SlideShare uma empresa Scribd logo
1 de 22
Baixar para ler offline
C.V.F-C.F.B.                        José Alves Manuel   2012




Apontamentos de

Geometria Descritiva I
11º Ano – Cadeira Anual
Área Ciências Físicas e Biológicas
Ano Lectivo de 2007-2008 (Revisado)


José Alves Manuel


Email: josealvesmanuel60775@hotmail.com
Url: www.profjosealvesmanuel.blogspot.com

Url: www.sites.google.com/profjosealvesmanuel



Telm: 924 172 422
C.V.F-C.F.B.                               José Alves Manuel   2012


Índice


1 Introdução à Geometria Descritiva                                             1

 1.1 Objectivos …………………………………………………………………………………………….                           1
 1.2 Sistemas de projecção ……………………………………………………………………….......                  1
 1.3 Elementos Principais da geometria descritiva ……………………………………………            4
2 Pontos e Rectas ……………………………………………………………………………………….                          10
 2.1 Objectivos …………………………………………………………………………………………....                        10
 2.2 Estudo do Ponto …………………………………………………………………………………..                        10
     - Diedros
     - Convenções de Sinais
     - Coordenadas descritivas do ponto
     - Pontos situados no diedro ou quadrantes
     - Planos bissectores
 2.3 Estudo discritivo da recta …………..………………………………………………………….                 10
     2.3.1 Elementos Principais …………………………………………………………………….                   10
     2.4 Exercícios ……………………………………………………………………………………….                        15

Lista de desenvolvimentos
1.1 Elementos principais do sistema de projecção ……………………………………………...           2
1.2 Efeito da proximidade com o centro de projecção ………………………………………..           2
1.3 Centro de projecção no infinito …………………………………………………………………..                 3
1.4 Sistema cilíndrico de projecção …………………………………………………………………..                 3
1.5 Sistema cilíndrico ortogonal de projecção ……………………………………………………              4
1.6 A perpendicularidade se mantém …………………………………………………………....                   5
1.7 Sistema de Monge …………………………………………………………………………………….                          6
1.8 Projecção de um ponto em dois planos perpendiculares entre si …………………..     7
1.9 Rotação das figuras contidas em π2 em torno da linha de terra (LT) ………………   7
1.10 Épura ………………………………………………………………………………………………...                              8
1.11 Divisão do espaço em quatro diedros …………………………………………………….                   8

2.1 Cota, Afastamento e Abcissa de um ponto ………………………………………………… 11

2.2 Projecções de uma recta na épura …………………………………………………………….. 12

2.3 Traços de uma recta ………………………………………………………………………………..                           13
C.V.F-C.F.B.                               José Alves Manuel   2012


       Capitulo I


Introdução à geometria descritiva

1.1 Objectivo

             O objectivo geral é apresentar aos caros alunos e docentes os fundamentos da
         geometria descritiva, que é uma ferramenta gráfica para soluções de problemas
         geométricos no espaço.
         A experiência que tenho no ramo indica que apesar de o tema ser de fácil leitura, é
         difícil aprender. Pois a melhor forma de o aprender é fazendo Exercícios.

1.2 Sistemas de projecção

             Em geometria descritiva existem inúmeros sistemas de projecção, e depois que se
         atinge um certo nível de maturidade, pode-se formular problemas algébricos, resolver
         problemas de geodésicas 1ou até mesmo projectar elementos geométricos em 4D
         para sistemas de projecção em 2D. Mas vamos ficar por aqui e vamos ao mais
         importante.
             Apresentamos agora dois sistemas de projecção, o cilíndrico ortogonal e o cónico.
         Em ambos os sistemas, há três elementos principais: o objecto a ser projectado, o
         plano de projecção e o centro de projecção, como mostra a figura 1.1

                                                   Um raio de luz ou mais tecnicamente
                                                   conhecido como raio visual parte do
                                                   centro de projecção O, passa por um
                                                   ponto genérico (F) do objecto, e atinge o
                                                   plano de projecção (π) em F. logo dizemos
         que o ponto F é projecção de (F) em π.




1
    Linhas de menor comprimento
C.V.F-C.F.B.                                        José Alves Manuel   2012


1.3 Elementos principais do sistema de projecção

      A geometria Descritiva foi criada por Gaspar Monge (1746-1818), um matemático
   francês que serviu Napoleão em sua campanha pelo Egipto, foi seu Ministro da
   Marinha, e tinha vários interesses tanto na Matemática como na Física e Química.
      Foi amigo de Lavoisier e Fourier. Para termos uma ideia do avanço científico da
   época, que naturalmente envolvia problemas geométricos tridimensionais complexos.
   Após sua invenção, ela foi guardada como segredo militar por vários anos pelo
   próprio Napoleão. Certamente a geometria descritiva não era “óbvia”, como é hoje.
      E, afinal qual era o grande “segredo” de Gaspar Monge? Era o uso simultâneo de
   dois sistemas de projecção cilíndricos ortogonais entre si, como mostra a figura 1.2




                                                figura 1.2


      Como você já deve ser capaz de intuir, que um ponto no espaço é representado
   no sistema mongeano como a figura 1.3.
      Falando um pouco mais formalmente, um ponto (A) no espaço tridimensional é
   localizado por três coordenadas, x, y e z. Através da projecção em dois planos π1 e π2,
   é possível se especificar as três coordenadas de (A),
      A recta resultante da intersecção dos planos π1 e π2 é denominada linha de terra
   representado pelas letras (LT).
      Tanto o plano π2 como as figuras nele representado são rotacional em torno da
   LT. de modo a ficarem coplanares com π1, assim aposição de um dado ponto (A)
   pode ser totalmente descrita por suas projecções em π1 e π2, disposto em um único
   plano (figura 1.4) denominado Épura.




                                                    Figura 1.3
C.V.F-C.F.B.                                       José Alves Manuel   2012




                            Figura 1.4

           Na épura, logo acima e abaixo da linha de terra são escritas os algarismos
        correspondentes aos planos que dão origem a ela, o segmento que une as projecções
        do ponto A, A1 e A2, é denominado linha de chamada. Perceba que deve ser
        perpendicular à linha de terra. Vamos considerar neste material que o plano π1 e que
        contém os eixos x e y, de plano horizontal de projecção e o plano π2, que contém os
        eixos x e z, de plano vertical de projecção. A projecção de um ponto no plano
        horizontal de projecção é denominada projecção horizontal, e a projecção sobre o
        plano vertical, de projecção vertical.
           Em resumo, pode-se perceber que um ponto no espaço pode ser completamente
        especificado dadas as suas projecções ortogonais em dois planos perpendiculares
        (pois temos as três coordenadas x, y e z de cada ponto), designamos plano horizontal
        de projecção, e plano vertical de projecção.
           O plano vertical e horizontal de projecção, dividem em quatro diedros2 como é
        mostrado na figura 1.5




                        Figura 1.5 divisão do espaço em quatro diedros



        Para deixarmos mais claro vamos dizer que: pha=IQ, pvs=IIQ, php=IIIQ e pvi=IVQ




2
    Pode ser chamado também quadrantes
C.V.F-C.F.B.                                              José Alves Manuel      2012


   Capítulo 2

2 Pontos e Rectas

2.1 Objectivos

   Os elementos principais para a resolução de qualquer problema espacial são pontos
   e rectas. Neste capítulo, examinaremos esses itens, procurando no processo de
   aprendizado, fomentar o amadurecimento de ideias relacionadas ao espaço
   geométrico representado no sistema de Gaspar Monge.

