Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.
Próximos SlideShares
Carregando em…5
×

# Uslides3

1.101 visualizações

Class Presentation slides for the Third Quarter of Physical Science 50, Spring Semester 2009

• Full Name
Comment goes here.

Are you sure you want to Yes No
• Seja o primeiro a comentar

• Seja a primeira pessoa a gostar disto

### Uslides3

1. 1. Light Waves
2. 2. X-rays 3 x 108m/s  F = c / = 2.19 x 10-10m = 1.37 x 1018 Hz
3. 3. Radio Waves Live 105: 105.3 MHz 3 x 108m/s = c / f = 105.3 x 106 Hz = 2.85 m
4. 4. Red Light = 728 nm  = 7.28 x 10-7m 3 x 108m/s 7.28 x 10-7m f = c/ = 4.12 x 1014 Hz =
5. 5. Light Energy Planck’s Law:  E=hf High frequency -> High energy
6. 6. Properties of Light Reflection:  Specular &  diffuse
7. 7. Refraction “Bending” of light rays  With a change in media
8. 8. Light rays and vision
9. 9. Myopia (Nearsightedness)
10. 10. Lens Correction
11. 11. Hyperopia (Farsightedness)
12. 12. Lens Correction
13. 13. Refracting Telescope
14. 14. Refraction
15. 15. Index of Refraction c n= v 
16. 16. Refraction due to Temperature “mirages” 
17. 17. Refraction via (temperature) n (air 0ºC) = 1.0029  n (air 30ºC) = 1.0026  Light travels faster in warm air 
18. 18. Refractive Index values Material Refractive Index Air 1.0003 Water 1.33 Glycerin 1.47 Oil 1.515 Glass 1.52 Zircon 1.92 Diamond 2.42
19. 19. Laser Single frequency  Focused  Single direction 
20. 20. Incandescent Light Bulb Filament heated to glow  All visible light  frequencies All directions 
21. 21. Wave Vs. Particle? Young’s experiment 
22. 22. Photoelectric Effect Quanta  E =hxf  High frequency photons  have more energy
23. 23. Electron Ejection
24. 24. Bohr model for Hydrogen Niels Bohr  What about more complex atoms? 
25. 25. Atomic Theory Leucippus & Democritus  4th century BC “indivisible”  eternal, moving
26. 26. Elements
27. 27. Aristotle  Continuous matter  Natural motion
28. 28. Age of Experimentation Lavoisier  (1743 - 1794) Conservation  of matter
29. 29. Lavoisier “TraiteElementaire  de Chimie” HgO --> Hg + oxygène 
30. 30. Dalton  Elements made of atoms  All atoms of one element are the same but different than those of other elements  Atoms of different elements can form different combinations with different properties
31. 31. Compounds Water Hydrogen Peroxide H 2O H 2O 2
32. 32. Compounds Nitrous oxide Nitrogen Dioxide N 2O NO2
33. 33. Dalton Atomic masses 
34. 34. Benjamin Franklin Like charges - Repel  Unlike charges - Attract 
35. 35. Michael Faraday Ions = Charged atoms 
36. 36. +/- Charged Particles J.J. Thomson (1897) Cathode rays
37. 37. The Size of an Electron Millikan (1911)  me = 9.11 x 10-31 kg 1 H atom = 1840
38. 38. Positive Particle? Rutherford (1907)  particle = He+ nucleus
39. 39. Neutrons Chadwick (1932)  Neutron = neutral  = “spacer”
40. 40. Atomic Structure Plum pudding planetary 
41. 41. Subatomic particles Quarks 
42. 42. Atomic Number  Atomic Number = # of protons  Atomic Mass = protons + neutrons
43. 43. Isotopes
44. 44. Unstable Isotopes
45. 45. Radioactivity Henri Becquerel 
46. 46. Radioactivity Marie Sklodowska  and Pierre Curie
47. 47. Alpha Decay
48. 48. Beta Decay
51. 51. Artificial Elements
52. 52. Rate of Decay: Half Life
53. 53. Isotope Half Lives Isotope Half Life 4.5 x 109 years U - 238 Pu - 239 24,360 years C - 14 5730 years Co - 60 5.3 years I - 131 8 days 1.63 x 10-4 sec Po - 214
54. 54. Medical Radioisotopes  99Tc and 123I
55. 55. Technetium Half life 99Tc half life = 6 hours If 10 g injected into a patient, how much is left after 24 hrs? 24 hrs = 4 x 6 hrs = 4 half lives 10 g -> 5 g -> 2.5 g -> 1.25 g -> 0.625 g
56. 56. Radiocarbon Dating Atomic Clock 
58. 58. Shroud of Turin
59. 59. Ice Man (Ötzi)
60. 60. Nuclear Fission Otto Hahn &  Lise Meitner
61. 61. Chain Reaction
62. 62. Fission Energy Control rods  = moderators usually Boron, Carbon Keep reaction  under control
