Anúncio

Mate 3.33

31 de Jan de 2020
Anúncio

Mais conteúdo relacionado

Apresentações para você(20)

Anúncio
Anúncio

Mate 3.33

  1. Derivación e integración de funciones de varias variables Republica bolivariana de Venezuela Ministerio del poder popular para la educación universitaria Instituto universitario politécnico “Santiago Mariño” Facultad de arquitectura Sede Barcelona Autor: Josue Echeverri Enero 2020
  2. Introducción • El cálculo integral de funciones de varias variables reales es una materia fundamental en la formación matemática básica, no sólo en las facultades de matemáticas, sino también en las de ciencias y en las escuelas técnicas. Además de ser imprescindible en muchas otras materias, como la teoría de la probabilidad, el análisis de Fourier, las ecuaciones diferenciales y funcionales, etc. Además de los teoremas de integración reiterada y del cambio de variables para integrales múltiples, se desarrollan otros temas, como la integración de funciones dependientes de parámetros y las integrales de línea y superficie. Con el fin de adecuar los temas a los conocimientos de los alumnos a los que va dirigido el libro, se compaginan los conceptos teóricos con las demostraciones prácticas, reelaborando muchas de las pruebas y distribuyendo los temas de forma que sean más cómodos de estudiar.
  3. Limite y continuidad de funciones de varias variables Es necesario precisar en este punto que el calculo de limites en funciones de varias variables es extraordinariamente mas complejo que el correspondiente a funciones reales de variable real.
  4. Limite y continuidad de funciones de varias variables NOTAS: 1ª. Se destaca que esta definición de límite está basada en la idea “topológica” de proximidad, entre los valores de la variable x con 0 x y los de la función f (x) con L. 2ª. También es valioso darse cuenta de que esta definición no proporciona ningún método para calcular el límite de una función en un punto. La definición sirve, no obstante, para verificar si dicho límite tiene un valor de terminado. 3ª. También se debe destacar que en el límite de una función en un punto 0 x no influye el valor ( ) 0 f x de la función en dicho punto. Para extender este concepto a un campo escalar es necesario ampliar la idea de proximidad en el conjunto ℝ al espacio ℝ 𝑛 Para ello se introduce la definición de bola abierta en ℝ 𝑛 (que equivale al concepto de entrono de un punto en ℝ)
  5. Limite y continuidad de funciones de varias variables
  6. Limite y continuidad de funciones de varias variables
  7. Derivada de funciones de varias variables Antes de comenzar con la derivación de funciones de varias variables conviene recordar este concepto en el contexto de las funciones reales de una variable real. Así, dada una función de la forma f :I⊂ ℝ→ℝ , donde I⊂ℝ es un intervalo abierto, y x0 ∈ I un punto de dicho intervalo, se define la derivada de f en 0 x como el límite:
  8. Derivada de funciones de varias variables Desde el punto de vista geométrico, f’ (𝑥0) corresponde a la pendiente de la recta tangente a la gráfica de la función f (x) en el punto,( 𝑥0 𝑓 𝑥0 ) por tanto, mide la mayor o menor inclinación de la gráfica de la función en ese punto. La pendiente de la recta tangente es el valor de la tangente del ángulo que forma con la horizontal.
  9. Derivadas parciales
  10. Derivadas parciales
  11. Derivadas parciales Incluso si todas las derivadas parciales existen en el punto a, la función no necesariamente es continua en ese punto. Sin embargo, si todas las derivadas parciales existen alrededor de a y son continuas, entonces la función no sólo es continua sino además diferenciable cerca de a. En este caso, f es una función C1. De la definición propuesta se infiere que las reglas para calcular las derivadas parciales son las mismas que se usan para hallar la derivada de las funciones de una variable, es necesario , solo, tener en cuenta , respecto a qué variable se plantea la derivada.
  12. Diferencial total En análisis matemático, la diferencial total de una función real de diversas variables reales corresponde a una combinación lineal de diferenciales cuyos componentes (coeficientes) son los del gradiente de la función. Formalmente el diferencial total de una función es una 1-forma o forma pfaffiana y puede ser tratada rigurosamente como un elemento de un espacio vectorial de dimensión n, donde n es el número de variables dependientes de la función. Por ejemplo, si z=z (x,y) una función diferenciable entonces el diferencial total de z es:
  13. Gradiente En análisis matemático (cálculo avanzado), particularmente en análisis vectorial, el gradiente o también conocido como vector gradiente, denotado 𝛻𝑓 de un campo escalar 𝑓, es un campo vectorial. El vector gradiente de 𝑓 evaluado en un punto genérico 𝑥 del dominio de 𝑓, 𝛻𝑓(𝑥) indica la dirección en la cual el campo 𝑓 varía más rápidamente y su módulo representa el ritmo de variación de 𝑓 en la dirección de dicho vector gradiente.
  14. Gradiente recibe el nombre de Gradiente de una función z= f(x,y), un vector cuyas proyecciones sobre los ejes de coordenadas son las correspondientes derivadas parciales de dicha función: En análisis matemático (cálculo avanzado), particularmente en análisis vectorial, el gradiente o también conocido como vector gradiente, denotado 𝛻𝑓 de un campo escalar 𝑓, es un campo vectorial. El vector gradiente de 𝑓 evaluado en un punto genérico 𝑥 del dominio de 𝑓, 𝛻𝑓(𝑥) indica la dirección en la cual el campo 𝑓 varía más rápidamente y su módulo representa el ritmo de variación de 𝑓 en la dirección de dicho vector gradiente.
