SlideShare une entreprise Scribd logo
1  sur  87
Télécharger pour lire hors ligne
Cours M3: présentation
Oscillateurs
Plan
1. Introduction
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1 Problème 4
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1 Problème 4
2.2 Système
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1 Problème 4
2.2 Système
2.3 Référentiel et base de projection
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4

Problème 4
Système
Référentiel et base de projection
Bilan des forces
Force de rappel du ressort
Force de rappel du ressort
→ →
− −
R F

1

→
−
P
0

x <0

→
−
ex
O
x >0

→
−
F

→
−
R
2
→
−
P

Figure 1
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4

Problème 4
Système
Référentiel et base de projection
Bilan des forces
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5

Problème 4
Système
Référentiel et base de projection
Bilan des forces
PFD
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Référentiel et base de projection
Bilan des forces
PFD
Solution
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Référentiel et base de projection
Bilan des forces
PFD
Solution
2.6.1 Notion de pulsation
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Référentiel et base de projection
Bilan des forces
PFD
Solution
2.6.1 Notion de pulsation
2.6.2 Expression de la solution
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Référentiel et base de projection
Bilan des forces
PFD
Solution
2.6.1 Notion de pulsation
2.6.2 Expression de la solution
2.6.3 Allure de la solution
Oscillations sinusoïdales
Oscillations sinusoïdales
x
xm
T0

t

−xm

Figure 2
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Référentiel et base de projection
Bilan des forces
PFD
Solution
2.6.1 Notion de pulsation
2.6.2 Expression de la solution
2.6.3 Allure de la solution
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Référentiel et base de projection
Bilan des forces
PFD
Solution
2.6.1 Notion de pulsation
2.6.2 Expression de la solution
2.6.3 Allure de la solution

3. Système solide-ressort vertical sans frottement
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Référentiel et base de projection
Bilan des forces
PFD
Solution
2.6.1 Notion de pulsation
2.6.2 Expression de la solution
2.6.3 Allure de la solution

3. Système solide-ressort vertical sans frottement
3.1 Problème 5
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Référentiel et base de projection
Bilan des forces
PFD
Solution
2.6.1 Notion de pulsation
2.6.2 Expression de la solution
2.6.3 Allure de la solution

3. Système solide-ressort vertical sans frottement
3.1 Problème 5
3.2 Résolution
Oscillations verticales d’une masse accrochée à
un ressort
Oscillations verticales d’une masse accrochée à
un ressort

0
q

(t)
−
→
Tq
O
x(t)
x

→
−
T

→
−
P
→
−
P
Oscillations verticales d’une masse accrochée à
un ressort
L’allongement du ressort est
ici calculé par rapport à la
position d’équilibre :
x= −

eq
´

(1)

0
q

(t)
−
→
Tq
O
x(t)
x

→
−
T

→
−
P
→
−
P
Oscillations verticales d’une masse accrochée à
un ressort
L’allongement du ressort est
ici calculé par rapport à la
position d’équilibre :
x= −

eq
´

(1)

0
q

(t)
La force de tension n’étant pas
nulle à l’équilibre, elle s’écrit:

−
→
Tq
O
x(t)
x

→
−
T

→
−
P
→
−
P
Oscillations verticales d’une masse accrochée à
un ressort
L’allongement du ressort est
ici calculé par rapport à la
position d’équilibre :
x= −

eq
´

(1)

0
q

(t)
La force de tension n’étant pas
nulle à l’équilibre, elle s’écrit:
→
−
T = −k ( −

→
−
0 ) ex

(2)

−
→
Tq
O
x(t)
x

→
−
T

→
−
P
→
−
P
Oscillations verticales d’une masse accrochée à
un ressort
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:

mx = mg −k ( −
¨

0)

(3)
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappel :

x= −

eq
´

mx = mg −k ( −
¨

0)

(3)
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappel :

x= −

eq
´

mx = mg −k ( −
¨

0)

⇐⇒ m x = m g − k (x +
¨

eq
´

(3)
−

0)

(4)
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappel :

x= −

eq
´

mx = mg −k ( −
¨

0)

⇐⇒ m x = m g − k (x +
¨

eq
´

⇐⇒ m x = m g − k x − k (
¨

(3)
−

eq
´

0)

−

0)

(4)
(5)
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappel :

x= −

eq
´

mx = mg −k ( −
¨

0)

⇐⇒ m x = m g − k (x +
¨

eq
´

⇐⇒ m x = m g − k x − k (
¨

Or à l’équilibre :