2.2 Estudo do Ponto

   A distância z de um ponto A ao plano horizontal de projecção é denominada cota,
   como na geometria cotada, na épura, a cota é a distância acima da linha de terra até a
   projecção vertical do ponto, como é mostrado na figura 1.6




                                  Figura 1.6 Cota, afastamento e abcissa de um ponto

       Um ponto pertencente ao plano horizontal de projecção tem cota nula, e portanto, na épura, sua
   projecção vertical deve estar na linha de terra. A coordenada y de um ponto A é denominada
   afastamento. Na épura, o afastamento é a distância abaixo da linha de terra até a projecção horizontal
   do ponto. A coordenada x, fixada a partir de uma origem arbitrária, é denominada abcissas.

        Um ponto pertencente ao plano vertical de projecção tem coordenadas y, nula, e portanto, sua
   projecção horizontal deve estar sobre a linha de terra. É importante notar que é possível a existência
   de cota e afastamentos negativos. Por exemplo um ponto do segundo diedro tem cota positiva mas
   afastamento negativo.

   Exemplo 1 O ponto (A) no espaço onde (A)=(1;3;2) ou (A)=(x;y;z)
C.V.F-C.F.B.                                    José Alves Manuel   2012




       Em épura, a abcissa x de um ponto é marcado sobre a linha de terra, a partir da
    origem pré fixada. A épura do ponto (A) é representada na épura da seguinte forma,




    Diedros

Como já nos referimos no capítulo anterior os planos de projecção π1 e π2 dividem o
espaço em quatro diedros e a linha de terra divide cada plano de projecção em dois
semiplanos.

SPHA – semiplano horizontal anterior

SPHP – semiplano horizontal posterior

SPVS – semiplano vertical superior

SPVI – semiplano vertical inferior

A região do espaço limitada pelos spha e spvs denomina-se primeiro diedro, a limitada
pelas spvs e sphp segundo diedro, a limitada pelos sphp e spvi terceiro diedro e a limitada
pelas spvi e spha quarto diedro.
C.V.F-C.F.B.                                               José Alves Manuel   2012




                                 Figura 1.7 representação dos semiplanos

Devemos lembrar não se pode medir com régua e compasso as distancias A’ (A) e A (A) porque são
desenhos que representam figuras no espaço e só podemos medir distância sobre o plano. Ao girarmos um
plano sobre o outro, em torno da linha de terra, temos o semiplano horizontal posterior (sphp) coincidindo
com o semiplano vertical superior (spvs). Teremos também a coincidência do semiplano horizontal
anterior (spha) coincidindo com o semiplano vertical inferior (spvi) conforme a figura 1.8




               Figura 1.8

As projecções verticais e horizontais de um ponto qualquer determinam uma linha perpendicular à linha de
terra que chamamos linha de chamada conforme figura 1.4

Convenção de sinais
Um ponto pode estar localizado em qualquer dos quatro diedros. Para sabermos
exactamente em qual dos diedros, foram estabelecidas convenções de sinais para cota e
afastamentos que permitem resolver esse problema, assim sendo, foi estabelecido que:

    ·   São positivas as cotas dos pontos localizados acima do plano vertical de projecção
        e negativas as cotas dos pontos localizados abaixo.
    ·   São positivos os afastamentos dos pontos anteriores ao plano vertical de projecção
        e negativos os afastamentos dos pontos posteriores.
        Resumindo temos:




                                         Figura 1.9 Convenções de sinais
C.V.F-C.F.B.                                            José Alves Manuel   2012


Coordenadas descritivas do ponto

       O conhecimento da cota e do afastamento de um ponto determinam com
precisão as distâncias do ponto aos planos de projecção π1 e π2.
       Se, numa mesma épura, for necessário representar as projecções de vários
pontos ou de pontos distintos que tenham afastamento e/ou cota iguais e com o
mesmo sinal, torna-se importante conhecer a posição relativa entre eles no
espaço.
       A posição de cada ponto fica facilmente determinada pela distância da
linha de chamada de cada um dos pontos a um ponto fixo da linha de terra.
       Tal distância é chamada abcissa do ponto e pode ser positiva ou negativa
conforme a linha de chamada esteja à direita ou à esquerda desse ponto fixo da
linha de terra que é definido como origem das abcissas , designado por O0.
       Normalmente são usadas apenas abcissas positivas.
       Na figura 2 são mostrados as épuras dos pontos M, N, P e Q, utilizando
uma mesma linha de terra.




                Figura 2a Representação dos pontos na linha de terra




                Figura 2b Indicações das representações dos pontos
C.V.F-C.F.B.                                                                    José Alves Manuel   2012


Pontos situados nos diedros ou quadrantes


Ponto do I quadrante

       Um ponto do I quadrante, pelas suas projecções, tem a cota positiva e o
afastamento positivo. Nos planos de projecção, a cota situa-se nos SPVS, dada pela
projectante frontal, enquanto o afastamento situa-se no SPHA, recorrendo a sua
projectante frontal.

        Ainda no I quadrante, um ponto poderá situar-se no primeiro octante onde se
verifica um maior valor do afastamento do que a da cota ou estar situado no segundo
octante onde a cota tem um valor maior do que o do afastamento, pode ainda, estar no
bissector impar caso a cota seja igual ao afastamento3.

             Podemos então dizer que este é o quadrante mais simples de se representar…!?

Ponto do II quadrante

Quando um ponto P está situado no II segundo quadrante, sua projecção horizontal P
esta sobre o plano horizontal posterior SPHP e a projecção vertical, P´ sobre o plano
vertical superior SPVS.

Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com
π2 percebe-se que, tanto a projectante horizontal P, quanto a projectante vertical P´,
situam-se acima da linha de terra ver figura 2.1




                                      Figura 2.1 Representação dos pontos do II quadrante

       As projecções dos pontos localizados na porção de espaço correspondentes a este
diedro, como se pode perceber, situam-se, em épura, todas acima da linha de terra.

Figuras complexas, como polígonos, poliedros e superfícies em geral poderão ficar com
as projecções horizontais e verticais de seus elementos juntos de tal forma que será
extremamente difícil o seu entendimento. Por esta razão as projecções neste quadrante
devem ser evitadas.


3
    O valor do afastamento e da cota devem ser contrário ou seja cota positiva e afastamento negativo
C.V.F-C.F.B.                                                                  José Alves Manuel   2012


Também neste mesmo quadrante um ponto pode situar-se no terceiro octante com o
valor absoluto da cota maior que o afastamento, pertencer ao bissector par em que,
apesar de terem sinais4 diferentes, os valores para o afastamento e a cota são iguais ou
ainda situar-se no quarto quadrante onde o valor do afastamento é maior que a cota.

Ponto do III quadrante

Quando um ponto P esta situado no terceiro quadrante, sua projecção horizontal P está
sobre o plano horizontal posterior SPHP e a sua projecção vertical, sobre o plano vertical
inferior SPVI.

Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com
π2, a projecção horizontal P fica acima da linha de terra, enquanto a projecção vertical,
P´, fica abaixo dela. Ver figura 2.2




                                     Figura 2.2 Representação dos pontos do III quadrante

Uma vez que o ponto se situa no terceiro quadrante, pode ocupar uma das seguintes
posições: estar no quinto octante5 onde o valor do afastamento será maior que a cota,
pertencer ao bissector impar com o valor do afastamento e da cota serem iguais ou ainda
situar-se no sexto octante onde o valor da cota é maior que a do afastamento.

