05 – 99.0 seconds 100% STATOR GROUND FAULT ELEMENT 3rd Harmonic Pickup level ..............................................................1 – 30% Rated zero sequence voltage Time delay ............................................................................................0.05 – 99.0 seconds Typical Settings IEEE No. Function Typical Settings and Remarks 24 Overexcitation PU: 1.1*VNOM/60; TD: 0.3; reset TD: 5 alarm P.U.: 1.18*VNOM/60 13/11/10 4
  • 5. alarm delay: 2.5s 25 Synchronism Check Max Slip: 6RPM; Max phase angle error: 10° Max VMAG error: 2.5% VNOM 32 Reverse Power (one stage) PU: turbine 1% of rated; 15 s . PU: Reciprocating engine: 10% of rated; 5 s 32-1 Reverse Power (non-electrical, trip supervision) PU: same as 32; 3 s 40 Loss-of-field (VAR Flow approach) Level 1 PU: 60% VA rating; Delay: 0.2s; Level 2 PU: 100% VA rating: 0.1s 46 Negative Sequence overcurrent I2 PU: 10% Irated; K=10 49 Stator Temperature (RTD) Lower: 95°C; upper: 105°C 50/87 Differential via flux summation Cts PU:10% INOM or less if 1A relay may be used 50/27 IE Inadvertent Energization Overcurrent with 27, 81 50: 0.5A (10% INOM) 27: 85% Supervision VNOM (81: Similar) 51N Stator Ground Over- current (Low, Med Z Gnd, PU: 10% INOM; curve: EI; TD: 4. Inst: Phase CT Residual) none. Higher PU required to coordinate with load. No higher than 25% INOM. 50/51N Stator Ground Over- current (Low, Med Z Gnd, P.U.: 10% INOM; Curve EI**, TD4; Inst Neutral CT or Flux Summation CT) 100% INOM. Higher PU if required to coordinate with load. No higher than 25% INOM. 51GN, 51N Stator Ground Over- current (High Z Gnd) PU: 10% IFAULT at HV Term.; Curve: VI***; TD:4. 51VC Voltage Controlled overcurrent PU: 50% INOM; Curve: VI***; TD: 4. Control voltage: 80%VNOM. 51VR Voltage Restrained overcurrent PU: 175% INOM; Curve: VI***; TD: 4. Zero Restraint Voltage: 100% VNOM L-L 59N, 27-3N, 59P Ground Overvoltage 59N: 5% VNEU during HV terminal fault; 27-3N: 25% V3rd during normal operation; TD: 10s 59P: 80% VNOM 67IE Directional O/C for Inadvertent Energization PU: 75-100% INOM GEN; Definite Time (0.1- 0.25 sec.) ; Inst: 200% INOM GEN 13/11/10 5
  • 6. 81 Over/under frequency For Generator protection: 57, 62Hz, 0.5s; For Island detection condition: 59, 61Hz, 0.1s 87G Generator Phase Differential Fixed: 0.4A; or Variable: Min P.U.: 0.1 * Tap; Tap: INOM; Slope: 15% 87N Generator Ground Variable: Min P.U.: 0.1 times tap; Slope 15%; Differential Time delay: 0.1s; choose low tap 67N: current polarization; time: 0.25A; Curve: VI***; TD: 2; Instantaneous: disconnect 87UD 13 Unit Differential Min PU: 0.35*Tap; Tap: INOM; Slope 30% **: EI: extremely inverse. ***: VI: very inverse. 13/11/10 6