(3)
−

eq
´

0)

−

0)

(4)
(5)
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappels:

x= −

eq
´

→
−
T = −k ( −

mx = mg −k ( −
¨

0)

⇐⇒ m x = m g − k (x +
¨

eq
´

⇐⇒ m x = m g − k x − k (
¨

Or à l’équilibre :

→
−

0 ) ex

(3)
−

eq
´

0)

−

0)

(4)
(5)
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappels:

x= −

→
−
T = −k ( −

eq
´

mx = mg −k ( −
¨

0)

⇐⇒ m x = m g − k (x +
¨

eq
´

⇐⇒ m x = m g − k x−k (
¨

eq
´

→
−

0 ) ex

(3)
−
−

0)
0)

(4)
(5)

Or à l’équilibre :
mg −k (

eq
´

−

0)

=0

(6)
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappels:

x= −

→
−
T = −k ( −

eq
´

mx = mg −k ( −
¨

0)

⇐⇒ m x = m g − k (x +
¨

eq
´

⇐⇒ m x = m g − k x−k (
¨

eq
´

→
−

0 ) ex

(3)
−
−

0)
0)

(4)
(5)

Or à l’équilibre :
mg −k (
Donc (5) devient :

eq
´

−

0)

=0

(6)
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
x= −

Rappels:

→
−
T = −k ( −

eq
´

mx = mg −k ( −
¨

0)

⇐⇒ m x = m g − k (x +
¨

eq
´

⇐⇒ m x = m g − k x−k (
¨

eq
´

→
−

0 ) ex

(3)
−
−

0)
0)

(4)
(5)

Or à l’équilibre :
mg −k (

eq
´

−

0)

=0

(6)

k
x =0
m

(7)

Donc (5) devient :
m x = −k x ⇐⇒ x +
¨
¨
Plan

4. Pendule simple
Plan

4. Pendule simple
4.1 Problème 6
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de la base polaire
Présentation de la base polaire
Présentation de la base polaire

Rotation autour d’un axe fixe
Présentation de la base polaire

Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire
Présentation de la base polaire

Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire
Base mobile 2D définie par deux
vecteurs:
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base mobile 2D définie par deux
vecteurs:

M

x
Figure 3
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base mobile 2D définie par deux
vecteurs:
−
• vecteur radial →;
u
r

M

→
−
ur
x
Figure 3
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base mobile 2D définie par deux
vecteurs:
−
• vecteur radial →;
u

→
−
uθ

r

−
• Vecteur orthoradial →.
uθ
M

→
−
ur
x
Figure 3
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base mobile 2D définie par deux
vecteurs:
−
• vecteur radial →;
u

→
−
uθ

r

−
• Vecteur orthoradial →.
uθ
M

Le point M est alors repéré par:

→
−
ur
x
Figure 3
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base mobile 2D définie par deux
vecteurs:
−
• vecteur radial →;
u

→
−
uθ

r

−
• Vecteur orthoradial →.
uθ
M

Le point M est alors repéré par:

→
−
ur

• une distance, ici ;

x
Figure 3
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base mobile 2D définie par deux
vecteurs:
−
• vecteur radial →;
u

θ
→
−
uθ

r

−
• Vecteur orthoradial →.
uθ
M

Le point M est alors repéré par:

→
−
ur

• une distance, ici ;
• un angle, θ.

x
Figure 3
Présentation de la base polaire
O

y
→
−
uy

→
−
ux
θ
→
−
uθ
M

→
−
ur
x
Figure 4
Présentation de la base polaire
O
Liens entre la base polaire et la
base cartésienne

y
→
−
uy

→
−
ux
θ
→
−
uθ
M

→
−
ur
x
Figure 4
Présentation de la base polaire
O
Liens entre la base polaire et la
base cartésienne
x=

cos θ

y
→
−
uy

→
−
ux
(8)

θ

x

→
−
uθ
M

→
−
ur
x
Figure 4
Présentation de la base polaire
y
→
−
uy

O
Liens entre la base polaire et la
base cartésienne

y

→
−
ux

x=

cos θ

(8)

y=

sin θ

(9)

θ

θ
→
−
uθ
M

→
−
ur
x
Figure 4
Présentation de la base polaire
O
Liens entre la base polaire et la
base cartésienne

y
→
−
uy

→
−
ux

x=

cos θ

(8)

y=

sin θ

(9)