63. 63. Manhattan Project
64. 64. US Fission Reactors
65. 65. Three Mile Island (TMI) 1979
66. 66. Chernobyl 1986
67. 67. Breeder Reactor
68. 68. Fast Breeder Reactions
70. 70. Fusion
71. 71. Fusion into Heavier Elements
72. 72. Fission vs. Fusion High energy higher energy Radioactive waste no radioactivity Need fissionable small common nuclei atoms Currently used need solar conditions
73. 73. Cold Fusion (1989) Fleischman/Pons (Utah)
74. 74. Cold Fusion
75. 75. Cold Fusion (2005)  Naranjo, Gimzewski & Putterman  Using a strong Electric Field
76. 76. Tokamak reactor
77. 77. Chemical Reactions Proton Transfer Electron Transfer H+ e- acids/bases reduction/oxidation
78. 78. Proton Transfer  Acid: Sour taste, corrosive Releases H+  Base (alkaline): bitter, corrosive Accepts H+
79. 79. Identifying Acids, Bases 2 HBr + CaO --> H2O + CaBr2
80. 80. Identifying Acids, Bases 2 HBr + CaO --> H2O + CaBr2 ACID BASE All proton transfer reactions must have BOTH an acid and a base
81. 81. Amphoteric Compounds H2O + HCl --> H3O+ + Cl– H2O + NH3 --> OH– + NH4+
82. 82. pH “pouvoir hydrogène” pH = – log10 [H+] Acid: excess H+,low pH Base:H+ deficit, high pH
83. 83. pH scale Low pH acid pH = 7 neutral High pH basic
84. 84. “pH Balanced”
85. 85. Buffers Combination of acid/  base form designed to keep pH at set level
86. 86. Antacids
87. 87. Excess Stomach Acid Overindulgence  Skipping meals  Stress 
88. 88. Antacid = Mild Base Sodium Bicarbonate  NaHCO3 NaHCO3 + HCl ---> H2CO3 ---> carbonic acid CO2 + H2O
89. 89. Sodium - Free? Hypertension 
90. 90. Alka Seltzer NaHCO3 + aspirin + citric acid 
91. 91. Calcium Carbonate Twice the acid relief!  CaCO3 + 2 HCl ---> H2CO3 ---> CO2 + H2O
92. 92. Milk of Magnesia  No gas Mg(OH) 2 + 2 HCl -> 2 H2O + MgCl2  High dose = laxative
93. 93. Acid Rain Rainfall with  ph < 5.5 Normal rain  is mildly acidic due to H2CO3 (carbonic acid)
94. 94. Locations
95. 95. Causes Impurities in fossil fuels: N, S (+ O2) NOx, SOx
96. 96. Effects of Acid Rain Limestone, marble erosion 
97. 97. Effects of Acid Rain
98. 98. Chemical Reactions Proton Transfer Electron Transfer H+ e- acids/bases reduction/oxidation
99. 99. Electron Transfer  Oxidation electron loss  Reduction electron gain
100. 100. Electron Transfer  Oxidation electron loss 2 Ag --> 2 Ag+ + 2 e-  Reduction electron gain silver tarnishing S + 2 e- --> S2-
101. 101. Electron Transfer  Oxidation Oxygen gain C + O2 --> CO2 NH4+ --> N2 (rocket fuel) Hydrogen loss  Reduction ClO4- --> Cl2 (rocket fuel) Oxygen loss Hydrogen gain C18H34O2 --> C18H36O2 unsat Oleic acid sat Stearic acid
102. 102. Safety Matches Red 3 S + 2 KClO3 -> 2 KCl + 3 SO2 ox
103. 103. Biological Redox Alcohol metabolism 
104. 104. Alcohol Metabolism Liver Aldehyde alcohol oxidase dehydrogenase Acetic acid
105. 105. Hangover Nausea  Headache  Sensitivity to  light, sound
106. 106. Batteries Daniell cell: Cu and Zn
107. 107. Battery Operation Anode: oxidation Zn -> Zn2+ + e- Cathode: where reduction occurs MnO2 + e- Mn2O3
108. 108. Alkaline Batteries Anode: Manganese Cathode: Zinc
109. 109. Rechargeable Batteries Ni-cad  Cd -> Cd2+ + e- NiO2 + e- ->NiO
110. 110. NiMH batteries Higher capacity  Longer lifetime  NiOOH -> Ni(OH)2 (Ni+/Ni2+ oxidation)  M+H- -> M (reduction)
111. 111. Lead-Acid Batteries Pb + SO42- -> PbSO4 + 2e- PbO2 + 4 H+ + SO42- + 2e- -> PbSO4 + H2O
112. 112. Corrosion Fe -> Fe2+ oxidation O2 -> OH- reduction
113. 113. Statue of Liberty Gift from France 1876
114. 114. Renovation (1986)
115. 115. Capturing Light Louis Daguerre 
116. 116. Exposure Silver salts: AgBr or AgI  Light + 2 Ag+ X- 2 Ag+* + X2
117. 117. Development Ag+* + C6H6O2 Ag + HBr + C6H4O2 Use Acid to Stop this process
118. 118. Fixing Removes excess insoluble Silver:  Ag+ + S2O32- Ag(S2O3)-  HYPO
119. 119. Color Photography Light + Ag+ + Dye -> Ag+* + Dye* 
120. 120. Instant Photography Polaroids 