Ponto do IV quadrante

Quando um ponto P está situado no quarto quadrante6, sua projecção horizontal P está
sobre o plano horizontal anterior SPHA e a projecção vertical, P´, sobre o plano vertical
inferior SPVI.

Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com
π2,percebe-se que, tanto as projecções horizontais P, quanto a projecção vertical P´,
situam-se abaixo da linha de terra ver figura 2.3




4
    Lembre-se que os sinais só identificam os quadrantes e não interferem nos octantes pois eles são valores modulares
5
    Octante pode também ser escrito como 1º oct, 2º oct etc.
6
    Quadrante pode ser denotado também como IQ, IIQ
C.V.F-C.F.B.                                      José Alves Manuel      2012


 Pontos em posições especiais

Pontos no plano π1

Quando um ponto pertence ao plano π1 em qualquer circunstância, sua cota é nula, uma
vez que a distância de P ao plano π1, que mede a sua cota, é nula. Se o ponto esta no
semi-pano anterior a π2, seu afastamento é positivo.

Para melhor compressão observe a figura 2.4




          Figura que representa o SPHA                  Figura que representa o SPHP

Podemos notar que para um ponto pertencer ao SPHA ela deve possuir uma cota nula e
um afastamento positivo. Analogamente o inverso para o SPHP se verifica com
afastamento negativo.

Pontos no plano π2

Quando um ponto pertence ao plano π2, em qualquer circunstância, seu afastamento é
nulo, uma vez que a distância de P ao plano π2, que mede o seu afastamento, é nula.

Se o ponto está no semi-plano superior a π1, sua cota é positiva ver figura 2.5




          Figura que representa o SPVS                  Figura que representa o SPVI

Podemos notar mas uma vez que para um ponto pertencer ao SPVS ela deve possuir
uma cota positiva e um afastamento nulo ou coincidente com a linha de terra.
Analogamente o inverso para o SPVI se verifica com a cota negativa.

Ponto da linha de terra

Quando um ponto pertence à linha de terra, tanto sua cota quanto o seu afastamento são
nulos.



                             Figura 2.5
C.V.F-C.F.B.                                            José Alves Manuel   2012


Planos bissectores

Além dos planos de projecção que anteriormente estudamos, fazem parte da organização
do espaço mais dois planos: são os planos bissectores. Um plano bissector divide um
diedro em duas partes iguais e passa em dois quadrantes, interceptando o eixo x ou linha
de terra.

    ·   Β2/4 – é o plano bissector que a travessa os quadrantes pares, II e IV quadrantes
    ·   Β1/3 – é o plano bissector que a travessa os quadrantes impares, I e III quadrantes.

    Agora sim temos o estudo do espaço completo representados na figura 2.6 abaixo




                             Figura 2.6 Representação de todos os planos
C.V.F-C.F.B.                                           José Alves Manuel   2012


2.3 Estudo descritivo da recta

Dois pontos distintos determinam uma recta. A recta é representada por uma letra
minúscula entre parênteses (r). E r´ representa a projecção de uma recta (r) no plano π1 e
r representa a projecção de uma recta (r) no plano π.




                                 Figura 2.7 Representação da recta

Tipos de rectas

Recta horizontal é toda recta paralela ao plano horizontal. Quando a recta é paralela ao
plano horizontal sua projecção vertical é paralela à linha de terra.




                                    Figura 2.8 Recta horizontal

Recta frontal é toda recta paralela ao plano vertical. Quando a recta é paralela ao plano
vertical sua projecção horizontal é paralela à linha de terra.




                                      Figura 2.9 Recta frontal
C.V.F-C.F.B.                                                 José Alves Manuel   2012


Recta paralela à linha de terra é toda recta paralela à linha de terra e paralelo ao plano
vertical e ao plano horizontal suas projecções são paralela à linha de terra.




                                   Figura 3 Recta paralela à linha de terra



Recta vertical é toda recta perpendicular ao plano horizontal. A sua projecção horizontal é um ponto e sua
projecção vertical é uma recta vertical r´.




                                          Figura 3.1 Recta vertical



Recta de topo é toda recta perpendicular ao plano vertical. A sua projecção horizontal é uma recta vertical e
sua projecção vertical é um ponto.




                                          Figura 3.2 Recta de topo
C.V.F-C.F.B.                                             José Alves Manuel     2012


Traço de uma recta

Traços de uma recta são os pontos onde a recta atravessa os planos de projecção.




                      ( V) – Traço vertical          Figura 3.3 Traços de uma recta

Para encontrarmos o traço vertical de uma recta (Tv), se deve prolongar a sua projecção r até a linha de
terra. Na intersecção da linha de terra com a projecção r levanta-se uma linha de chamada com a projecção
r´ temos o traço vertical (Tv).




                        (H) – Traço horizontal     Figura 3.4 Traços de uma recta

Para encontrar o traço horizontal (Th), de uma recta, se prolonga sua projecção r´ ate a linha de terra. Na
intersecção da linha de terra com a projecção r´ levanta-se uma linha de chamada até encontrar a projecção
r teremos então o traço horizontal (Th).
C.V.F-C.F.B.                                                     José Alves Manuel   2012


Representação do plano
Um plano pode ser determinado por uma das quatro possibilidades:

         1.    Três pontos não colineares7
         2.    Uma recta e um ponto exterior
         3.    Duas rectas concorrentes
         4.    Duas rectas paralelas



    Representação do plano
    Estas figuras abaixo representam os quatros pontos referidos acima.




                                                  Figura 3.5 Regras 1e 2 sobre planos




                                                  Figura 3.6 Regras 3 e 4 sobre planos




7
    Pontos que não estão alinhados ou não estão situados em Lina recta
C.V.F-C.F.B.                                     José Alves Manuel   2012


Traços de um plano

A recta de intersecção de um dado plano α com o plano horizontal designa-se por traço
horizontal. Trata-se de uma recta de nível de cota nula. E a recta de intersecção de um
dado plano α com o plano frontal designa-se por traço frontal. Trata-se de uma recta de
frente de afastamento nulo.




                                         Figura 3.7 Traços de um plano

Plano de topo

O plano de topo é um plano em posições particulares

       ·      É um plano perpendicular ao plano F8;
       ·      As projecções frontais das suas rectas são coincidentes com o seu traço frontal;
       ·      As projecções frontais dos seus pontos pertencem ao seu traço frontal.




                                                Figura 3.8 Plano de topo




8
    F significa frontal e H horizontal
C.V.F-C.F.B.                                       José Alves Manuel   2012


Plano vertical

   ·   Plano perpendicular ao plano H
   ·   As projecções horizontais das suas rectas são coincidentes com o seu traço
       horizontal
   ·   As projecções horizontais dos seus pontos pertencem ao seu traço horizontal.




                                        Figura 3.9 Plano vertical


       Plano de Nível
           · Plano paralelo ao plano H
           · Só tem traço frontal e todas as projecções frontais dos seus elementos
              pontos e rectas estão sobre essa linha, paralela à linha de terra.




                                    Figura 4 Plano de Nível

                 Plano de frente

   ·   Plano paralelo ao plano F
   ·   Só tem traço horizontal e todas as projecções horizontais dos seus elementos
       pontos e rectas estão sobre essa linha paralela à linha de terra.