θ
→
−
uθ

Donc:
=

M

x2 + y2

tan θ =

y
x

→
−
ur

(10)
x
Figure 4
Présentation de la base polaire
Présentation de la base polaire

Les vecteurs de la base polaire peuvent
s’exprimer en fonction de ceux de la
base cartésienne:
Présentation de la base polaire

Les vecteurs de la base polaire peuvent
s’exprimer en fonction de ceux de la
base cartésienne:

→
−
uθ
θ

M

→
−
uy
θ

→
−
ux
Figure 5

→
−
ur
Présentation de la base polaire

Les vecteurs de la base polaire peuvent
s’exprimer en fonction de ceux de la
base cartésienne:
→ = cos θ → + sin θ →
−
−
−
ur
ux
uy

→
−
uθ
θ

M

→
−
uy

(11)
θ
→
−
ux
Figure 5

→
−
ur
Présentation de la base polaire

Les vecteurs de la base polaire peuvent
s’exprimer en fonction de ceux de la
base cartésienne:

→
−
uθ
θ

M

→ = cos θ → + sin θ →
−
−
−
ur
ux
uy
→ = − sin θ → + cos θ →
−
−
−
uθ
ux
uy

(12)

→
−
uy

(11)
θ
→
−
ux
Figure 5

→
−
ur
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de la base polaire
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de la base polaire

4.4 Bilan des forces
Bilan des forces pour le pendule simple
Bilan des forces pour le pendule simple

O

θ

→
−
T
M

→
−
P
Figure 6

→
−
uθ
→
−
ur
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de la base polaire

4.4 Bilan des forces
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de la base polaire

4.4 Bilan des forces
4.5 Deuxième loi de Newton
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de la base polaire

4.4 Bilan des forces
4.5 Deuxième loi de Newton
4.6 Equation différentielle du mouvement
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de la base polaire

4.4
4.5
4.6
4.7

Bilan des forces
Deuxième loi de Newton
Equation différentielle du mouvement
Solution
Plan

5. Système solide-ressort avec frottements fluides
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5.3.1 Equation caractéristique
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5.3.1 Equation caractéristique
5.3.2 Solution
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5.3.1 Equation caractéristique
5.3.2 Solution
5.3.3 Différents régimes
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5.3.1 Equation caractéristique
5.3.2 Solution
5.3.3 Différents régimes
• Régime pseudo-périodique
Régime pseudopériodique
Régime pseudopériodique
x
X

T

t
: λ = 1/4
: λ = 1/2
: λ=1

-X

Figure 7
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5.3.1 Equation caractéristique
5.3.2 Solution
5.3.3 Différents régimes
• Régime pseudo-périodique
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5.3.1 Equation caractéristique
5.3.2 Solution
5.3.3 Différents régimes
• Régime pseudo-périodique
• Régime apériodique
régime apériodique
régime apériodique

x

: λ=2
: λ=3
: λ=4

xm

t

Figure 8
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5.3.1 Equation caractéristique
5.3.2 Solution
5.3.3 Différents régimes
• Régime pseudo-périodique
• Régime apériodique
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5.3.1 Equation caractéristique
5.3.2 Solution
5.3.3 Différents régimes
• Régime pseudo-périodique
• Régime apériodique
• Régime critique

Contenu connexe

Tendances

Eurocode : Structures Métalliques Et En Béton Armé, Conception Et Calcul Des ...
Eurocode : Structures Métalliques Et En Béton Armé, Conception Et Calcul Des ...Eurocode : Structures Métalliques Et En Béton Armé, Conception Et Calcul Des ...
Eurocode : Structures Métalliques Et En Béton Armé, Conception Et Calcul Des ...SOUISSI Anis
 
PATHOLOGIE DES OA en tunisie.ppt
PATHOLOGIE DES OA en tunisie.pptPATHOLOGIE DES OA en tunisie.ppt
PATHOLOGIE DES OA en tunisie.pptAhmedHL3
 
Diagrammes d'équilibre
Diagrammes d'équilibreDiagrammes d'équilibre
Diagrammes d'équilibreRafael Nadal
 
Cours r.d.m btps3
Cours r.d.m btps3Cours r.d.m btps3
Cours r.d.m btps3sabdou
 
OUVRAGE RDM 2020.pdf
OUVRAGE RDM 2020.pdfOUVRAGE RDM 2020.pdf
OUVRAGE RDM 2020.pdfGeorgesEponon
 
Cisaillement Simple.PPTX
Cisaillement Simple.PPTXCisaillement Simple.PPTX
Cisaillement Simple.PPTXSimoMagri
 
