O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Introduction to Biological Network Analysis and Visualization with Cytoscape Part 2

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio

Confira estes a seguir

1 de 44 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a Introduction to Biological Network Analysis and Visualization with Cytoscape Part 2 (20)

Anúncio

Mais de Keiichiro Ono (14)

Mais recentes (20)

Anúncio

Introduction to Biological Network Analysis and Visualization with Cytoscape Part 2

  1. 1. Introduction to Biological Network Analysis and Visualization with Cytoscape Keiichiro Ono Cytoscape Core Developer Team UC, San Diego Trey Ideker Lab / National Resource for Network Biology 5/12/2016 The Scripps Research Institute Lecture 2: Reproducible Workflows with Jupyter Notebook
  2. 2. Lecture slides are available here: http://www.slideshare.net/keiono
  3. 3. Agenda • Lecture 1:
 
 Introduction to Biological Network Analysis and Visualization • What is the benefits of biological network analysis and visualization? • Introduction to Cytoscape • Preview of Lecture 2: cyREST • Lecture 2 (Today):
 
 Reproducible Analysis & Visualization • Introduction to Jupyter Notebook • Create a reproducible network visualization workflows with Python
  4. 4. Review of Lecture 1 - Network analysis / visualization is a powerful method to get biological insights from your screening result - Cytoscape is the de-facto standard tool to perform this type of analysis
  5. 5. Review of Lecture 1 -Core features of Cytoscape -Navigation (Pan/Zoom/Select) -Network / Table Data Import -Automatic Layout -Visual Style
  6. 6. Recap Cytoscape Session File — for sharing results But what about process?
  7. 7. Reproducibility
  8. 8. http://www.the-scientist.com/?articles.view/articleNo/43632/title/Get-With-the-Program/ https://theconversation.com/how-computers-broke-science-and-what-we-can-do-to-fix-it-49938http://www.nature.com/nature/journal/v483/n7391/full/483531a.html Reproducibility …it’s a known issue
  9. 9. Problems - Reproducibility of biological research, especially for in vivo/vitro experiments, is a hard problem - But this is true even for in silico analysis! - OS version - Revision of scripts - Data analysis software versions - Version of data files - Command line parameters written on a paper napkin - “Black magic” only a grad student knows - This is something we need to fix, using latest technologies and best practices
  10. 10. Typical Workflow
  11. 11. Data Preparation Analysis Visualization
  12. 12. Data Preparation
  13. 13. Data Preparation - Cleansing - Normalization - Missing values - Corrupted values - Reformat - Conversion
  14. 14. Data Preparation Analysis Visualization
  15. 15. Analysis
  16. 16. Analysis - Filtering - Standard graph statistics - Density - Betweenness - Centrality - Clustering - Community Detection - GO enrichment analysis
  17. 17. Data Preparation Analysis Visualization
  18. 18. Visualization
  19. 19. Visualization - Mapping - Data points to visual variables - Layout - For graphs: - Force-directed - Tree
  20. 20. Data Preparation Analysis Visualization
  21. 21. Data Preparation Analysis Visualization
  22. 22. Data Preparation Analysis Visualization
  23. 23. Cytoscape for Interactive Visualization Python for Data Manipulation / Analysis
  24. 24. Lab Notebook for in silico Experiments
  25. 25. Interactive Command-Line + Markdown-based Documents
  26. 26. IPython Notebook? Jupyter?
  27. 27. IPython Notebook Notebook UI + Python Kernel Jupyter Notebook UI + Language Kernel (R/Julia/etc.)
  28. 28. Language-Agnostic - From next version (4.x), Python Notebook will be an implementation of Jupyter - You can switch to other language kernels - In this lecture, we will use Python, but you can use language of your choice to control Cytoscape
  29. 29. Question • Cytoscape is a desktop application • Point & click GUI operation • Easy to use, but how can we make our workflow reproducible?
  30. 30. REST
  31. 31. What is cyREST? - Platform-independent, RESTful API module for Cytoscape - Means you can access basic Cytoscape data objects programmatically - Now it’s a Cytoscape Core feature! REST
  32. 32. Interactive Data Analysis Environments In-House Databases External Computing Resources - Graph Layout - Statistical Analysis - Data Pre-processing RStudio - NumPy - SciPy - Pandas - NetworkX IPython Notebook File / Code Hosting ServicesPublic Data Repository PSICQUIC Services EBI RDF Platform Other Bioinformatics Web Applications / Services - igraph - rCurl Command Line Tools > sed > awk > grep > curl Web Browsers Data Repository & Collaboration Service Data Bus (Internet) Your Workstation Cytoscape App Store Cytoscape Desktop Apps Core REST
  33. 33. REST Cytoscape 3.1+ Clients POST PUT DELETE GET How cyREST Works
  34. 34. Mapping Cytoscape API to HTTP Methods Create Read Update Delete Cytoscape Operations POST GET PUT DELETE HTTP Methods
  35. 35. Get full network with unique ID 52 as JSON GET http://localhost:1234/v1/networks/52
  36. 36. http://localhost:1234/v1/networks/52
  37. 37. Language-Specific Shims For Python For R
  38. 38. REST
  39. 39. REST Lab notebook to record your workflow Make Cytoscape controllable via scripts Manage multiple versions of your notebooks and other scripts
  40. 40. - - Two Google Groups - cytoscape- discuss@googlegroups.com - cytoscape- helpdesk@googlegroups.com - ANY question is OK! Getting Help
  41. 41. Further Readings
  42. 42. Further Readings • My presentation slides • http://www.slideshare.net/keiono • cyREST web sites • http://apps.cytoscape.org/apps/cyrest • https://github.com/idekerlab/cyREST/wiki • py2cytoscape — https://github.com/idekerlab/ py2cytoscape
  43. 43. 2016 Keiichiro Ono kono@ucsd.edu

×