                                   Figura 4.1 Plano de frente
C.V.F-C.F.B.                                               José Alves Manuel      2012


Plano de perfil

   ·   Plano perpendicular à linha de terra, ao plano H e ao plano F;
   ·   São de perfil todas as rectas pertencentes a um plano de perfil incluindo as verticais e as de topo.




                                        Figura 4.2 Plano de perfil

Plano passante

   ·   Os seus traços são coincidentes com a linha de terra
   ·   Pode ser representado pela linha de terra (traços) e um dos seus pontos




                                        Figura 4.3 Plano passante

       Plano rampa

           ·      Paralelo à linha de terra mas oblíquo aos dois planos de projecção, F e H
           ·      Os seus traços são rectas paralelas à linha de terra.




                                       Figura 4.4 Plano de Rampa
C.V.F-C.F.B.                                    José Alves Manuel   2012



Plano Oblíquo

   ·   Oblíquo em relação aos dois planos de projecção e à linha de terra.




                                 Figura 4.5 Plano Oblíquo
C.V.F-C.F.B.                                             José Alves Manuel      2012


Referencias Bibliográficas

    ·    Rangel, Alcyr Pinheiro – Poliedros, Livros Técnicos e Científicos Editora, 1985
    ·    Almeida, Célio Pinto – Geometria Descritiva, vols. 7 Apostila para cursos de vestibulares, editor
         desconhecido
    ·    Rodrigues, Álvaro José – Geometria descritiva, livro Técnico, Rio de Janeiro, 1960
    ·    Machado, Adervan, Geometria Descritiva, Editora McGraw-Hill do Brasil LTDA, 1974
    ·    Stamato, José, Cadernos do MEC, Introdução ao Desenho Técnico, 1972
    ·    Príncipe, JR, Geometria Descritiva, V.1 e 2
    ·    Neilzel, E, Desenho Tecnico para a construção Civil, São Paulo, Editora USP
    ·    Leonardo, Barros, Geometria Descritiva, Luanda, Textos Editores, 2007
    ·    http://www.mat.uel.br/marie
    ·    www.google.com.br
    ·    www.wikipedia.com
    ·    www.google.com.ao
    ·    www.google.com.pt

OBS:

Todos os nomes registados, e marcas registadas e direito de uso citado neste trabalho pertencem aos seus
respectivos autores.

Mais conteúdo relacionado

Mais procurados

Apostila geometria descritiva
Apostila geometria descritivaApostila geometria descritiva
Apostila geometria descritivaAyla Leite
 
Mat retas exercicios resolvidos
Mat retas exercicios resolvidosMat retas exercicios resolvidos
Mat retas exercicios resolvidostrigono_metrico
 
Aula 09 geometria descritiva
Aula 09   geometria descritivaAula 09   geometria descritiva
Aula 09 geometria descritivagilbertocbmdf
 
Aula 5 - Projeções Ortogonais
Aula 5 - Projeções OrtogonaisAula 5 - Projeções Ortogonais
Aula 5 - Projeções OrtogonaisGutierry Prates
 
12ª classe exames e correcções
12ª classe exames e correcções12ª classe exames e correcções
12ª classe exames e correcçõesAvatar Cuamba
 
desenho geometria descritiva_enunciado e resolução
desenho geometria descritiva_enunciado e resoluçãodesenho geometria descritiva_enunciado e resolução
desenho geometria descritiva_enunciado e resoluçãoSolange Oliveira
 
Exercício de férias para 11ª classe
Exercício de férias para 11ª classeExercício de férias para 11ª classe
Exercício de férias para 11ª classeAvatar Cuamba
 

Mais procurados (20)

Apostila geometria descritiva
Apostila geometria descritivaApostila geometria descritiva
Apostila geometria descritiva
 
rebatimentos.PDF
rebatimentos.PDFrebatimentos.PDF
rebatimentos.PDF
 
Aula 10 ponto e sistemas de projeções
Aula 10   ponto e sistemas de projeçõesAula 10   ponto e sistemas de projeções
Aula 10 ponto e sistemas de projeções
 
Mat retas exercicios resolvidos
Mat retas exercicios resolvidosMat retas exercicios resolvidos
Mat retas exercicios resolvidos
 
Secções Planas
Secções PlanasSecções Planas
Secções Planas
 
Aula 09 geometria descritiva
Aula 09   geometria descritivaAula 09   geometria descritiva
Aula 09 geometria descritiva
 
Aula 18 estudo da reta
Aula 18   estudo da retaAula 18   estudo da reta
Aula 18 estudo da reta
 
Aula 5 - Projeções Ortogonais
Aula 5 - Projeções OrtogonaisAula 5 - Projeções Ortogonais
Aula 5 - Projeções Ortogonais
 
Mat estudo do ponto
Mat estudo do pontoMat estudo do ponto
Mat estudo do ponto
 
Geometria descritiva
Geometria descritiva Geometria descritiva
Geometria descritiva
 
Aula 3 geom descritiva
Aula 3  geom descritivaAula 3  geom descritiva
Aula 3 geom descritiva
 
12ª classe exames e correcções
12ª classe exames e correcções12ª classe exames e correcções
12ª classe exames e correcções
 
Aula 2 introdução geometria descritiva
Aula 2   introdução geometria descritivaAula 2   introdução geometria descritiva
Aula 2 introdução geometria descritiva
 
Plano dgd 2013
Plano dgd 2013Plano dgd 2013
Plano dgd 2013
 
Aula 21 estudo da reta - parte 2
Aula 21   estudo da reta - parte 2Aula 21   estudo da reta - parte 2
Aula 21 estudo da reta - parte 2
 
desenho geometria descritiva_enunciado e resolução
desenho geometria descritiva_enunciado e resoluçãodesenho geometria descritiva_enunciado e resolução
desenho geometria descritiva_enunciado e resolução
 
Paral resumo
Paral resumoParal resumo
Paral resumo
 
Perspetiva cónica
Perspetiva cónicaPerspetiva cónica
Perspetiva cónica
 
Solidossecres
SolidossecresSolidossecres
Solidossecres
 
Exercício de férias para 11ª classe
Exercício de férias para 11ª classeExercício de férias para 11ª classe
Exercício de férias para 11ª classe
 

Semelhante a Material de geometria descritiva 2012

Tarefa Semana 3 E 4 Grupo Iluminados
Tarefa Semana 3 E 4 Grupo IluminadosTarefa Semana 3 E 4 Grupo Iluminados
Tarefa Semana 3 E 4 Grupo IluminadosRFBH2910
 
Sequência didática circunferência
Sequência didática circunferênciaSequência didática circunferência
Sequência didática circunferênciaeduardabotelho
 
Conicas cordpolar parametrizada
Conicas cordpolar parametrizadaConicas cordpolar parametrizada
Conicas cordpolar parametrizadaAnanias Neto
 
Noções de Matemática - vol. 6 - Geometria Analítica.pdf
Noções de Matemática - vol. 6 - Geometria Analítica.pdfNoções de Matemática - vol. 6 - Geometria Analítica.pdf
Noções de Matemática - vol. 6 - Geometria Analítica.pdfElieteCarvalhoPinto1
 
062 cadeia circunferência
062 cadeia circunferência062 cadeia circunferência
062 cadeia circunferênciaLúcio Aguiar
 