  15. Rotacional Rotacional en el espacio. Sea F = (P,Q,R) un campo vectorial definido en un abierto Ω ⊆ R 3 y diferenciable en un punto a ∈ Ω. Del mismo modo que la divergencia divF(a) se obtiene como el producto escalar simbólico ∇.F(a), podemos pensar en el producto vectorial, también simbólico, ∇ ×F(a). El vector que así se obtiene es, por definición, el rotacional del campo F en el punto a y se denota también por rot F(a). Así pues:
  16. Rotacional Aquí, 𝛻𝑠 es el área de la superficie apoyada en la curva C , que se reduce a un punto. El resultado de este límite no es el rotacional completo (que es un vector), sino solo su componente según la dirección normal a 𝛻𝑠 y orientada según la regla de la mano derecha. Para obtener el rotacional completo deberán calcularse tres límites, considerando tres curvas situadas en planos perpendiculares. El rotacional de un campo se puede calcular siempre y cuando este sea continuo y diferenciable en todos sus puntos.
  17. Rotacional El resultado del rotacional es otro campo vectorial que viene dado por el determinante de la siguiente ecuación:
  18. Rotacional Las propiedades más destacadas del rotacional de un campo son: • Si el campo escalar f(x,y,z) tiene derivadas parciales continuas de segundo orden entonces el rot (𝛻f) =0 • Si F(x,y,z) es un campo vectorial conservativo entonces rot (F) = 0 • Si el campo vectorial F(x,y,z) es una función definida sobre todo ℝ3 cuyas componentes tienen derivadas parciales continuas y el rot (F) = 0, entonces F es un campo vectorial conservativo.
  19. Divergencia La divergencia de un campo vectorial mide la diferencia entre el flujo entrante y el flujo saliente en una superficie que encierra un elemento de volumen dV . Si el volumen elegido solamente contiene fuentes o sumideros de un campo, entonces su divergencia es siempre distinta de cero. La divergencia de un campo vectorial en un punto es un campo escalar, que se define como el flujo del campo vectorial por unidad de volumen conforme el volumen alrededor del punto tiende a cero, para el caso del campo magnético la divergencia viene dada por la ecuación
  20. Divergencia donde S es una superficie cerrada que se reduce a un punto en el límite, B es el campo magnético, V es el volumen que encierra dicha superficie S y 𝛻 es el operador nabla, que se calcula de la siguiente forma: Esta definición está directamente relacionada con el concepto de flujo del campo. Como en el caso del flujo, si la divergencia en un punto es positiva, se dice que el campo posee fuentes. Si la divergencia es negativa, se dice que tiene sumideros. El ejemplo más característico lo dan las cargas eléctricas, que dan la divergencia del campo eléctrico, siendo las cargas positivas fuentes y las negativas sumideros del campo eléctrico.
  21. Divergencia La divergencia de un campo es un valor escalar con signo. Si este signo es positivo, quiere decir que el campo emana hacia el exterior de dicho punto y, por tanto, es una fuente o manantial. Si el signo es negativo, el campo converge hacia un punto del interior del volumen, por lo que constituiría un sumidero. Si la divergencia fuese cero el campo neto (diferencia entre las líneas entrantes y salientes) sería nulo. En el caso de los campos magnéticos se ha comprobado la ausencia de fuentes y/o sumideros de ahí que una de sus propiedades sea que su divergencia es nula
  22. Divergencia Los campos cuya divergencia es cero se denominan campos solenoidales, que se caracterizan porque sus líneas de campo son cerradas sobre si mismas, es decir, no tienen extremos donde nacen o mueren. De tener dichos extremos, el flujo neto alrededor de uno de ellos no sería nulo, lo cual denotaría la existencia de una fuente o sumidero del campo.
  23. Plano tangente y recta normal
  24. Plano tangente y recta normal Sea C una curva en S que pasa por el punto P y que se define mediante la función vectorial Entonces, para todo t, Si F es diferenciable y existen x'(t),y'(t) y z'(t), por la regla de la cadena resulta que En (x0,y0,z0) la forma vectorial equivalente es =(gradiente).(vector tangente)
  25. Conclusión • En conclusión vemos como el calculo nos enseña muchas cosas pero no solo en números si no también en la vida diaria los integrales o derivabas es un tema muy extenso que nos ayuda a resolver problemas que involucran magnitudes cuyos valores medios se suelen definir indirectamente como razones entre valores de otras magnitudes, como la velocidad media, la aceleración media.
  26. Bibliografía Rotacional https://www.ugr.es/~rpaya/documentos/Teleco/Fund-Mat02.pdf Wikipedia (2019) gradiente, diferencial https://es.wikipedia.org/wiki/Gradiente https://es.wikipedia.org/wiki/Diferencial_total Sangaku maths, Derivadas Parciales https://www.sangakoo.com/es/temas/derivadas-parciales
  27. Anexos • https://www.youtube.com/watch?v=tb00qQBYm48 • https://www.youtube.com/watch?v=Vnbi1S7x6Qg • https://www.youtube.com/watch?v=y3qiqUpPZ9U • https://www.youtube.com/watch?v=b5RPjR56_w0
Anúncio