Chapitre 9 flexion simple
Chapitre 9 flexion simpleChapitre 9 flexion simple
Chapitre 9 flexion simpleMouna Souissi
 
Exercice corrigé en Bael - télécharger ici : http://goo.gl/6sYhUz
Exercice corrigé en Bael - télécharger ici : http://goo.gl/6sYhUzExercice corrigé en Bael - télécharger ici : http://goo.gl/6sYhUz
Exercice corrigé en Bael - télécharger ici : http://goo.gl/6sYhUzHani sami joga
 
Dimensionnement d'un Tour (IGH) R+17 sous Eurocodes
Dimensionnement d'un Tour (IGH)  R+17 sous Eurocodes Dimensionnement d'un Tour (IGH)  R+17 sous Eurocodes
Dimensionnement d'un Tour (IGH) R+17 sous Eurocodes Souhail Bouzidi
 
poussees-et-butees
poussees-et-buteespoussees-et-butees
poussees-et-buteesSoumiaNadiri
 
Cours Béton Armé I _ Nguyen Quang Huy
Cours Béton Armé I _ Nguyen Quang HuyCours Béton Armé I _ Nguyen Quang Huy
Cours Béton Armé I _ Nguyen Quang HuyQuang Huy Nguyen
 
Torsion Simple.pptx
Torsion Simple.pptxTorsion Simple.pptx
Torsion Simple.pptxSimoMagri
 
traitement de surface
traitement de surfacetraitement de surface
traitement de surfaceRafael Nadal
 
Pdfcoffee.com eurocode 8-calcul-sismique-pdf-free
Pdfcoffee.com eurocode 8-calcul-sismique-pdf-freePdfcoffee.com eurocode 8-calcul-sismique-pdf-free
Pdfcoffee.com eurocode 8-calcul-sismique-pdf-freeTouihriMohsen1
 

Tendances (20)

Eurocode : Structures Métalliques Et En Béton Armé, Conception Et Calcul Des ...
Eurocode : Structures Métalliques Et En Béton Armé, Conception Et Calcul Des ...Eurocode : Structures Métalliques Et En Béton Armé, Conception Et Calcul Des ...
Eurocode : Structures Métalliques Et En Béton Armé, Conception Et Calcul Des ...
 
PATHOLOGIE DES OA en tunisie.ppt
PATHOLOGIE DES OA en tunisie.pptPATHOLOGIE DES OA en tunisie.ppt
PATHOLOGIE DES OA en tunisie.ppt
 
Énergétique
Énergétique Énergétique
Énergétique
 
Chapitre 6.pdf
Chapitre 6.pdfChapitre 6.pdf
Chapitre 6.pdf
 
Diagrammes d'équilibre
Diagrammes d'équilibreDiagrammes d'équilibre
Diagrammes d'équilibre
 
Cours r.d.m btps3
Cours r.d.m btps3Cours r.d.m btps3
Cours r.d.m btps3
 
OUVRAGE RDM 2020.pdf
OUVRAGE RDM 2020.pdfOUVRAGE RDM 2020.pdf
OUVRAGE RDM 2020.pdf
 
Cisaillement Simple.PPTX
Cisaillement Simple.PPTXCisaillement Simple.PPTX
Cisaillement Simple.PPTX
 
Chapitre 9 flexion simple
Chapitre 9 flexion simpleChapitre 9 flexion simple
Chapitre 9 flexion simple
 
Exercice corrigé en Bael - télécharger ici : http://goo.gl/6sYhUz
Exercice corrigé en Bael - télécharger ici : http://goo.gl/6sYhUzExercice corrigé en Bael - télécharger ici : http://goo.gl/6sYhUz
Exercice corrigé en Bael - télécharger ici : http://goo.gl/6sYhUz
 
Dimensionnement d'un Tour (IGH) R+17 sous Eurocodes
Dimensionnement d'un Tour (IGH)  R+17 sous Eurocodes Dimensionnement d'un Tour (IGH)  R+17 sous Eurocodes
Dimensionnement d'un Tour (IGH) R+17 sous Eurocodes
 
poussees-et-butees
poussees-et-buteespoussees-et-butees
poussees-et-butees
 
Soudage
Soudage Soudage
Soudage
 
Chapitre 4 rdm
Chapitre 4 rdmChapitre 4 rdm
Chapitre 4 rdm
 
Cours Béton Armé I _ Nguyen Quang Huy
Cours Béton Armé I _ Nguyen Quang HuyCours Béton Armé I _ Nguyen Quang Huy
Cours Béton Armé I _ Nguyen Quang Huy
 