08 - FAI_AULA_SEMANA 08_ENGAGRONOMICA_ 20-04-2018.pdf
08 - FAI_AULA_SEMANA 08_ENGAGRONOMICA_ 20-04-2018.pdf08 - FAI_AULA_SEMANA 08_ENGAGRONOMICA_ 20-04-2018.pdf
08 - FAI_AULA_SEMANA 08_ENGAGRONOMICA_ 20-04-2018.pdfDntsGames
 
Seções Cônicas - Hipérbole
Seções Cônicas - HipérboleSeções Cônicas - Hipérbole
Seções Cônicas - HipérboleGabriel Resende
 
GEOMETRIA ANALÍTICA cap 08
GEOMETRIA ANALÍTICA cap  08GEOMETRIA ANALÍTICA cap  08
GEOMETRIA ANALÍTICA cap 08Andrei Bastos
 
Sessão de cônicas 17122016
Sessão de cônicas 17122016Sessão de cônicas 17122016
Sessão de cônicas 17122016Antonio Carneiro
 
Tarefa 7 ApresentaçãO
Tarefa 7   ApresentaçãOTarefa 7   ApresentaçãO
Tarefa 7 ApresentaçãORFBH2910
 
Trabalhando cônicas com a o geogebra (professor edson delerre)
Trabalhando cônicas com a o geogebra (professor edson delerre)Trabalhando cônicas com a o geogebra (professor edson delerre)
Trabalhando cônicas com a o geogebra (professor edson delerre)Delerre
 
Trabalhando cônicas com a o geogebra (professor edson delerre)
Trabalhando cônicas com a o geogebra (professor edson delerre)Trabalhando cônicas com a o geogebra (professor edson delerre)
Trabalhando cônicas com a o geogebra (professor edson delerre)Delerre
 

Semelhante a Material de geometria descritiva 2012 (20)

Aula 3 geom descritiva
Aula 3  geom descritivaAula 3  geom descritiva
Aula 3 geom descritiva
 
Exc trigon
Exc trigonExc trigon
Exc trigon
 
Tarefa Semana 3 E 4 Grupo Iluminados
Tarefa Semana 3 E 4 Grupo IluminadosTarefa Semana 3 E 4 Grupo Iluminados
Tarefa Semana 3 E 4 Grupo Iluminados
 
Sequência didática circunferência
Sequência didática circunferênciaSequência didática circunferência
Sequência didática circunferência
 
Sessões Cônicas
 Sessões Cônicas Sessões Cônicas
Sessões Cônicas
 
Sombras
Sombras Sombras
Sombras
 
Apostila 2020 aluno 2
Apostila 2020 aluno 2Apostila 2020 aluno 2
Apostila 2020 aluno 2
 
Conicas cordpolar parametrizada
Conicas cordpolar parametrizadaConicas cordpolar parametrizada
Conicas cordpolar parametrizada
 
Noções de Matemática - vol. 6 - Geometria Analítica.pdf
Noções de Matemática - vol. 6 - Geometria Analítica.pdfNoções de Matemática - vol. 6 - Geometria Analítica.pdf
Noções de Matemática - vol. 6 - Geometria Analítica.pdf
 
Circunferência
CircunferênciaCircunferência
Circunferência
 
062 cadeia circunferência
062 cadeia circunferência062 cadeia circunferência
062 cadeia circunferência
 
08 - FAI_AULA_SEMANA 08_ENGAGRONOMICA_ 20-04-2018.pdf
08 - FAI_AULA_SEMANA 08_ENGAGRONOMICA_ 20-04-2018.pdf08 - FAI_AULA_SEMANA 08_ENGAGRONOMICA_ 20-04-2018.pdf
08 - FAI_AULA_SEMANA 08_ENGAGRONOMICA_ 20-04-2018.pdf
 
Seções Cônicas - Hipérbole
Seções Cônicas - HipérboleSeções Cônicas - Hipérbole
Seções Cônicas - Hipérbole
 
Ft12 revisoesteste3
Ft12 revisoesteste3Ft12 revisoesteste3
Ft12 revisoesteste3
 
GEOMETRIA ANALÍTICA cap 08
GEOMETRIA ANALÍTICA cap  08GEOMETRIA ANALÍTICA cap  08
GEOMETRIA ANALÍTICA cap 08
 
Sessão de cônicas 17122016
Sessão de cônicas 17122016Sessão de cônicas 17122016
Sessão de cônicas 17122016
 
Tarefa 7 ApresentaçãO
Tarefa 7   ApresentaçãOTarefa 7   ApresentaçãO
Tarefa 7 ApresentaçãO
 
Geometria Analítica I (AP 01)
Geometria Analítica I (AP 01)Geometria Analítica I (AP 01)
Geometria Analítica I (AP 01)
 
Trabalhando cônicas com a o geogebra (professor edson delerre)
Trabalhando cônicas com a o geogebra (professor edson delerre)Trabalhando cônicas com a o geogebra (professor edson delerre)
Trabalhando cônicas com a o geogebra (professor edson delerre)
 
Trabalhando cônicas com a o geogebra (professor edson delerre)
Trabalhando cônicas com a o geogebra (professor edson delerre)Trabalhando cônicas com a o geogebra (professor edson delerre)
Trabalhando cônicas com a o geogebra (professor edson delerre)
 

Último

Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxIsabelaRafael2
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveaulasgege
 
A galinha ruiva sequencia didatica 3 ano
A  galinha ruiva sequencia didatica 3 anoA  galinha ruiva sequencia didatica 3 ano
A galinha ruiva sequencia didatica 3 anoandrealeitetorres
 
Doutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptxDoutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptxThye Oliver
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfAdrianaCunha84
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISVitor Vieira Vasconcelos
 
Atividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu AbrigoAtividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu AbrigoMary Alvarenga
 
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...LizanSantos1
 
Guia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfGuia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfEyshilaKelly1
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxconcelhovdragons
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditaduraAdryan Luiz
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxDeyvidBriel
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfaulasgege
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxLuizHenriquedeAlmeid6
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPanandatss1
 
FCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirFCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirIedaGoethe
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxLuizHenriquedeAlmeid6
 

Último (20)

Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
 
A galinha ruiva sequencia didatica 3 ano
A  galinha ruiva sequencia didatica 3 anoA  galinha ruiva sequencia didatica 3 ano
A galinha ruiva sequencia didatica 3 ano
 
Doutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptxDoutrina Deus filho e Espírito Santo.pptx
Doutrina Deus filho e Espírito Santo.pptx
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdf
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGIS
 
Atividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu AbrigoAtividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu Abrigo
 
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
 
Guia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfGuia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdf
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditadura
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdf
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SP
 
FCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimirFCEE - Diretrizes - Autismo.pdf para imprimir
FCEE - Diretrizes - Autismo.pdf para imprimir
 
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 

Material de geometria descritiva 2012

  • 1. C.V.F-C.F.B. José Alves Manuel 2012 Apontamentos de Geometria Descritiva I 11º Ano – Cadeira Anual Área Ciências Físicas e Biológicas Ano Lectivo de 2007-2008 (Revisado) José Alves Manuel Email: josealvesmanuel60775@hotmail.com Url: www.profjosealvesmanuel.blogspot.com Url: www.sites.google.com/profjosealvesmanuel Telm: 924 172 422
  • 2. C.V.F-C.F.B. José Alves Manuel 2012 Índice 1 Introdução à Geometria Descritiva 1 1.1 Objectivos ……………………………………………………………………………………………. 1 1.2 Sistemas de projecção ………………………………………………………………………....... 1 1.3 Elementos Principais da geometria descritiva …………………………………………… 4 2 Pontos e Rectas ………………………………………………………………………………………. 10 2.1 Objectivos ………………………………………………………………………………………….... 10 2.2 Estudo do Ponto ………………………………………………………………………………….. 10 - Diedros - Convenções de Sinais - Coordenadas descritivas do ponto - Pontos situados no diedro ou quadrantes - Planos bissectores 2.3 Estudo discritivo da recta …………..…………………………………………………………. 10 2.3.1 Elementos Principais ……………………………………………………………………. 10 2.4 Exercícios ………………………………………………………………………………………. 15 Lista de desenvolvimentos 1.1 Elementos principais do sistema de projecção ……………………………………………... 2 1.2 Efeito da proximidade com o centro de projecção ……………………………………….. 2 1.3 Centro de projecção no infinito ………………………………………………………………….. 3 1.4 Sistema cilíndrico de projecção ………………………………………………………………….. 3 1.5 Sistema cilíndrico ortogonal de projecção …………………………………………………… 4 1.6 A perpendicularidade se mantém ………………………………………………………….... 5 1.7 Sistema de Monge ……………………………………………………………………………………. 6 1.8 Projecção de um ponto em dois planos perpendiculares entre si ………………….. 7 1.9 Rotação das figuras contidas em π2 em torno da linha de terra (LT) ……………… 7 1.10 Épura ………………………………………………………………………………………………... 8 1.11 Divisão do espaço em quatro diedros ……………………………………………………. 8 2.1 Cota, Afastamento e Abcissa de um ponto ………………………………………………… 11 2.2 Projecções de uma recta na épura …………………………………………………………….. 12 2.3 Traços de uma recta ……………………………………………………………………………….. 13
  • 3. C.V.F-C.F.B. José Alves Manuel 2012 Capitulo I Introdução à geometria descritiva 1.1 Objectivo O objectivo geral é apresentar aos caros alunos e docentes os fundamentos da geometria descritiva, que é uma ferramenta gráfica para soluções de problemas geométricos no espaço. A experiência que tenho no ramo indica que apesar de o tema ser de fácil leitura, é difícil aprender. Pois a melhor forma de o aprender é fazendo Exercícios. 1.2 Sistemas de projecção Em geometria descritiva existem inúmeros sistemas de projecção, e depois que se atinge um certo nível de maturidade, pode-se formular problemas algébricos, resolver problemas de geodésicas 1ou até mesmo projectar elementos geométricos em 4D para sistemas de projecção em 2D. Mas vamos ficar por aqui e vamos ao mais importante. Apresentamos agora dois sistemas de projecção, o cilíndrico ortogonal e o cónico. Em ambos os sistemas, há três elementos principais: o objecto a ser projectado, o plano de projecção e o centro de projecção, como mostra a figura 1.1 Um raio de luz ou mais tecnicamente conhecido como raio visual parte do centro de projecção O, passa por um ponto genérico (F) do objecto, e atinge o plano de projecção (π) em F. logo dizemos que o ponto F é projecção de (F) em π. 1 Linhas de menor comprimento
  • 4. C.V.F-C.F.B. José Alves Manuel 2012 1.3 Elementos principais do sistema de projecção A geometria Descritiva foi criada por Gaspar Monge (1746-1818), um matemático francês que serviu Napoleão em sua campanha pelo Egipto, foi seu Ministro da Marinha, e tinha vários interesses tanto na Matemática como na Física e Química. Foi amigo de Lavoisier e Fourier. Para termos uma ideia do avanço científico da época, que naturalmente envolvia problemas geométricos tridimensionais complexos. Após sua invenção, ela foi guardada como segredo militar por vários anos pelo próprio Napoleão. Certamente a geometria descritiva não era “óbvia”, como é hoje. E, afinal qual era o grande “segredo” de Gaspar Monge? Era o uso simultâneo de dois sistemas de projecção cilíndricos ortogonais entre si, como mostra a figura 1.2 figura 1.2 Como você já deve ser capaz de intuir, que um ponto no espaço é representado no sistema mongeano como a figura 1.3. Falando um pouco mais formalmente, um ponto (A) no espaço tridimensional é localizado por três coordenadas, x, y e z. Através da projecção em dois planos π1 e π2, é possível se especificar as três coordenadas de (A), A recta resultante da intersecção dos planos π1 e π2 é denominada linha de terra representado pelas letras (LT). Tanto o plano π2 como as figuras nele representado são rotacional em torno da LT. de modo a ficarem coplanares com π1, assim aposição de um dado ponto (A) pode ser totalmente descrita por suas projecções em π1 e π2, disposto em um único plano (figura 1.4) denominado Épura. Figura 1.3
  • 5. C.V.F-C.F.B. José Alves Manuel 2012 Figura 1.4 Na épura, logo acima e abaixo da linha de terra são escritas os algarismos correspondentes aos planos que dão origem a ela, o segmento que une as projecções do ponto A, A1 e A2, é denominado linha de chamada. Perceba que deve ser perpendicular à linha de terra. Vamos considerar neste material que o plano π1 e que contém os eixos x e y, de plano horizontal de projecção e o plano π2, que contém os eixos x e z, de plano vertical de projecção. A projecção de um ponto no plano horizontal de projecção é denominada projecção horizontal, e a projecção sobre o plano vertical, de projecção vertical. Em resumo, pode-se perceber que um ponto no espaço pode ser completamente especificado dadas as suas projecções ortogonais em dois planos perpendiculares (pois temos as três coordenadas x, y e z de cada ponto), designamos plano horizontal de projecção, e plano vertical de projecção. O plano vertical e horizontal de projecção, dividem em quatro diedros2 como é mostrado na figura 1.5 Figura 1.5 divisão do espaço em quatro diedros Para deixarmos mais claro vamos dizer que: pha=IQ, pvs=IIQ, php=IIIQ e pvi=IVQ 2 Pode ser chamado também quadrantes
  • 6. C.V.F-C.F.B. José Alves Manuel 2012 Capítulo 2 2 Pontos e Rectas 2.1 Objectivos Os elementos principais para a resolução de qualquer problema espacial são pontos e rectas. Neste capítulo, examinaremos esses itens, procurando no processo de aprendizado, fomentar o amadurecimento de ideias relacionadas ao espaço geométrico representado no sistema de Gaspar Monge. 2.2 Estudo do Ponto A distância z de um ponto A ao plano horizontal de projecção é denominada cota, como na geometria cotada, na épura, a cota é a distância acima da linha de terra até a projecção vertical do ponto, como é mostrado na figura 1.6 Figura 1.6 Cota, afastamento e abcissa de um ponto Um ponto pertencente ao plano horizontal de projecção tem cota nula, e portanto, na épura, sua projecção vertical deve estar na linha de terra. A coordenada y de um ponto A é denominada afastamento. Na épura, o afastamento é a distância abaixo da linha de terra até a projecção horizontal do ponto. A coordenada x, fixada a partir de uma origem arbitrária, é denominada abcissas. Um ponto pertencente ao plano vertical de projecção tem coordenadas y, nula, e portanto, sua projecção horizontal deve estar sobre a linha de terra. É importante notar que é possível a existência de cota e afastamentos negativos. Por exemplo um ponto do segundo diedro tem cota positiva mas afastamento negativo. Exemplo 1 O ponto (A) no espaço onde (A)=(1;3;2) ou (A)=(x;y;z)