Dalles 4 appuis
Dalles 4 appuis Dalles 4 appuis
Dalles 4 appuis
 
cours-plaques
cours-plaquescours-plaques
cours-plaques
 
Torsion Simple.pptx
Torsion Simple.pptxTorsion Simple.pptx
Torsion Simple.pptx
 
traitement de surface
traitement de surfacetraitement de surface
traitement de surface
 
Pdfcoffee.com eurocode 8-calcul-sismique-pdf-free
Pdfcoffee.com eurocode 8-calcul-sismique-pdf-freePdfcoffee.com eurocode 8-calcul-sismique-pdf-free
Pdfcoffee.com eurocode 8-calcul-sismique-pdf-free
 

Similaire à M13 oscillateurs presentation

Electrostatique et Electrocinetique. Rappel de cours et exercices corriges de...
Electrostatique et Electrocinetique. Rappel de cours et exercices corriges de...Electrostatique et Electrocinetique. Rappel de cours et exercices corriges de...
Electrostatique et Electrocinetique. Rappel de cours et exercices corriges de...ssuserf33fd0
 
Transp_6_NEW.pdf
Transp_6_NEW.pdfTransp_6_NEW.pdf
Transp_6_NEW.pdfAuRevoir4
 
07_Transp_7.pdf
07_Transp_7.pdf07_Transp_7.pdf
07_Transp_7.pdfAuRevoir4
 
Calcul Des Structures Portiques Methode Des Deplacements Jexpoz
Calcul Des Structures Portiques   Methode Des Deplacements JexpozCalcul Des Structures Portiques   Methode Des Deplacements Jexpoz
Calcul Des Structures Portiques Methode Des Deplacements Jexpozjexpoz
 
Calcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsCalcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsSami Sahli
 
Exercices physique et chime de terminale Cet D
Exercices physique et chime de terminale Cet DExercices physique et chime de terminale Cet D
Exercices physique et chime de terminale Cet Dokouejeanjunior
 
Lmd st3 m.r. février2008
Lmd st3 m.r.  février2008Lmd st3 m.r.  février2008
Lmd st3 m.r. février2008m.a bensaaoud
 
Cours deplacements simplifies
Cours deplacements simplifiesCours deplacements simplifies
Cours deplacements simplifiesm.a bensaaoud
 
Ball_beam_partie théorique2.docx
Ball_beam_partie théorique2.docxBall_beam_partie théorique2.docx
Ball_beam_partie théorique2.docxSAIEFEDDINEELAMRI
 
PowerPoint Timeline Slide Template.pptx
PowerPoint Timeline Slide Template.pptxPowerPoint Timeline Slide Template.pptx
PowerPoint Timeline Slide Template.pptxChihebSayah1
 
Transp_1-1.pdf
Transp_1-1.pdfTransp_1-1.pdf
Transp_1-1.pdfAuRevoir4
 
BoiteOutilsMathematiques a l'usage des techniciens20181126.pdf
BoiteOutilsMathematiques a l'usage des techniciens20181126.pdfBoiteOutilsMathematiques a l'usage des techniciens20181126.pdf
BoiteOutilsMathematiques a l'usage des techniciens20181126.pdfsedmorabet
 
Cours vibration 2016 prat
Cours vibration 2016 pratCours vibration 2016 prat
Cours vibration 2016 pratOumaimaBenSaid
 

Similaire à M13 oscillateurs presentation (20)

Electrostatique et Electrocinetique. Rappel de cours et exercices corriges de...
Electrostatique et Electrocinetique. Rappel de cours et exercices corriges de...Electrostatique et Electrocinetique. Rappel de cours et exercices corriges de...
Electrostatique et Electrocinetique. Rappel de cours et exercices corriges de...
 
Transp_6_NEW.pdf
Transp_6_NEW.pdfTransp_6_NEW.pdf
Transp_6_NEW.pdf
 
Analyse de structure i4
Analyse de structure i4Analyse de structure i4
Analyse de structure i4
 
Synthèse juin 2000
Synthèse  juin 2000Synthèse  juin 2000
Synthèse juin 2000
 
07_Transp_7.pdf
07_Transp_7.pdf07_Transp_7.pdf
07_Transp_7.pdf
 
Calcul Des Structures Portiques Methode Des Deplacements Jexpoz
Calcul Des Structures Portiques   Methode Des Deplacements JexpozCalcul Des Structures Portiques   Methode Des Deplacements Jexpoz
Calcul Des Structures Portiques Methode Des Deplacements Jexpoz
 
Calcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsCalcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacements
 
Exercices physique et chime de terminale Cet D
Exercices physique et chime de terminale Cet DExercices physique et chime de terminale Cet D
Exercices physique et chime de terminale Cet D
 
Lmd st3 m.r. février2008
Lmd st3 m.r.  février2008Lmd st3 m.r.  février2008
Lmd st3 m.r. février2008
 
Vibration Mécanique
Vibration MécaniqueVibration Mécanique
Vibration Mécanique
 
Cours deplacements simplifies
Cours deplacements simplifiesCours deplacements simplifies
Cours deplacements simplifies
 
Ball_beam_partie théorique2.docx
Ball_beam_partie théorique2.docxBall_beam_partie théorique2.docx
Ball_beam_partie théorique2.docx
 
00 ecc all
00 ecc all00 ecc all
00 ecc all
 
PowerPoint Timeline Slide Template.pptx
PowerPoint Timeline Slide Template.pptxPowerPoint Timeline Slide Template.pptx
PowerPoint Timeline Slide Template.pptx
 
TD 1.pdf
TD 1.pdfTD 1.pdf
TD 1.pdf
 
Transp_1-1.pdf
Transp_1-1.pdfTransp_1-1.pdf
Transp_1-1.pdf
 
BoiteOutilsMathematiques a l'usage des techniciens20181126.pdf
BoiteOutilsMathematiques a l'usage des techniciens20181126.pdfBoiteOutilsMathematiques a l'usage des techniciens20181126.pdf
BoiteOutilsMathematiques a l'usage des techniciens20181126.pdf
 
Cours vibration 2016 prat
Cours vibration 2016 pratCours vibration 2016 prat
Cours vibration 2016 prat
 
Ba7
Ba7Ba7
Ba7
 
Vib 1 agm
Vib 1 agmVib 1 agm
Vib 1 agm
 

Dernier

Computer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxComputer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxRayane619450
 
gestion des conflits dans les entreprises
gestion des  conflits dans les entreprisesgestion des  conflits dans les entreprises
gestion des conflits dans les entreprisesMajdaKtiri2
 
Cours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfCours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfachrafbrahimi1
 
Bolero. pptx . Film de A nnne Fontaine
Bolero. pptx . Film   de  A nnne FontaineBolero. pptx . Film   de  A nnne Fontaine
Bolero. pptx . Film de A nnne FontaineTxaruka
 
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...Faga1939
 
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfCOURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfabatanebureau
 
Cours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdfCours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdfssuserc72852
 
La nouvelle femme . pptx Film français
La   nouvelle   femme  . pptx  Film françaisLa   nouvelle   femme  . pptx  Film français
La nouvelle femme . pptx Film françaisTxaruka
 
Sidonie au Japon . pptx Un film français
Sidonie    au   Japon  .  pptx  Un film françaisSidonie    au   Japon  .  pptx  Un film français
Sidonie au Japon . pptx Un film françaisTxaruka
 
Apolonia, Apolonia.pptx Film documentaire
Apolonia, Apolonia.pptx         Film documentaireApolonia, Apolonia.pptx         Film documentaire
Apolonia, Apolonia.pptx Film documentaireTxaruka
 
Boléro. pptx Film français réalisé par une femme.
Boléro.  pptx   Film   français   réalisé  par une  femme.Boléro.  pptx   Film   français   réalisé  par une  femme.
Boléro. pptx Film français réalisé par une femme.Txaruka
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...Nguyen Thanh Tu Collection
 

Dernier (13)

Computer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxComputer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptx
 
gestion des conflits dans les entreprises
gestion des  conflits dans les entreprisesgestion des  conflits dans les entreprises
gestion des conflits dans les entreprises
 
Cours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfCours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdf
 
Bolero. pptx . Film de A nnne Fontaine
Bolero. pptx . Film   de  A nnne FontaineBolero. pptx . Film   de  A nnne Fontaine
Bolero. pptx . Film de A nnne Fontaine
 
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
L'ÉVOLUTION DE L'ÉDUCATION AU BRÉSIL À TRAVERS L'HISTOIRE ET LES EXIGENCES DE...
 
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfCOURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
 
Cours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdfCours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdf
 
La nouvelle femme . pptx Film français
La   nouvelle   femme  . pptx  Film françaisLa   nouvelle   femme  . pptx  Film français
La nouvelle femme . pptx Film français
 
Sidonie au Japon . pptx Un film français
Sidonie    au   Japon  .  pptx  Un film françaisSidonie    au   Japon  .  pptx  Un film français
Sidonie au Japon . pptx Un film français
 
Apolonia, Apolonia.pptx Film documentaire
Apolonia, Apolonia.pptx         Film documentaireApolonia, Apolonia.pptx         Film documentaire
Apolonia, Apolonia.pptx Film documentaire
 
Evaluación Alumnos de Ecole Victor Hugo
Evaluación Alumnos de Ecole  Victor HugoEvaluación Alumnos de Ecole  Victor Hugo
Evaluación Alumnos de Ecole Victor Hugo
 
Boléro. pptx Film français réalisé par une femme.
Boléro.  pptx   Film   français   réalisé  par une  femme.Boléro.  pptx   Film   français   réalisé  par une  femme.
Boléro. pptx Film français réalisé par une femme.
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
 

M13 oscillateurs presentation

  • 3. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement
  • 4. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 Problème 4
  • 5. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 Problème 4 2.2 Système
  • 6. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 Problème 4 2.2 Système 2.3 Référentiel et base de projection
  • 7. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 Problème 4 Système Référentiel et base de projection Bilan des forces
  • 8. Force de rappel du ressort
  • 9. Force de rappel du ressort → → − − R F 1 → − P 0 x <0 → − ex O x >0 → − F → − R 2 → − P Figure 1
  • 10. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 Problème 4 Système Référentiel et base de projection Bilan des forces
  • 11. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 Problème 4 Système Référentiel et base de projection Bilan des forces PFD
  • 12. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution
  • 13. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation
  • 14. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution
  • 15. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution
  • 18. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution
  • 19. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution 3. Système solide-ressort vertical sans frottement
  • 20. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution 3. Système solide-ressort vertical sans frottement 3.1 Problème 5
  • 21. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution 3. Système solide-ressort vertical sans frottement 3.1 Problème 5 3.2 Résolution
  • 22. Oscillations verticales d’une masse accrochée à un ressort
  • 23. Oscillations verticales d’une masse accrochée à un ressort 0 q (t) − → Tq O x(t) x → − T → − P → − P
  • 24. Oscillations verticales d’une masse accrochée à un ressort L’allongement du ressort est ici calculé par rapport à la position d’équilibre : x= − eq ´ (1) 0 q (t) − → Tq O x(t) x → − T → − P → − P
  • 25. Oscillations verticales d’une masse accrochée à un ressort L’allongement du ressort est ici calculé par rapport à la position d’équilibre : x= − eq ´ (1) 0 q (t) La force de tension n’étant pas nulle à l’équilibre, elle s’écrit: − → Tq O x(t) x → − T → − P → − P
  • 26. Oscillations verticales d’une masse accrochée à un ressort L’allongement du ressort est ici calculé par rapport à la position d’équilibre : x= − eq ´ (1) 0 q (t) La force de tension n’étant pas nulle à l’équilibre, elle s’écrit: → − T = −k ( − → − 0 ) ex (2) − → Tq O x(t) x → − T → − P → − P
  • 27. Oscillations verticales d’une masse accrochée à un ressort
  • 28. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox:
  • 29. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: mx = mg −k ( − ¨ 0) (3)
  • 30. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappel : x= − eq ´ mx = mg −k ( − ¨ 0) (3)
  • 31. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappel : x= − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ (3) − 0) (4)
  • 32. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappel : x= − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x − k ( ¨ (3) − eq ´ 0) − 0) (4) (5)
  • 33. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappel : x= − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x − k ( ¨ Or à l’équilibre : (3) − eq ´ 0) − 0) (4) (5)
  • 34. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappels: x= − eq ´ → − T = −k ( − mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x − k ( ¨ Or à l’équilibre : → − 0 ) ex (3) − eq ´ 0) − 0) (4) (5)
  • 35. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappels: x= − → − T = −k ( − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x−k ( ¨ eq ´ → − 0 ) ex (3) − − 0) 0) (4) (5) Or à l’équilibre : mg −k ( eq ´ − 0) =0 (6)
  • 36. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappels: x= − → − T = −k ( − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x−k ( ¨ eq ´ → − 0 ) ex (3) − − 0) 0) (4) (5) Or à l’équilibre : mg −k ( Donc (5) devient : eq ´ − 0) =0 (6)