  • 7. C.V.F-C.F.B. José Alves Manuel 2012 Em épura, a abcissa x de um ponto é marcado sobre a linha de terra, a partir da origem pré fixada. A épura do ponto (A) é representada na épura da seguinte forma, Diedros Como já nos referimos no capítulo anterior os planos de projecção π1 e π2 dividem o espaço em quatro diedros e a linha de terra divide cada plano de projecção em dois semiplanos. SPHA – semiplano horizontal anterior SPHP – semiplano horizontal posterior SPVS – semiplano vertical superior SPVI – semiplano vertical inferior A região do espaço limitada pelos spha e spvs denomina-se primeiro diedro, a limitada pelas spvs e sphp segundo diedro, a limitada pelos sphp e spvi terceiro diedro e a limitada pelas spvi e spha quarto diedro.
  • 8. C.V.F-C.F.B. José Alves Manuel 2012 Figura 1.7 representação dos semiplanos Devemos lembrar não se pode medir com régua e compasso as distancias A’ (A) e A (A) porque são desenhos que representam figuras no espaço e só podemos medir distância sobre o plano. Ao girarmos um plano sobre o outro, em torno da linha de terra, temos o semiplano horizontal posterior (sphp) coincidindo com o semiplano vertical superior (spvs). Teremos também a coincidência do semiplano horizontal anterior (spha) coincidindo com o semiplano vertical inferior (spvi) conforme a figura 1.8 Figura 1.8 As projecções verticais e horizontais de um ponto qualquer determinam uma linha perpendicular à linha de terra que chamamos linha de chamada conforme figura 1.4 Convenção de sinais Um ponto pode estar localizado em qualquer dos quatro diedros. Para sabermos exactamente em qual dos diedros, foram estabelecidas convenções de sinais para cota e afastamentos que permitem resolver esse problema, assim sendo, foi estabelecido que: · São positivas as cotas dos pontos localizados acima do plano vertical de projecção e negativas as cotas dos pontos localizados abaixo. · São positivos os afastamentos dos pontos anteriores ao plano vertical de projecção e negativos os afastamentos dos pontos posteriores. Resumindo temos: Figura 1.9 Convenções de sinais
  • 9. C.V.F-C.F.B. José Alves Manuel 2012 Coordenadas descritivas do ponto O conhecimento da cota e do afastamento de um ponto determinam com precisão as distâncias do ponto aos planos de projecção π1 e π2. Se, numa mesma épura, for necessário representar as projecções de vários pontos ou de pontos distintos que tenham afastamento e/ou cota iguais e com o mesmo sinal, torna-se importante conhecer a posição relativa entre eles no espaço. A posição de cada ponto fica facilmente determinada pela distância da linha de chamada de cada um dos pontos a um ponto fixo da linha de terra. Tal distância é chamada abcissa do ponto e pode ser positiva ou negativa conforme a linha de chamada esteja à direita ou à esquerda desse ponto fixo da linha de terra que é definido como origem das abcissas , designado por O0. Normalmente são usadas apenas abcissas positivas. Na figura 2 são mostrados as épuras dos pontos M, N, P e Q, utilizando uma mesma linha de terra. Figura 2a Representação dos pontos na linha de terra Figura 2b Indicações das representações dos pontos
  • 10. C.V.F-C.F.B. José Alves Manuel 2012 Pontos situados nos diedros ou quadrantes Ponto do I quadrante Um ponto do I quadrante, pelas suas projecções, tem a cota positiva e o afastamento positivo. Nos planos de projecção, a cota situa-se nos SPVS, dada pela projectante frontal, enquanto o afastamento situa-se no SPHA, recorrendo a sua projectante frontal. Ainda no I quadrante, um ponto poderá situar-se no primeiro octante onde se verifica um maior valor do afastamento do que a da cota ou estar situado no segundo octante onde a cota tem um valor maior do que o do afastamento, pode ainda, estar no bissector impar caso a cota seja igual ao afastamento3. Podemos então dizer que este é o quadrante mais simples de se representar…!? Ponto do II quadrante Quando um ponto P está situado no II segundo quadrante, sua projecção horizontal P esta sobre o plano horizontal posterior SPHP e a projecção vertical, P´ sobre o plano vertical superior SPVS. Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com π2 percebe-se que, tanto a projectante horizontal P, quanto a projectante vertical P´, situam-se acima da linha de terra ver figura 2.1 Figura 2.1 Representação dos pontos do II quadrante As projecções dos pontos localizados na porção de espaço correspondentes a este diedro, como se pode perceber, situam-se, em épura, todas acima da linha de terra. Figuras complexas, como polígonos, poliedros e superfícies em geral poderão ficar com as projecções horizontais e verticais de seus elementos juntos de tal forma que será extremamente difícil o seu entendimento. Por esta razão as projecções neste quadrante devem ser evitadas. 3 O valor do afastamento e da cota devem ser contrário ou seja cota positiva e afastamento negativo
  • 11. C.V.F-C.F.B. José Alves Manuel 2012 Também neste mesmo quadrante um ponto pode situar-se no terceiro octante com o valor absoluto da cota maior que o afastamento, pertencer ao bissector par em que, apesar de terem sinais4 diferentes, os valores para o afastamento e a cota são iguais ou ainda situar-se no quarto quadrante onde o valor do afastamento é maior que a cota. Ponto do III quadrante Quando um ponto P esta situado no terceiro quadrante, sua projecção horizontal P está sobre o plano horizontal posterior SPHP e a sua projecção vertical, sobre o plano vertical inferior SPVI. Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com π2, a projecção horizontal P fica acima da linha de terra, enquanto a projecção vertical, P´, fica abaixo dela. Ver figura 2.2 Figura 2.2 Representação dos pontos do III quadrante Uma vez que o ponto se situa no terceiro quadrante, pode ocupar uma das seguintes posições: estar no quinto octante5 onde o valor do afastamento será maior que a cota, pertencer ao bissector impar com o valor do afastamento e da cota serem iguais ou ainda situar-se no sexto octante onde o valor da cota é maior que a do afastamento. Ponto do IV quadrante Quando um ponto P está situado no quarto quadrante6, sua projecção horizontal P está sobre o plano horizontal anterior SPHA e a projecção vertical, P´, sobre o plano vertical inferior SPVI. Quando o plano π1 gira em torno da linha de terra no sentido horário até coincidir com π2,percebe-se que, tanto as projecções horizontais P, quanto a projecção vertical P´, situam-se abaixo da linha de terra ver figura 2.3 4 Lembre-se que os sinais só identificam os quadrantes e não interferem nos octantes pois eles são valores modulares 5 Octante pode também ser escrito como 1º oct, 2º oct etc. 6 Quadrante pode ser denotado também como IQ, IIQ