  • 37. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: x= − Rappels: → − T = −k ( − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x−k ( ¨ eq ´ → − 0 ) ex (3) − − 0) 0) (4) (5) Or à l’équilibre : mg −k ( eq ´ − 0) =0 (6) k x =0 m (7) Donc (5) devient : m x = −k x ⇐⇒ x + ¨ ¨
  • 40. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système
  • 41. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base
  • 42. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel
  • 43. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire
  • 44. Présentation de la base polaire
  • 45. Présentation de la base polaire Rotation autour d’un axe fixe
  • 46. Présentation de la base polaire Rotation autour d’un axe fixe =⇒ utilisation de la base polaire
  • 47. Présentation de la base polaire Rotation autour d’un axe fixe =⇒ utilisation de la base polaire Base mobile 2D définie par deux vecteurs:
  • 48. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: M x Figure 3
  • 49. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u r M → − ur x Figure 3
  • 50. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u → − uθ r − • Vecteur orthoradial →. uθ M → − ur x Figure 3
  • 51. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u → − uθ r − • Vecteur orthoradial →. uθ M Le point M est alors repéré par: → − ur x Figure 3
  • 52. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u → − uθ r − • Vecteur orthoradial →. uθ M Le point M est alors repéré par: → − ur • une distance, ici ; x Figure 3
  • 53. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u θ → − uθ r − • Vecteur orthoradial →. uθ M Le point M est alors repéré par: → − ur • une distance, ici ; • un angle, θ. x Figure 3
  • 54. Présentation de la base polaire O y → − uy → − ux θ → − uθ M → − ur x Figure 4
  • 55. Présentation de la base polaire O Liens entre la base polaire et la base cartésienne y → − uy → − ux θ → − uθ M → − ur x Figure 4
  • 56. Présentation de la base polaire O Liens entre la base polaire et la base cartésienne x= cos θ y → − uy → − ux (8) θ x → − uθ M → − ur x Figure 4
  • 57. Présentation de la base polaire y → − uy O Liens entre la base polaire et la base cartésienne y → − ux x= cos θ (8) y= sin θ (9) θ θ → − uθ M → − ur x Figure 4
  • 58. Présentation de la base polaire O Liens entre la base polaire et la base cartésienne y → − uy → − ux x= cos θ (8) y= sin θ (9) θ → − uθ Donc: = M x2 + y2 tan θ = y x → − ur (10) x Figure 4
  • 59. Présentation de la base polaire
  • 60. Présentation de la base polaire Les vecteurs de la base polaire peuvent s’exprimer en fonction de ceux de la base cartésienne:
  • 61. Présentation de la base polaire Les vecteurs de la base polaire peuvent s’exprimer en fonction de ceux de la base cartésienne: → − uθ θ M → − uy θ → − ux Figure 5 → − ur
  • 62. Présentation de la base polaire Les vecteurs de la base polaire peuvent s’exprimer en fonction de ceux de la base cartésienne: → = cos θ → + sin θ → − − − ur ux uy → − uθ θ M → − uy (11) θ → − ux Figure 5 → − ur
  • 63. Présentation de la base polaire Les vecteurs de la base polaire peuvent s’exprimer en fonction de ceux de la base cartésienne: → − uθ θ M → = cos θ → + sin θ → − − − ur ux uy → = − sin θ → + cos θ → − − − uθ ux uy (12) → − uy (11) θ → − ux Figure 5 → − ur
  • 64. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire
  • 65. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 Bilan des forces
  • 66. Bilan des forces pour le pendule simple
  • 67. Bilan des forces pour le pendule simple O θ → − T M → − P Figure 6 → − uθ → − ur
  • 68. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 Bilan des forces
  • 69. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 Bilan des forces 4.5 Deuxième loi de Newton
  • 70. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 Bilan des forces 4.5 Deuxième loi de Newton 4.6 Equation différentielle du mouvement
  • 71. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 4.5 4.6 4.7 Bilan des forces Deuxième loi de Newton Equation différentielle du mouvement Solution
  • 72. Plan 5. Système solide-ressort avec frottements fluides
  • 73. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7
  • 74. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle
  • 75. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes
  • 76. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique
  • 77. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution
  • 78. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes
  • 79. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique
  • 81. Régime pseudopériodique x X T t : λ = 1/4 : λ = 1/2 : λ=1 -X Figure 7
  • 82. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique
  • 83. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique • Régime apériodique
  • 85. régime apériodique x : λ=2 : λ=3 : λ=4 xm t Figure 8
  • 86. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique • Régime apériodique
  • 87. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique • Régime apériodique • Régime critique