  • 12. C.V.F-C.F.B. José Alves Manuel 2012 Pontos em posições especiais Pontos no plano π1 Quando um ponto pertence ao plano π1 em qualquer circunstância, sua cota é nula, uma vez que a distância de P ao plano π1, que mede a sua cota, é nula. Se o ponto esta no semi-pano anterior a π2, seu afastamento é positivo. Para melhor compressão observe a figura 2.4 Figura que representa o SPHA Figura que representa o SPHP Podemos notar que para um ponto pertencer ao SPHA ela deve possuir uma cota nula e um afastamento positivo. Analogamente o inverso para o SPHP se verifica com afastamento negativo. Pontos no plano π2 Quando um ponto pertence ao plano π2, em qualquer circunstância, seu afastamento é nulo, uma vez que a distância de P ao plano π2, que mede o seu afastamento, é nula. Se o ponto está no semi-plano superior a π1, sua cota é positiva ver figura 2.5 Figura que representa o SPVS Figura que representa o SPVI Podemos notar mas uma vez que para um ponto pertencer ao SPVS ela deve possuir uma cota positiva e um afastamento nulo ou coincidente com a linha de terra. Analogamente o inverso para o SPVI se verifica com a cota negativa. Ponto da linha de terra Quando um ponto pertence à linha de terra, tanto sua cota quanto o seu afastamento são nulos. Figura 2.5
  • 13. C.V.F-C.F.B. José Alves Manuel 2012 Planos bissectores Além dos planos de projecção que anteriormente estudamos, fazem parte da organização do espaço mais dois planos: são os planos bissectores. Um plano bissector divide um diedro em duas partes iguais e passa em dois quadrantes, interceptando o eixo x ou linha de terra. · Β2/4 – é o plano bissector que a travessa os quadrantes pares, II e IV quadrantes · Β1/3 – é o plano bissector que a travessa os quadrantes impares, I e III quadrantes. Agora sim temos o estudo do espaço completo representados na figura 2.6 abaixo Figura 2.6 Representação de todos os planos
  • 14. C.V.F-C.F.B. José Alves Manuel 2012 2.3 Estudo descritivo da recta Dois pontos distintos determinam uma recta. A recta é representada por uma letra minúscula entre parênteses (r). E r´ representa a projecção de uma recta (r) no plano π1 e r representa a projecção de uma recta (r) no plano π. Figura 2.7 Representação da recta Tipos de rectas Recta horizontal é toda recta paralela ao plano horizontal. Quando a recta é paralela ao plano horizontal sua projecção vertical é paralela à linha de terra. Figura 2.8 Recta horizontal Recta frontal é toda recta paralela ao plano vertical. Quando a recta é paralela ao plano vertical sua projecção horizontal é paralela à linha de terra. Figura 2.9 Recta frontal
  • 15. C.V.F-C.F.B. José Alves Manuel 2012 Recta paralela à linha de terra é toda recta paralela à linha de terra e paralelo ao plano vertical e ao plano horizontal suas projecções são paralela à linha de terra. Figura 3 Recta paralela à linha de terra Recta vertical é toda recta perpendicular ao plano horizontal. A sua projecção horizontal é um ponto e sua projecção vertical é uma recta vertical r´. Figura 3.1 Recta vertical Recta de topo é toda recta perpendicular ao plano vertical. A sua projecção horizontal é uma recta vertical e sua projecção vertical é um ponto. Figura 3.2 Recta de topo
  • 16. C.V.F-C.F.B. José Alves Manuel 2012 Traço de uma recta Traços de uma recta são os pontos onde a recta atravessa os planos de projecção. ( V) – Traço vertical Figura 3.3 Traços de uma recta Para encontrarmos o traço vertical de uma recta (Tv), se deve prolongar a sua projecção r até a linha de terra. Na intersecção da linha de terra com a projecção r levanta-se uma linha de chamada com a projecção r´ temos o traço vertical (Tv). (H) – Traço horizontal Figura 3.4 Traços de uma recta Para encontrar o traço horizontal (Th), de uma recta, se prolonga sua projecção r´ ate a linha de terra. Na intersecção da linha de terra com a projecção r´ levanta-se uma linha de chamada até encontrar a projecção r teremos então o traço horizontal (Th).
  • 17. C.V.F-C.F.B. José Alves Manuel 2012 Representação do plano Um plano pode ser determinado por uma das quatro possibilidades: 1. Três pontos não colineares7 2. Uma recta e um ponto exterior 3. Duas rectas concorrentes 4. Duas rectas paralelas Representação do plano Estas figuras abaixo representam os quatros pontos referidos acima. Figura 3.5 Regras 1e 2 sobre planos Figura 3.6 Regras 3 e 4 sobre planos 7 Pontos que não estão alinhados ou não estão situados em Lina recta
  • 18. C.V.F-C.F.B. José Alves Manuel 2012 Traços de um plano A recta de intersecção de um dado plano α com o plano horizontal designa-se por traço horizontal. Trata-se de uma recta de nível de cota nula. E a recta de intersecção de um dado plano α com o plano frontal designa-se por traço frontal. Trata-se de uma recta de frente de afastamento nulo. Figura 3.7 Traços de um plano Plano de topo O plano de topo é um plano em posições particulares · É um plano perpendicular ao plano F8; · As projecções frontais das suas rectas são coincidentes com o seu traço frontal; · As projecções frontais dos seus pontos pertencem ao seu traço frontal. Figura 3.8 Plano de topo 8 F significa frontal e H horizontal
  • 19. C.V.F-C.F.B. José Alves Manuel 2012 Plano vertical · Plano perpendicular ao plano H · As projecções horizontais das suas rectas são coincidentes com o seu traço horizontal · As projecções horizontais dos seus pontos pertencem ao seu traço horizontal. Figura 3.9 Plano vertical Plano de Nível · Plano paralelo ao plano H · Só tem traço frontal e todas as projecções frontais dos seus elementos pontos e rectas estão sobre essa linha, paralela à linha de terra. Figura 4 Plano de Nível Plano de frente · Plano paralelo ao plano F · Só tem traço horizontal e todas as projecções horizontais dos seus elementos pontos e rectas estão sobre essa linha paralela à linha de terra. Figura 4.1 Plano de frente
  • 20. C.V.F-C.F.B. José Alves Manuel 2012 Plano de perfil · Plano perpendicular à linha de terra, ao plano H e ao plano F; · São de perfil todas as rectas pertencentes a um plano de perfil incluindo as verticais e as de topo. Figura 4.2 Plano de perfil Plano passante · Os seus traços são coincidentes com a linha de terra · Pode ser representado pela linha de terra (traços) e um dos seus pontos Figura 4.3 Plano passante Plano rampa · Paralelo à linha de terra mas oblíquo aos dois planos de projecção, F e H · Os seus traços são rectas paralelas à linha de terra. Figura 4.4 Plano de Rampa
  • 21. C.V.F-C.F.B. José Alves Manuel 2012 Plano Oblíquo · Oblíquo em relação aos dois planos de projecção e à linha de terra. Figura 4.5 Plano Oblíquo
  • 22. C.V.F-C.F.B. José Alves Manuel 2012 Referencias Bibliográficas · Rangel, Alcyr Pinheiro – Poliedros, Livros Técnicos e Científicos Editora, 1985 · Almeida, Célio Pinto – Geometria Descritiva, vols. 7 Apostila para cursos de vestibulares, editor desconhecido · Rodrigues, Álvaro José – Geometria descritiva, livro Técnico, Rio de Janeiro, 1960 · Machado, Adervan, Geometria Descritiva, Editora McGraw-Hill do Brasil LTDA, 1974 · Stamato, José, Cadernos do MEC, Introdução ao Desenho Técnico, 1972 · Príncipe, JR, Geometria Descritiva, V.1 e 2 · Neilzel, E, Desenho Tecnico para a construção Civil, São Paulo, Editora USP · Leonardo, Barros, Geometria Descritiva, Luanda, Textos Editores, 2007 · http://www.mat.uel.br/marie · www.google.com.br · www.wikipedia.com · www.google.com.ao · www.google.com.pt OBS: Todos os nomes registados, e marcas registadas e direito de uso citado neste trabalho pertencem aos seus respectivos autores.